We introduce a model for gas flow in pipeline networks based on
the isothermal Euler equations. We model the intersection of multiple pipes
by posing an additional assumption on the pressure at the interface. We give a
method to obtain solutions to the gas network problem and present numerical
results for sample networks.
Citation: Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks[J]. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
Related Papers:
[1]
Mapundi K. Banda, Michael Herty, Axel Klar .
Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56.
doi: 10.3934/nhm.2006.1.41
[2]
Michael Herty .
Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97.
doi: 10.3934/nhm.2007.2.81
[3]
Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering .
Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320.
doi: 10.3934/nhm.2015.10.295
[4]
Mapundi K. Banda, Michael Herty, Axel Klar .
Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314.
doi: 10.3934/nhm.2006.1.295
[5]
Fabian Rüffler, Volker Mehrmann, Falk M. Hante .
Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13(4): 641-661.
doi: 10.3934/nhm.2018029
[6]
Yogiraj Mantri, Michael Herty, Sebastian Noelle .
Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14(4): 659-676.
doi: 10.3934/nhm.2019026
[7]
Martin Gugat, Rüdiger Schultz, Michael Schuster .
Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195.
doi: 10.3934/nhm.2020008
[8]
Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni .
A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544.
doi: 10.3934/nhm.2010.5.525
[9]
Markus Dick, Martin Gugat, Günter Leugering .
Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709.
doi: 10.3934/nhm.2010.5.691
[10]
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski .
An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171.
doi: 10.3934/nhm.2017006
Abstract
We introduce a model for gas flow in pipeline networks based on
the isothermal Euler equations. We model the intersection of multiple pipes
by posing an additional assumption on the pressure at the interface. We give a
method to obtain solutions to the gas network problem and present numerical
results for sample networks.
This article has been cited by:
1.
Andre F. Caldeira, Christophe Prieur, Daniel Coutinho, Valter J. S. Leite,
2015,
Modeling and control of flow with dynamical boundary actions,
978-1-4799-7787-1,
1579,
10.1109/CCA.2015.7320835
2.
Michael Herty,
2015,
Multi-scale modeling and nodal control for gas transportation networks,
978-1-4799-7886-1,
4585,
10.1109/CDC.2015.7402935
3.
Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin,
The interface coupling of the gas dynamics equations,
2008,
66,
0033-569X,
659,
10.1090/S0033-569X-08-01087-X
4.
Vitaliy Gyrya, Anatoly Zlotnik,
An explicit staggered-grid method for numerical simulation of large-scale natural gas pipeline networks,
2019,
65,
0307904X,
34,
10.1016/j.apm.2018.07.051
Rinaldo M. Colombo, Francesca Marcellini,
Coupling conditions for the Euler system,
2010,
5,
1556-181X,
675,
10.3934/nhm.2010.5.675
10.
Mauro Garavello, Paola Goatin,
The Cauchy problem at a node with buffer,
2012,
32,
1553-5231,
1915,
10.3934/dcds.2012.32.1915
11.
Lars Schewe, Martin Schmidt, Johannes Thürauf,
Structural properties of feasible bookings in the European entry–exit gas market system,
2020,
18,
1619-4500,
197,
10.1007/s10288-019-00411-3
12.
Markus Dick, Martin Gugat, Gunter Leugering,
2012,
Feedback stabilization of quasilinear hyperbolic systems with varying delays,
978-1-4673-2124-2,
125,
10.1109/MMAR.2012.6347931
13.
Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert,
High detail stationary optimization models for gas networks,
2015,
16,
1389-4420,
131,
10.1007/s11081-014-9246-x
14.
Daniel Rose, Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert,
Computational optimization of gas compressor stations: MINLP models versus continuous reformulations,
2016,
83,
1432-2994,
409,
10.1007/s00186-016-0533-5
15.
Gregory A. Von Wald, Austin J. Stanion, Deepak Rajagopal, Adam R. Brandt,
Biomethane addition to California transmission pipelines: Regional simulation of the impact of regulations,
2019,
250,
03062619,
292,
10.1016/j.apenergy.2019.05.031
16.
Jean-Michel Coron, Georges Bastin, Brigitte d'Andréa-Novel,
Dissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems,
2008,
47,
0363-0129,
1460,
10.1137/070706847
17.
Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper,
2012,
Chapter 7,
978-3-0348-0132-4,
123,
10.1007/978-3-0348-0133-1_7
18.
Klaus-Jochen Engel, Marjeta Kramar FijavŽ,
Exact and positive controllability of boundary control systems,
2017,
12,
1556-181X,
319,
10.3934/nhm.2017014
19.
Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus,
Coupling constants and the generalized Riemann problem for isothermal junction flow,
2015,
12,
0219-8916,
37,
10.1142/S0219891615500022
20.
Gunhild A. Reigstad,
Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow,
2015,
75,
0036-1399,
679,
10.1137/140962759
21.
Alfredo López-Benito, Francisco J. Elorza Tenreiro, Luis C. Gutiérrez-Pérez,
Steady-state non-isothermal flow model for natural gas transmission in pipes,
2016,
40,
0307904X,
10020,
10.1016/j.apm.2016.06.057
22.
Alina Chertock, Michael Herty, Şeyma Nur Özcan,
2018,
Chapter 28,
978-3-319-91544-9,
345,
10.1007/978-3-319-91545-6_28
23.
Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko,
Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results,
2021,
13,
2073-8994,
1300,
10.3390/sym13071300
24.
Michael Herty, Mohammed Seaïd,
Simulation of transient gas flow at pipe-to-pipe intersections,
2008,
56,
02712091,
485,
10.1002/fld.1531
25.
Simone Göttlich, Michael Herty, Ute Ziegler,
Modeling and optimizing traffic light settings in road networks,
2015,
55,
03050548,
36,
10.1016/j.cor.2014.10.001
26.
Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye,
On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections,
2015,
276,
03770427,
81,
10.1016/j.cam.2014.08.021
27.
H. Egger,
A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks,
2018,
40,
1064-8275,
A108,
10.1137/16M1094373
28.
Mapundi K. Banda, Axel-Stefan Häck, Michael Herty,
Numerical Discretization of Coupling Conditions by High-Order Schemes,
2016,
69,
0885-7474,
122,
10.1007/s10915-016-0185-x
29.
Rinaldo M. Colombo, Mauro Garavello,
On the Cauchy Problem for the p-System at a Junction,
2008,
39,
0036-1410,
1456,
10.1137/060665841
30.
Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst,
MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems,
2018,
70,
0926-6003,
267,
10.1007/s10589-017-9970-1
31.
BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART,
EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA,
2010,
20,
0218-2025,
1859,
10.1142/S0218202510004817
32.
Mahdi Debouza, Ahmed Al-Durra, Khaled Al-Wahedi, Mohamed Abou-Khousa,
Assessment of Black Powder Concentrations in Natural Gas Pipeline Networks,
2020,
8,
2169-3536,
71395,
10.1109/ACCESS.2020.2987109
33.
Markus Dick, Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen, Ke Wang,
2014,
Chapter 31,
978-3-319-05082-9,
487,
10.1007/978-3-319-05083-6_31
34.
M. Dick, M. Gugat, M. Herty, S. Steffensen,
On the relaxation approximation of boundary control of the isothermal Euler equations,
2012,
85,
0020-7179,
1766,
10.1080/00207179.2012.703787
35.
EIKE FOKKEN, SIMONE GÖTTLICH, MICHAEL HERTY,
Efficient simulation of coupled gas and power networks under uncertain demands,
2022,
0956-7925,
1,
10.1017/S0956792522000079
36.
RINALDO M. COLOMBO, CRISTINA MAURI,
EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION,
2008,
05,
0219-8916,
547,
10.1142/S0219891608001593
37.
J.-M. Coron, B. d'Andrea-Novel, G. Bastin,
A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws,
2007,
52,
0018-9286,
2,
10.1109/TAC.2006.887903
38.
M. Herty, J. Mohring, V. Sachers,
A new model for gas flow in pipe networks,
2010,
33,
01704214,
845,
10.1002/mma.1197
39.
RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI,
ROAD NETWORKS WITH PHASE TRANSITIONS,
2010,
07,
0219-8916,
85,
10.1142/S0219891610002025
40.
Mauro Garavello, Benedetto Piccoli,
Time-varying Riemann solvers for conservation laws on networks,
2009,
247,
00220396,
447,
10.1016/j.jde.2008.12.017
41.
Markus Dick, Martin Gugat, Günter Leugering,
A strict -Lyapunov function and feedback stabilization for the isothermal Euler equations with friction,
2011,
1,
2155-3297,
225,
10.3934/naco.2011.1.225
42.
Masayasu Suzuki, Jun-ichi Imura, Kazuyuki Aihara,
2011,
Controllability and observability of networked systems of linear hyperbolic partial differential equations,
978-1-61284-801-3,
1335,
10.1109/CDC.2011.6161198
43.
Michael Herty, Siegfried Müller, Aleksey Sikstel,
Coupling of Compressible Euler Equations,
2019,
47,
2305-221X,
769,
10.1007/s10013-019-00353-7
44.
Gunhild A. Reigstad,
Numerical network models and entropy principles for isothermal junction flow,
2014,
9,
1556-181X,
65,
10.3934/nhm.2014.9.65
Ghada Ben Belgacem, Chaker Jammazi,
On the finite-time boundary dissipative for a class of hyperbolic systems. The networks example,
2016,
49,
24058963,
186,
10.1016/j.ifacol.2016.07.435
47.
Martin Gugat, Rüdiger Schultz,
Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data,
2018,
56,
0363-0129,
1491,
10.1137/16M1090156
48.
Rinaldo M. Colombo, Graziano Guerra, Yannick Holle,
Non conservative products in fluid dynamics,
2022,
66,
14681218,
103539,
10.1016/j.nonrwa.2022.103539
49.
I Khujayev, O Bozorov, S Akhmadjonov,
Investigation of the propagation of waves of sudden change in mass flow rate of fluid and gas in a “short” pipeline approach,
2020,
1441,
1742-6588,
012146,
10.1088/1742-6596/1441/1/012146
R. Borsche, J. Kall, A. Klar, T. N. H. Pham,
Kinetic and related macroscopic models for chemotaxis on networks,
2016,
26,
0218-2025,
1219,
10.1142/S0218202516500299
52.
Simone Göttlich, Camill Harter,
A weakly coupled model of differential equations for thief tracking,
2016,
11,
1556-1801,
447,
10.3934/nhm.2016004
53.
Georges Bastin, Jean-Michel Coron, Simona Oana Tamasoiu,
Stability of linear density-flow hyperbolic systems under PI boundary control,
2015,
53,
00051098,
37,
10.1016/j.automatica.2014.12.025
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Treating network junctions in finite volume solution of transient gas flow models,
2017,
344,
00219991,
187,
10.1016/j.jcp.2017.04.066
56.
Ferdinand Thein,
Stabilization of a Multi‐Dimensional System of Hyperbolic Balance Laws – A Case Study,
2023,
22,
1617-7061,
10.1002/pamm.202200056
57.
Lucas O. Müller, Pablo J. Blanco,
A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow,
2015,
300,
00219991,
423,
10.1016/j.jcp.2015.07.056
Yannick Holle,
Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks,
2020,
269,
00220396,
1192,
10.1016/j.jde.2020.01.005
60.
Martin Gugat, Michael Herty, Siegfried Müller,
Coupling conditions for the transition from supersonic to subsonic fluid states,
2017,
12,
1556-181X,
371,
10.3934/nhm.2017016
61.
Mapundi K. Banda, Michael Herty,
Towards a space mapping approach to dynamic compressor optimization of gas networks,
2011,
32,
01432087,
253,
10.1002/oca.929
62.
Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang,
Probabilistic constrained optimization on flow networks,
2022,
23,
1389-4420,
1,
10.1007/s11081-021-09619-x
63.
Mapundi K. Banda, Gediyon Y. Weldegiyorgis,
Numerical boundary feedback stabilisation of non-uniform hyperbolic systems of balance laws,
2020,
93,
0020-7179,
1428,
10.1080/00207179.2018.1509133
64.
Georges Bastin, Jean-Michel Coron, Brigitte d'Andrea-Novel,
2008,
Boundary feedback control and Lyapunov stability analysis for physical networks of 2×2 hyperbolic balance laws,
978-1-4244-3123-6,
1454,
10.1109/CDC.2008.4738857
65.
Hao Yang, Bin Jiang, Vincent Cocquempot,
2014,
Chapter 6,
978-3-319-07883-0,
143,
10.1007/978-3-319-07884-7_6
Martin Gugat, Michael Schuster,
Stationary Gas Networks with Compressor Control and Random Loads: Optimization with Probabilistic Constraints,
2018,
2018,
1024-123X,
1,
10.1155/2018/7984079
68.
Simone Göttlich, Stephan Martin, Thorsten Sickenberger,
Time-continuous production networks with random breakdowns,
2011,
6,
1556-181X,
695,
10.3934/nhm.2011.6.695
69.
E. Fokken, S. Göttlich, O. Kolb,
Modeling and simulation of gas networks coupled to power grids,
2019,
119,
0022-0833,
217,
10.1007/s10665-019-10026-6
Masayasu Suzuki, Jun-ichi Imura, Kazuyuki Aihara,
Analysis and stabilization for networked linear hyperbolic systems of rationally dependent conservation laws,
2013,
49,
00051098,
3210,
10.1016/j.automatica.2013.08.016
72.
Martin Gugat, Günter Leugering, Ke Wang,
Neumann boundary feedback stabilization for a nonlinear wave equation: A strict -lyapunov function,
2017,
7,
2156-8499,
419,
10.3934/mcrf.2017015
73.
Simone Göttlich, Peter Schillen,
Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization,
2017,
35,
09473580,
11,
10.1016/j.ejcon.2017.02.002
74.
Michael Chertkov, Scott Backhaus, Vladimir Lebedev,
Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling,
2015,
160,
03062619,
541,
10.1016/j.apenergy.2015.09.085
75.
Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke,
A multiscale approach to liquid flows in pipes I: The single pipe,
2012,
219,
00963003,
856,
10.1016/j.amc.2012.06.054
76.
Riccardo Sacco, Lucia Carichino, Carlo de Falco, Maurizio Verri, Francesco Agostini, Thomas Gradinger,
A multiscale thermo-fluid computational model for a two-phase cooling system,
2014,
282,
00457825,
239,
10.1016/j.cma.2014.08.003
Martin Gugat, Michaël Herty,
Existence of classical solutions and feedback stabilization for the flow in gas networks,
2011,
17,
1292-8119,
28,
10.1051/cocv/2009035
79.
Graziano Guerra, Michael Herty, Francesca Marcellini,
Modeling and analysis of pooled stepped chutes,
2011,
6,
1556-181X,
665,
10.3934/nhm.2011.6.665
80.
Mapundi K. Banda, Michael Herty,
Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws,
2013,
3,
2156-8499,
121,
10.3934/mcrf.2013.3.121
81.
Xia Li, Yungang Liu, Zaihua Xu, Jian Li,
2017,
Flatness approach and its application to distributed parameter systems,
978-1-5386-3524-7,
6794,
10.1109/CAC.2017.8244001
82.
Jens Brouwer, Ingenuin Gasser, Michael Herty,
Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks,
2011,
9,
1540-3459,
601,
10.1137/100813580
83.
Pascal Mindt, Jens Lang, Pia Domschke,
Entropy-Preserving Coupling of Hierarchical Gas Models,
2019,
51,
0036-1410,
4754,
10.1137/19M1240034
84.
Markus Dick, Martin Gugat, Günter Leugering,
Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,
2010,
5,
1556-181X,
691,
10.3934/nhm.2010.5.691
85.
F. Daude, R.A. Berry, P. Galon,
A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model,
2019,
354,
00457825,
820,
10.1016/j.cma.2019.06.010
86.
Richard C Barnard, Kai Huang, Cory Hauck,
A mathematical model of asynchronous data flow in parallel computers*,
2020,
85,
0272-4960,
865,
10.1093/imamat/hxaa031
87.
R. M. Colombo, G. Guerra, M. Herty, V. Schleper,
Optimal Control in Networks of Pipes and Canals,
2009,
48,
0363-0129,
2032,
10.1137/080716372
88.
Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye,
Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks,
2010,
31,
1064-8275,
4633,
10.1137/080722138
M. Tyloo, L. Pagnier, P. Jacquod,
The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities,
2019,
5,
2375-2548,
10.1126/sciadv.aaw8359
91.
Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini,
Coherence and flow-maximization of a one-way valve,
2022,
56,
2822-7840,
1715,
10.1051/m2an/2022053
92.
David Fernando Novella Rodriguez, Emmanuel Witrant, Olivier Sename,
2016,
Chapter 14,
978-3-319-18071-7,
275,
10.1007/978-3-319-18072-4_14
93.
R Borsche, A Klar,
Kinetic layers and coupling conditions for nonlinear scalar equations on networks,
2018,
31,
0951-7715,
3512,
10.1088/1361-6544/aabc91
94.
Jeroen J. Stolwijk, Volker Mehrmann,
Error Analysis and Model Adaptivity for Flows in Gas Networks,
2018,
26,
1844-0835,
231,
10.2478/auom-2018-0027
95.
Simone Göttlich, Peter Schillen,
Numerical Feedback Stabilization with Applications to Networks,
2017,
2017,
1026-0226,
1,
10.1155/2017/6896153
96.
Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli,
2022,
Chapter 3,
978-3-030-93014-1,
39,
10.1007/978-3-030-93015-8_3
97.
Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini,
Coupling conditions for isothermal gas flow and applications to valves,
2018,
40,
14681218,
403,
10.1016/j.nonrwa.2017.09.005
98.
Michael Herty, Siegfried Müller, Nils Gerhard, Gaoming Xiang, Bing Wang,
Fluid-structure coupling of linear elastic model with compressible flow models,
2018,
86,
02712091,
365,
10.1002/fld.4422
99.
Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber,
Constrained exact boundary controllability of a semilinear model for pipeline gas flow,
2023,
0956-7925,
1,
10.1017/S0956792522000389
S. Amin, F. M. Hante, A. M. Bayen,
Exponential Stability of Switched Linear Hyperbolic Initial-Boundary Value Problems,
2012,
57,
0018-9286,
291,
10.1109/TAC.2011.2158171
102.
MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS,
A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS,
2013,
10,
0219-8916,
431,
10.1142/S021989161350015X
M. Gugat, M. Herty, V. Schleper,
Flow control in gas networks: Exact controllability to a given demand,
2011,
34,
01704214,
745,
10.1002/mma.1394
105.
Saeed Jamalzadeh, Kash Barker, Andrés D. González, Sridhar Radhakrishnan,
Protecting infrastructure performance from disinformation attacks,
2022,
12,
2045-2322,
10.1038/s41598-022-16832-w
106.
Dirk Helbing, Jan Siegmeier, Stefan Lämmer,
2013,
Chapter 6,
978-3-642-32159-7,
335,
10.1007/978-3-642-32160-3_6
107.
Michael Herty,
Coupling Conditions for Networked Systems of Euler Equations,
2008,
30,
1064-8275,
1596,
10.1137/070688535
108.
Michael Herty, Mohammed Seaïd,
Assessment of coupling conditions in water way intersections,
2013,
71,
02712091,
1438,
10.1002/fld.3719
109.
Martin Gugat, Stefan Ulbrich,
The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up,
2017,
454,
0022247X,
439,
10.1016/j.jmaa.2017.04.064
110.
R. M. Colombo, M. Herty, V. Sachers,
On Conservation Laws at a Junction,
2008,
40,
0036-1410,
605,
10.1137/070690298
111.
CIRO D'APICE, BENEDETTO PICCOLI,
VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS,
2008,
18,
0218-2025,
1299,
10.1142/S0218202508003042
112.
Alessia Marigo, Benedetto Piccoli,
A Fluid Dynamic Model for T-Junctions,
2008,
39,
0036-1410,
2016,
10.1137/060673060
113.
Martin Gugat, Markus Dick,
Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction,
2011,
1,
2156-8499,
469,
10.3934/mcrf.2011.1.469
114.
Martin Gugat, Markus Dick, Günter Leugering,
2013,
Chapter 26,
978-3-642-36061-9,
255,
10.1007/978-3-642-36062-6_26
115.
Alexandre Morin, Gunhild A. Reigstad,
Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations,
2015,
64,
18766102,
140,
10.1016/j.egypro.2015.01.017
116.
Martin Gugat, Markus Dick, Günter Leugering,
Gas Flow in Fan-Shaped Networks: Classical Solutions and Feedback Stabilization,
2011,
49,
0363-0129,
2101,
10.1137/100799824
Simone Göttlich, Michael Herty, Christian Ringhofer,
2012,
Chapter 11,
978-0-85729-643-6,
265,
10.1007/978-0-85729-644-3_11
119.
Zlatinka Dimitrova,
Flows of Substances in Networks and Network Channels: Selected Results and Applications,
2022,
24,
1099-4300,
1485,
10.3390/e24101485
120.
Seok Woo Hong, Chongam Kim,
A new finite volume method on junction coupling and boundary treatment for flow network system analyses,
2011,
65,
02712091,
707,
10.1002/fld.2212
121.
Martin Gugat, Günter Leugering, Simona Tamasoiu, Ke Wang,
H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach,
2012,
33,
0252-9599,
479,
10.1007/s11401-012-0727-y
122.
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Reprint of: Finite volume methods for multi-component Euler equations with source terms,
2018,
169,
00457930,
40,
10.1016/j.compfluid.2018.03.057
123.
Simone Göttlich, Thomas Schillinger,
Control strategies for transport networks under demand uncertainty,
2022,
48,
1019-7168,
10.1007/s10444-022-09993-9
124.
Mauro Garavello,
The LWR traffic model at a junction with multibuffers,
2014,
7,
1937-1179,
463,
10.3934/dcdss.2014.7.463
125.
Simone Göttlich, Oliver Kolb, Kerstin Lux,
Chance‐constrained optimal inflow control in hyperbolic supply systems with uncertain demand,
2021,
42,
0143-2087,
566,
10.1002/oca.2689
126.
R. Borsche, A. Klar,
Kinetic Layers and Coupling Conditions for Macroscopic Equations on Networks I: The Wave Equation,
2018,
40,
1064-8275,
A1784,
10.1137/17M1138364
127.
Andrea Corli, Massimiliano D. Rosini,
Coherence of Coupling Riemann Solvers for Gas Flows Through Flux-Maximizing Valves,
2019,
79,
0036-1399,
2593,
10.1137/19M1257093
128.
Arsen Klevtsovskiy, Taras Mel'nyk,
Asymptotic approximation for the solution to a semilinear parabolic problem in a thin star-shaped junction,
2018,
41,
01704214,
159,
10.1002/mma.4603
129.
Christophe Prieur, Joseph Winkin, Georges Bastin,
Robust boundary control of systems of conservation laws,
2008,
20,
0932-4194,
173,
10.1007/s00498-008-0028-x
130.
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Finite volume methods for multi-component Euler equations with source terms,
2017,
156,
00457930,
113,
10.1016/j.compfluid.2017.07.004
131.
Saurabh Amin, Falk M. Hante, Alexandre M. Bayen,
2008,
Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions,
978-1-4244-3123-6,
2081,
10.1109/CDC.2008.4739181
132.
Andrea Corli, Massimiliano D. Rosini,
Coherence and chattering of a one‐way valve,
2019,
99,
0044-2267,
e201800250,
10.1002/zamm.201800250
133.
F. Daude, P. Galon,
A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction,
2018,
362,
00219991,
375,
10.1016/j.jcp.2018.01.055
134.
R. Nanmaran, A.S. Vickram, P. Senthil Kumar, A. Saravanan, S. Srimathi, V. Velmurugan, Gayathri Rangasamy,
Experimental analysis on the effect of pipe and orifice diameter in inter tank hydrogen transfer,
2023,
03603199,
10.1016/j.ijhydene.2023.04.111
135.
Martin Burger, Ina Humpert, Jan-Frederik Pietschmann,
Dynamic Optimal Transport on Networks,
2023,
29,
1292-8119,
54,
10.1051/cocv/2023027
136.
Ikrom Akramov, Raul Borsche, Nils Eckhard, Axel Klar,
Interface layers and coupling conditions on networks for linearized kinetic BGK equation,
2023,
0,
1937-5093,
0,
10.3934/krm.2023029
137.
O. Sh. Bozorov, I. Khujaev, Kh. Aminov, Sh. Khojikulov, D. Bazarov,
Application of fourier method to study propagation of compression shock wave in pipelines with damper,
2023,
401,
2267-1242,
01045,
10.1051/e3sconf/202340101045
138.
Michael Herty, Ferdinand Thein,
Stabilization of a multi-dimensional system of hyperbolic balance laws,
2023,
0,
2156-8472,
0,
10.3934/mcrf.2023033
139.
Michael Herty, Niklas Kolbe, Siegfried Müller,
A Central Scheme for Two Coupled Hyperbolic Systems,
2023,
2096-6385,
10.1007/s42967-023-00306-5
Niklas Kolbe, Michael Herty, Siegfried Müller,
Numerical Schemes for Coupled Systems of Nonconservative Hyperbolic Equations,
2024,
62,
0036-1429,
2143,
10.1137/23M1615176
142.
Sergio García-Marín, Wilson González-Vanegas, C. E. Murillo-Sánchez,
MPNG: A MATPOWER-Based Tool for Optimal Power and Natural Gas Flow Analyses,
2024,
39,
0885-8950,
5455,
10.1109/TPWRS.2022.3195684
143.
Simone Göttlich, Patrick Mehlitz, Thomas Schillinger,
Inverse demand tracking in transportation networks,
2024,
1432-2994,
10.1007/s00186-024-00875-y
144.
Michael Herty, Ferdinand Thein,
Boundary feedback control for hyperbolic systems,
2024,
30,
1292-8119,
71,
10.1051/cocv/2024062
145.
Martin Gugat, Xu Huang, Zhiqiang Wang,
Constrained exact boundary controllability of a quasilinear model for pipeline gas flow,
2024,
0003-6811,
1,
10.1080/00036811.2024.2432529
146.
Martin Gugat, Michael Schuster, Jan Sokołowski,
The location problem for compressor stations in pipeline networks,
2024,
12,
2325-3444,
507,
10.2140/memocs.2024.12.507
147.
Martin Gugat,
New Lyapunov functions for systems with source terms,
2025,
53,
2720-4278,
163,
10.2478/candc-2024-0008
148.
Michael Herty, Ferdinand Thein,
On the relation between approaches for boundary feedback control of hyperbolic systems,
2025,
82,
09473580,
101182,
10.1016/j.ejcon.2025.101182
149.
Martin Gugat,
New Lyapunov functions for systems with source terms,
2025,
53,
2720-4278,
163,
10.2478/candc-2024-008
150.
Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison,
2024,
Mathematical Modeling of Chattering and the Optimal Design of a Valve*,
979-8-3503-1633-9,
76,
10.1109/CDC56724.2024.10886245
151.
Martin Gugat,
Boundary Stabilization of Quasi-linear Hyperbolic Systems with Varying Time-Delay,
2025,
63,
0363-0129,
452,
10.1137/24M1648570
152.
Michael T. Redle, Michael Herty,
An asymptotic-preserving scheme for isentropic flow in pipe networks,
2025,
20,
1556-1801,
254,
10.3934/nhm.2025013
153.
Ariane Fazeny, Martin Burger, Jan-F. Pietschmann,
Optimal transport on gas networks,
2025,
0956-7925,
1,
10.1017/S0956792525000051
Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks[J]. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks[J]. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41