We investigate coupling conditions for gas transport in networks
where the governing equations are the isothermal Euler equations. We discuss
intersections of pipes by considering solutions to Riemann problems. We introduce additional assumptions to obtain a solution near the intersection and
we present numerical results for sample networks.
Citation: Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations[J]. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
Related Papers:
[1]
Michael Herty .
Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97.
doi: 10.3934/nhm.2007.2.81
[2]
Mapundi K. Banda, Michael Herty, Axel Klar .
Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314.
doi: 10.3934/nhm.2006.1.295
[3]
Mapundi K. Banda, Michael Herty, Axel Klar .
Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56.
doi: 10.3934/nhm.2006.1.41
[4]
Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering .
Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320.
doi: 10.3934/nhm.2015.10.295
[5]
Steinar Evje, Kenneth H. Karlsen .
Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673.
doi: 10.3934/nhm.2006.1.639
[6]
Gunhild A. Reigstad .
Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95.
doi: 10.3934/nhm.2014.9.65
[7]
Jens Lang, Pascal Mindt .
Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190.
doi: 10.3934/nhm.2018008
[8]
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski .
An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171.
doi: 10.3934/nhm.2017006
[9]
Fabian Rüffler, Volker Mehrmann, Falk M. Hante .
Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13(4): 641-661.
doi: 10.3934/nhm.2018029
[10]
Yogiraj Mantri, Michael Herty, Sebastian Noelle .
Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14(4): 659-676.
doi: 10.3934/nhm.2019026
Abstract
We investigate coupling conditions for gas transport in networks
where the governing equations are the isothermal Euler equations. We discuss
intersections of pipes by considering solutions to Riemann problems. We introduce additional assumptions to obtain a solution near the intersection and
we present numerical results for sample networks.
This article has been cited by:
1.
Mapundi K. Banda, Michael Herty,
Towards a space mapping approach to dynamic compressor optimization of gas networks,
2011,
32,
01432087,
253,
10.1002/oca.929
2.
Michael Herty, Niklas Kolbe, Siegfried Müller,
Central schemes for networked scalar conservation laws,
2022,
18,
1556-1801,
310,
10.3934/nhm.2023012
3.
Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin,
The interface coupling of the gas dynamics equations,
2008,
66,
0033-569X,
659,
10.1090/S0033-569X-08-01087-X
4.
Raul Borsche, Matthias Eimer, Norbert Siedow,
A local time stepping method for thermal energy transport in district heating networks,
2019,
353,
00963003,
215,
10.1016/j.amc.2019.01.072
5.
Michael Chertkov, Alexander Korotkevich,
2017,
Adiabatic approach for natural gas pipeline computations,
978-1-5090-2873-3,
5634,
10.1109/CDC.2017.8264509
6.
Guillaume Ferriere,
WKB analysis of the logarithmic nonlinear Schrödinger equation in an analytic framework,
2022,
24,
0219-1997,
10.1142/S0219199721500826
7.
Michael Herty,
2015,
Multi-scale modeling and nodal control for gas transportation networks,
978-1-4799-7886-1,
4585,
10.1109/CDC.2015.7402935
8.
Dieter Armbruster, Simone Göttlich, Michael Herty,
A Scalar Conservation Law with Discontinuous Flux for Supply Chains with Finite Buffers,
2011,
71,
0036-1399,
1070,
10.1137/100809374
9.
Sara Grundel, Michael Herty,
Hyperbolic discretization of simplified Euler equation via Riemann invariants,
2022,
106,
0307904X,
60,
10.1016/j.apm.2022.01.006
R. Borsche, A. Klar,
Kinetic Layers and Coupling Conditions for Macroscopic Equations on Networks I: The Wave Equation,
2018,
40,
1064-8275,
A1784,
10.1137/17M1138364
12.
Markus Dick, Martin Gugat, Gunter Leugering,
2012,
Feedback stabilization of quasilinear hyperbolic systems with varying delays,
978-1-4673-2124-2,
125,
10.1109/MMAR.2012.6347931
13.
H. Egger,
A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks,
2018,
40,
1064-8275,
A108,
10.1137/16M1094373
14.
Rinaldo M. Colombo, Mauro Garavello,
On the Cauchy Problem for the p-System at a Junction,
2008,
39,
0036-1410,
1456,
10.1137/060665841
15.
Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus,
Coupling constants and the generalized Riemann problem for isothermal junction flow,
2015,
12,
0219-8916,
37,
10.1142/S0219891615500022
16.
Martin Gugat, Rüdiger Schultz,
Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data,
2018,
56,
0363-0129,
1491,
10.1137/16M1090156
17.
Junyao Xie, Stevan Dubljevic,
Discrete-time modeling and output regulation of gas pipeline networks,
2021,
98,
09591524,
30,
10.1016/j.jprocont.2020.12.002
18.
Martin Gugat, David Wintergerst,
Transient Flow in Gas Networks: Traveling waves,
2018,
28,
2083-8492,
341,
10.2478/amcs-2018-0025
19.
BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART,
EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA,
2010,
20,
0218-2025,
1859,
10.1142/S0218202510004817
20.
Martin Gugat, Falk M. Hante,
On the Turnpike Phenomenon for Optimal Boundary Control Problems with Hyperbolic Systems,
2019,
57,
0363-0129,
264,
10.1137/17M1134470
21.
Raul Borsche, Jochen Kall,
ADER schemes and high order coupling on networks of hyperbolic conservation laws,
2014,
273,
00219991,
658,
10.1016/j.jcp.2014.05.042
22.
Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao,
Blood Flow in the Circle of Willis: Modeling and Calibration,
2008,
7,
1540-3459,
888,
10.1137/07070231X
23.
Gunhild A. Reigstad,
Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow,
2015,
75,
0036-1399,
679,
10.1137/140962759
24.
Michael Herty, Nouh Izem, Mohammed Seaid,
Fast and accurate simulations of shallow water equations in large networks,
2019,
78,
08981221,
2107,
10.1016/j.camwa.2019.03.049
25.
Mapundi K. Banda, Axel-Stefan Häck, Michael Herty,
Numerical Discretization of Coupling Conditions by High-Order Schemes,
2016,
69,
0885-7474,
122,
10.1007/s10915-016-0185-x
26.
Mapundi K. Banda, Michael Herty,
Multiscale modeling for gas flow in pipe networks,
2008,
31,
01704214,
915,
10.1002/mma.948
27.
M. Gugat, M. Herty, V. Schleper,
Flow control in gas networks: Exact controllability to a given demand,
2011,
34,
01704214,
745,
10.1002/mma.1394
Simone Göttlich, Michael Herty, Ute Ziegler,
Modeling and optimizing traffic light settings in road networks,
2015,
55,
03050548,
36,
10.1016/j.cor.2014.10.001
30.
Martin Gugat, Rüdiger Schultz, David Wintergerst,
Networks of pipelines for gas with nonconstant compressibility factor: stationary states,
2018,
37,
0101-8205,
1066,
10.1007/s40314-016-0383-z
31.
Martin Gugat, Jan Giesselmann, Teresa Kunkel,
Exponential synchronization of a nodal observer for a semilinear model for the flow in gas networks,
2021,
38,
0265-0754,
1109,
10.1093/imamci/dnab029
32.
A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P. -A. Raviart, N. Seguin,
2008,
Chapter 99,
978-3-540-75711-5,
947,
10.1007/978-3-540-75712-2_99
33.
Oliver Kolb, Jens Lang, Pia Bales,
Adaptive linearized models for optimization of gas networks,
2007,
7,
16177061,
1061301,
10.1002/pamm.200700089
34.
Markus Dick, Martin Gugat, Günter Leugering,
A strict -Lyapunov function and feedback stabilization for the isothermal Euler equations with friction,
2011,
1,
2155-3297,
225,
10.3934/naco.2011.1.225
35.
EIKE FOKKEN, SIMONE GÖTTLICH, MICHAEL HERTY,
Efficient simulation of coupled gas and power networks under uncertain demands,
2022,
0956-7925,
1,
10.1017/S0956792522000079
36.
Markus Dick, Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen, Ke Wang,
2014,
Chapter 31,
978-3-319-05082-9,
487,
10.1007/978-3-319-05083-6_31
37.
Michael Herty, Hui Yu,
Feedback boundary control of linear hyperbolic equations with stiff source term,
2018,
91,
0020-7179,
230,
10.1080/00207179.2016.1276635
38.
Yogiraj Mantri, Sebastian Noelle,
Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law,
2021,
429,
00219991,
110011,
10.1016/j.jcp.2020.110011
39.
M. Herty, J. Mohring, V. Sachers,
A new model for gas flow in pipe networks,
2010,
33,
01704214,
845,
10.1002/mma.1197
40.
Sonja Hossbach, Mathias Lemke, Julius Reiss,
Finite‐difference‐based simulation and adjoint optimization of gas networks,
2022,
45,
0170-4214,
4035,
10.1002/mma.8030
41.
M. Herty, A. Klar, B. Piccoli,
Existence of Solutions for Supply Chain Models Based on Partial Differential Equations,
2007,
39,
0036-1410,
160,
10.1137/060659478
42.
Gunhild A. Reigstad,
Numerical network models and entropy principles for isothermal junction flow,
2014,
9,
1556-181X,
65,
10.3934/nhm.2014.9.65
43.
Lucas O. Müller, Pablo J. Blanco,
A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow,
2015,
300,
00219991,
423,
10.1016/j.jcp.2015.07.056
Martin Gugat, Stefan Ulbrich,
Lipschitz solutions of initial boundary value problems for balance laws,
2018,
28,
0218-2025,
921,
10.1142/S0218202518500240
Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke,
A multiscale approach to liquid flows in pipes I: The single pipe,
2012,
219,
00963003,
856,
10.1016/j.amc.2012.06.054
48.
Sergey A. Dyachenko, Anatoly Zlotnik, Alexander O. Korotkevich, Michael Chertkov,
Operator splitting method for simulation of dynamic flows in natural gas pipeline networks,
2017,
361,
01672789,
1,
10.1016/j.physd.2017.09.002
49.
Sebastian Pfaff, Stefan Ulbrich,
Optimal control of scalar conservation laws by on/off-switching,
2017,
32,
1055-6788,
904,
10.1080/10556788.2016.1236796
50.
Alfredo Bermúdez, Mohsen Shabani,
Finite element solution of isothermal gas flow in a network,
2019,
396,
00219991,
616,
10.1016/j.jcp.2019.06.063
51.
Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang,
Probabilistic constrained optimization on flow networks,
2022,
23,
1389-4420,
1,
10.1007/s11081-021-09619-x
52.
Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering,
Stationary states in gas networks,
2015,
10,
1556-1801,
295,
10.3934/nhm.2015.10.295
53.
Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik,
2019,
Chapter 8,
978-3-030-27549-5,
59,
10.1007/978-3-030-27550-1_8
54.
Martin Gugat, Michael Herty, Siegfried Müller,
Coupling conditions for the transition from supersonic to subsonic fluid states,
2017,
12,
1556-181X,
371,
10.3934/nhm.2017016
55.
Yannick Holle,
Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks,
2020,
269,
00220396,
1192,
10.1016/j.jde.2020.01.005
56.
M. Hassan Farshbaf-Shaker, Martin Gugat, Holger Heitsch, René Henrion,
Optimal Neumann Boundary Control of a Vibrating String with Uncertain Initial Data and Probabilistic Terminal Constraints,
2020,
58,
0363-0129,
2288,
10.1137/19M1269944
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Treating network junctions in finite volume solution of transient gas flow models,
2017,
344,
00219991,
187,
10.1016/j.jcp.2017.04.066
59.
Alfredo Bermúdez, Mohsen Shabani,
Modelling compressors, resistors and valves in finite element simulation of gas transmission networks,
2021,
89,
0307904X,
1316,
10.1016/j.apm.2020.08.013
60.
David Fernando Novella Rodriguez, Emmanuel Witrant, Olivier Sename,
2016,
Chapter 14,
978-3-319-18071-7,
275,
10.1007/978-3-319-18072-4_14
61.
Mouhamadou Samsidy Goudiaby, Gunilla Kreiss,
Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data,
2020,
17,
0219-8916,
185,
10.1142/S021989162050006X
62.
Ingenuin Gasser, Martin Rybicki,
Modelling and simulation of gas dynamics in an exhaust pipe,
2013,
37,
0307904X,
2747,
10.1016/j.apm.2012.06.010
63.
Simone Göttlich, Stephan Martin, Thorsten Sickenberger,
Time-continuous production networks with random breakdowns,
2011,
6,
1556-181X,
695,
10.3934/nhm.2011.6.695
64.
Jens Brouwer, Ingenuin Gasser, Michael Herty,
Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks,
2011,
9,
1540-3459,
601,
10.1137/100813580
65.
Sebastian Pfaff, Stefan Ulbrich, Günter Leugering,
2014,
Chapter 8,
978-3-319-05082-9,
109,
10.1007/978-3-319-05083-6_8
66.
Martin Gugat, Jan Giesselmann, G. Buttazzo, E. Casas, L. de Teresa, R. Glowinski, G. Leugering, E. Trélat, X. Zhang,
Boundary feedback stabilization of a semilinear model for the flow in star-shaped gas networks,
2021,
27,
1292-8119,
67,
10.1051/cocv/2021061
Rinaldo M. Colombo, Graziano Guerra, Yannick Holle,
Non conservative products in fluid dynamics,
2022,
66,
14681218,
103539,
10.1016/j.nonrwa.2022.103539
69.
Graziano Guerra, Michael Herty, Francesca Marcellini,
Modeling and analysis of pooled stepped chutes,
2011,
6,
1556-181X,
665,
10.3934/nhm.2011.6.665
70.
Martin Gugat, Sonja Steffensen,
Dynamic boundary control games with networks of strings,
2018,
24,
1292-8119,
1789,
10.1051/cocv/2017082
71.
Alexandre Morin, Gunhild A. Reigstad,
Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations,
2015,
64,
18766102,
140,
10.1016/j.egypro.2015.01.017
72.
Pascal Mindt, Jens Lang, Pia Domschke,
Entropy-Preserving Coupling of Hierarchical Gas Models,
2019,
51,
0036-1410,
4754,
10.1137/19M1240034
73.
Markus Dick, Martin Gugat, Günter Leugering,
Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,
2010,
5,
1556-181X,
691,
10.3934/nhm.2010.5.691
74.
Xinhui Wu, Jesse Chan,
Entropy Stable Discontinuous Galerkin Methods for Nonlinear Conservation Laws on Networks and Multi-Dimensional Domains,
2021,
87,
0885-7474,
10.1007/s10915-021-01464-5
75.
Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini,
Coupling conditions for isothermal gas flow and applications to valves,
2018,
40,
14681218,
403,
10.1016/j.nonrwa.2017.09.005
76.
Jeroen J. Stolwijk, Volker Mehrmann,
Error Analysis and Model Adaptivity for Flows in Gas Networks,
2018,
26,
1844-0835,
231,
10.2478/auom-2018-0027
77.
Rinaldo M. Colombo, Francesca Marcellini,
Smooth and discontinuous junctions in the p-system,
2010,
361,
0022247X,
440,
10.1016/j.jmaa.2009.07.022
78.
Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye,
Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks,
2010,
31,
1064-8275,
4633,
10.1137/080722138
79.
Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini,
Coherence and flow-maximization of a one-way valve,
2022,
56,
2822-7840,
1715,
10.1051/m2an/2022053
80.
E. Fokken, S. Göttlich, O. Kolb,
Modeling and simulation of gas networks coupled to power grids,
2019,
119,
0022-0833,
217,
10.1007/s10665-019-10026-6
81.
Martin Gugat, Günter Leugering, Ke Wang,
Neumann boundary feedback stabilization for a nonlinear wave equation: A strict -lyapunov function,
2017,
7,
2156-8499,
419,
10.3934/mcrf.2017015
82.
Michael Herty, Mohammed Seaïd,
Assessment of coupling conditions in water way intersections,
2013,
71,
02712091,
1438,
10.1002/fld.3719
83.
Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye,
On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections,
2015,
276,
03770427,
81,
10.1016/j.cam.2014.08.021
Martin Gugat, Markus Dick,
Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction,
2011,
1,
2156-8499,
469,
10.3934/mcrf.2011.1.469
86.
MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS,
A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS,
2013,
10,
0219-8916,
431,
10.1142/S021989161350015X
87.
Martin Gugat, Markus Dick, Günter Leugering,
2013,
Chapter 26,
978-3-642-36061-9,
255,
10.1007/978-3-642-36062-6_26
88.
Michael Herty, Mohammed Seaïd,
Simulation of transient gas flow at pipe-to-pipe intersections,
2008,
56,
02712091,
485,
10.1002/fld.1531
89.
Rinaldo M. Colombo, Francesca Marcellini,
Coupling conditions for the Euler system,
2010,
5,
1556-181X,
675,
10.3934/nhm.2010.5.675
90.
Pia Domschke, Oliver Kolb, Jens Lang,
An adaptive model switching and discretization algorithm for gas flow on networks,
2010,
1,
18770509,
1331,
10.1016/j.procs.2010.04.148
91.
Francesca Bellamoli, Lucas O. Müller, Eleuterio F. Toro,
A numerical method for junctions in networks of shallow-water channels,
2018,
337,
00963003,
190,
10.1016/j.amc.2018.05.034
92.
Martin Gugat, Michaël Herty,
Existence of classical solutions and feedback stabilization for the flow in gas networks,
2011,
17,
1292-8119,
28,
10.1051/cocv/2009035
93.
Martin Gugat, Markus Dick, Günter Leugering,
Gas Flow in Fan-Shaped Networks: Classical Solutions and Feedback Stabilization,
2011,
49,
0363-0129,
2101,
10.1137/100799824
94.
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Finite volume methods for multi-component Euler equations with source terms,
2017,
156,
00457930,
113,
10.1016/j.compfluid.2017.07.004
95.
Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón,
Reprint of: Finite volume methods for multi-component Euler equations with source terms,
2018,
169,
00457930,
40,
10.1016/j.compfluid.2018.03.057
96.
Simone Göttlich, Michael Herty, Christian Ringhofer,
2012,
Chapter 11,
978-0-85729-643-6,
265,
10.1007/978-0-85729-644-3_11
97.
Raul Borsche,
Numerical schemes for networks of hyperbolic conservation laws,
2016,
108,
01689274,
157,
10.1016/j.apnum.2016.01.006
98.
Martin Gugat, Günter Leugering, Simona Tamasoiu, Ke Wang,
H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach,
2012,
33,
0252-9599,
479,
10.1007/s11401-012-0727-y
99.
Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall,
Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes,
2016,
315,
00219991,
409,
10.1016/j.jcp.2016.03.049
Michael Herty, Mohammed Seaïd, Anita K. Singh,
A domain decomposition method for conservation laws with discontinuous flux function,
2007,
57,
01689274,
361,
10.1016/j.apnum.2006.04.003
102.
Martin Gugat, Richard Krug, Alexander Martin,
Transient gas pipeline flow: analytical examples, numerical simulation and a comparison to the quasi-static approach,
2021,
1389-4420,
10.1007/s11081-021-09690-4
103.
Andrea Corli, Massimiliano D. Rosini,
Coherence and chattering of a one‐way valve,
2019,
99,
0044-2267,
e201800250,
10.1002/zamm.201800250
104.
Andrea Corli, Massimiliano D. Rosini,
Coherence of Coupling Riemann Solvers for Gas Flows Through Flux-Maximizing Valves,
2019,
79,
0036-1399,
2593,
10.1137/19M1257093
105.
Niklas Kolbe,
Numerical relaxation limit and outgoing edges in a central scheme for networked conservation laws,
2023,
23,
1617-7061,
10.1002/pamm.202200150
106.
Michael Herty, Niklas Kolbe, Siegfried Müller,
A Central Scheme for Two Coupled Hyperbolic Systems,
2024,
6,
2096-6385,
2093,
10.1007/s42967-023-00306-5
107.
Martin Gugat, Jan Giesselmann,
An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization,
2024,
62,
0363-0129,
2273,
10.1137/23M1563840
108.
Lu Zhang, Junyao Xie, Qingqing Xu, Charles Robert Koch, Stevan Dubljevic,
Physics-informed neural networks for state reconstruction of hydrogen energy transportation systems,
2025,
192,
00981354,
108898,
10.1016/j.compchemeng.2024.108898
109.
J.B. Collins, P.A. Gremaud,
Analysis of a domain decomposition method for linear transport problems on networks,
2016,
109,
01689274,
61,
10.1016/j.apnum.2016.06.004
110.
Christian Jäkle, Lena Reichle, Stefan Volkwein,
Optimal control of a model for dynamic district heating networks,
2024,
0233-1934,
1,
10.1080/02331934.2024.2422026
111.
Martin Gugat, Michael Schuster, Jan Sokołowski,
The location problem for compressor stations in pipeline networks,
2024,
12,
2325-3444,
507,
10.2140/memocs.2024.12.507
112.
Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison,
2024,
Mathematical Modeling of Chattering and the Optimal Design of a Valve*,
979-8-3503-1633-9,
76,
10.1109/CDC56724.2024.10886245
113.
Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini,
Coherence of Coupling Conditions for the Isothermal Euler System,
2025,
0170-4214,
10.1002/mma.10847
Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations[J]. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
Mapundi K. Banda, Michael Herty, Axel Klar. Coupling conditions for gas networks governed by the isothermal Euler equations[J]. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295