This study introduces octonion-valued b-metric spaces as a natural extension of the octonion-valued metric spaces developed by establishing a partial ordering relation on octonions. Octonion-valued b-metric spaces are constructed by modifying the triangle inequality of a semi-metric space, where one side of the inequality is multiplied by a positive scalar b≥1. On the other hand, octonion-valued metric spaces generalize the concept of classical metric spaces by employing octonions, which provide a higher-dimensional and non-associative algebraic framework. Two key reasons make this novel generalization of metric spaces very interesting: First, octonions are not even a ring since they do not have the associative feature in multiplication; second, the spaces do not meet the standard triangle inequality. In addition to explanations on sequences, convergence, Cauchy characteristics, boundedness, theorems, and associated conclusions, examples are given to help visualize this recently formed metric space. Lastly, the building of a fixed point finds extensive applications in a variety of mathematical analytic subjects as well as applied mathematics domains like differential equations and dynamical systems. Because of this, octonion-valued b-metric spaces have been used to study the Banach fixed-point theorem and a few additional fixed-point theorems.
Citation: Xiu-Liang Qiu, Selim Çetin, Ömer Kişi, Mehmet Gürdal, Qing-Bo Cai. Octonion-valued b-metric spaces and results on its application[J]. AIMS Mathematics, 2025, 10(5): 10504-10527. doi: 10.3934/math.2025478
[1] | Chunmei He, Hongyu Kang, Tong Yao, Xiaorui Li . An effective classifier based on convolutional neural network and regularized extreme learning machine. Mathematical Biosciences and Engineering, 2019, 16(6): 8309-8321. doi: 10.3934/mbe.2019420 |
[2] | Jun Gao, Qian Jiang, Bo Zhou, Daozheng Chen . Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview. Mathematical Biosciences and Engineering, 2019, 16(6): 6536-6561. doi: 10.3934/mbe.2019326 |
[3] | Xueyan Wang . A fuzzy neural network-based automatic fault diagnosis method for permanent magnet synchronous generators. Mathematical Biosciences and Engineering, 2023, 20(5): 8933-8953. doi: 10.3934/mbe.2023392 |
[4] | Zijian Wang, Yaqin Zhu, Haibo Shi, Yanting Zhang, Cairong Yan . A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images. Mathematical Biosciences and Engineering, 2021, 18(5): 6978-6994. doi: 10.3934/mbe.2021347 |
[5] | Eric Ke Wang, liu Xi, Ruipei Sun, Fan Wang, Leyun Pan, Caixia Cheng, Antonia Dimitrakopoulou-Srauss, Nie Zhe, Yueping Li . A new deep learning model for assisted diagnosis on electrocardiogram. Mathematical Biosciences and Engineering, 2019, 16(4): 2481-2491. doi: 10.3934/mbe.2019124 |
[6] | Jiajun Zhu, Rui Zhang, Haifei Zhang . An MRI brain tumor segmentation method based on improved U-Net. Mathematical Biosciences and Engineering, 2024, 21(1): 778-791. doi: 10.3934/mbe.2024033 |
[7] | Giuseppe Ciaburro . Machine fault detection methods based on machine learning algorithms: A review. Mathematical Biosciences and Engineering, 2022, 19(11): 11453-11490. doi: 10.3934/mbe.2022534 |
[8] | Kunli Zhang, Shuai Zhang, Yu Song, Linkun Cai, Bin Hu . Double decoupled network for imbalanced obstetric intelligent diagnosis. Mathematical Biosciences and Engineering, 2022, 19(10): 10006-10021. doi: 10.3934/mbe.2022467 |
[9] | Long Wen, Yan Dong, Liang Gao . A new ensemble residual convolutional neural network for remaining useful life estimation. Mathematical Biosciences and Engineering, 2019, 16(2): 862-880. doi: 10.3934/mbe.2019040 |
[10] | Bakhtyar Ahmed Mohammed, Muzhir Shaban Al-Ani . An efficient approach to diagnose brain tumors through deep CNN. Mathematical Biosciences and Engineering, 2021, 18(1): 851-867. doi: 10.3934/mbe.2021045 |
This study introduces octonion-valued b-metric spaces as a natural extension of the octonion-valued metric spaces developed by establishing a partial ordering relation on octonions. Octonion-valued b-metric spaces are constructed by modifying the triangle inequality of a semi-metric space, where one side of the inequality is multiplied by a positive scalar b≥1. On the other hand, octonion-valued metric spaces generalize the concept of classical metric spaces by employing octonions, which provide a higher-dimensional and non-associative algebraic framework. Two key reasons make this novel generalization of metric spaces very interesting: First, octonions are not even a ring since they do not have the associative feature in multiplication; second, the spaces do not meet the standard triangle inequality. In addition to explanations on sequences, convergence, Cauchy characteristics, boundedness, theorems, and associated conclusions, examples are given to help visualize this recently formed metric space. Lastly, the building of a fixed point finds extensive applications in a variety of mathematical analytic subjects as well as applied mathematics domains like differential equations and dynamical systems. Because of this, octonion-valued b-metric spaces have been used to study the Banach fixed-point theorem and a few additional fixed-point theorems.
[1] |
M. Abbas, V. C. Rajić, T. Nazir, S. Radenović, Common fixed point of mappings satisfying rational inequalities in ordered complex valued generalized metric spaces, Afr. Mat., 26 (2015), 17–30. https://doi.org/10.1007/s13370-013-0185-z doi: 10.1007/s13370-013-0185-z
![]() |
[2] |
A. H. Albargi, Fixed point theorems for generalized contractions in F-bipolar metric spaces with applications, AIMS Math., 8 (2023), 29681–29700. https://doi.org/10.3934/math.20231519 doi: 10.3934/math.20231519
![]() |
[3] |
A. H. Albargi, Some new results in F-metric spaces with applications, AIMS Math., 8 (2023), 10420–10434. https://doi.org/10.3934/math.2023528 doi: 10.3934/math.2023528
![]() |
[4] |
A. A. Albert, On a certain algebra of quantum mechanics, Ann. Math., 35 (1934), 65–73. https://doi.org/10.2307/1968118 doi: 10.2307/1968118
![]() |
[5] |
A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying generalized contractive conditions, J. Math. Anal. Appl., 341 (2008), 707–719. https://doi.org/10.1016/j.jmaa.2007.10.054 doi: 10.1016/j.jmaa.2007.10.054
![]() |
[6] | A. J. Asad, Z. Ahmad, Common fixed point of a pair of mappings in Banach spaces, Se. Asian B. Math., 23 (1999), 349–355. |
[7] |
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
![]() |
[8] |
J. C. Baez, The Octonions, B. Am. Math. Soc., 39 (2001), 145–205. http://dx.doi.org/10.1090/S0273-0979-01-00934-X doi: 10.1090/S0273-0979-01-00934-X
![]() |
[9] |
J. H. Conway, D. A. Smith, On quaternions and octonions: Their geometry, arithmetic, and symmetry, B. Am. Math. Soc., 42 (2005), 229–243. https://doi.org/10.1090/S0273-0979-05-01043-8 doi: 10.1090/S0273-0979-05-01043-8
![]() |
[10] | T. Dray, C. Manogue, The geometry of the octonions, World Scientific, 2015. |
[11] |
A. E. Sayed, S. Omran, A. J. Asad, Fixed point theorems in quaternion valued metric spaces, Abstr. Appl. Anal., 2014, 1–9. https://doi.org/10.1155/2014/258985 doi: 10.1155/2014/258985
![]() |
[12] | A. E. Sayed, A. Kamal, Fixed points and solutions of nonlinear functional equations in Banach spaces, Adv. Fixed Point Theory, 2 (2012), 442–451. |
[13] |
A. E. Sayed, A. Kamal, Some fixed point theorems using compatible-type mappings in Banach spaces, Adv. Fixed Point Theory, 4 (2014), 1–11. https://doi.org/10.1186/1687-1812-2014-185 doi: 10.1186/1687-1812-2014-185
![]() |
[14] |
A. P. Farajzadeh, A. A. Harandi, D. Baleanu, Fixed point theory for generalized contractions in cone metric spaces, Commun. Nonlinear Sci., 17 (2012), 708–712. https://doi.org/10.1016/j.cnsns.2011.01.016 doi: 10.1016/j.cnsns.2011.01.016
![]() |
[15] |
D. Fiorenza, H. Sati, U. Schreiber, Super-exceptional embedding construction of the heterotic M5: Emergence of SU(2)-flavor sector, J. Geom. Phys., 170 (2021), 104349. https://doi.org/10.1016/j.geomphys.2021.104349 doi: 10.1016/j.geomphys.2021.104349
![]() |
[16] |
J. Gerald, Commuting mappings and fixed points, Am. Math. Mon., 83 (1974), 261–263. http://dx.doi.org/10.2307/2318216 doi: 10.2307/2318216
![]() |
[17] | O. Hadžić, L. Gajić, Coincidence points for set-valued mappings in convex metric spaces, Univerzitet u Novom Sadu. Zb. Rad. Prirodno-Mat. Fak., 16 (1986), 13–25. |
[18] |
M. E. Kansu, M. Tanışlı, S. Demir, Octonion form of duality-invariant field equations for dyons, Turk. J. Phys., 44 (2020), 10–23. https://doi.org/10.3906/fiz-1910-7 doi: 10.3906/fiz-1910-7
![]() |
[19] | J. K. Kim, A. Abbas, Common fixed point theorems for occasionally weakly compatible mappings satisfying the expansive condition, J. Nonlinear Convex A., 12 (2011), 535–540. |
[20] |
Ö. Kişi, B. Çakal, M. Gürdal, On generalized statistical convergence in quaternion valued generalized metric spaces, Bull. Math. Anal. Appl., 16 (2024), 28–44. https://doi.org/10.54671/BMAA-2024-3-3 doi: 10.54671/BMAA-2024-3-3
![]() |
[21] |
Ö. Kişi, B. Çakal, M. Gürdal, On ideal convergence of sequences in quaternion valued generalized metric spaces, J. Math. Anal., 15 (2024), 19–42. https://doi.org/10.54379/jma-2024-5-2 doi: 10.54379/jma-2024-5-2
![]() |
[22] |
Ö. Kişi, B. Çakal, M. Gürdal, Asymptotically lacunary statistical equivalent sequences in a quaternion valued generalized metric spaces, J. Appl. Pure Math., 6 (2024), 301–313. https://doi.org/10.23091/japm.2024.301 doi: 10.23091/japm.2024.301
![]() |
[23] |
S. Kolancı, M. Gürdal, Ö. Kişi, On convergence in quaternion-valued g-metric space, Karaelmas Sci. Eng. J., 4 (2024), 106–114. https://doi.org/10.7212/karaelmasfen.1503070 doi: 10.7212/karaelmasfen.1503070
![]() |
[24] |
G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljković, Z. M. Fadail, S. Radenović, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Math., 8 (2023), 3269–3285. https://doi.org/10.3934/math.2023168 doi: 10.3934/math.2023168
![]() |
[25] |
A. Nadim, N. A. Assad, W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math., 43 (1972), 553–562. https://doi.org/10.2140/pjm.1972.43.553 doi: 10.2140/pjm.1972.43.553
![]() |
[26] |
M. Nazam, A. Hussain, A. Asiri, On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application, AIMS Math., 8 (2023), 2473–6988. https://doi.org/10.3934/math.20231326 doi: 10.3934/math.20231326
![]() |
[27] | K. Rao, P. Swamy, J. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., 1 (2013), 1–8. |
[28] | S. Okubo, Introduction to Octonion and other non-associative algebras in physics, Cambridge: Cambridge University Press, 1995. |
[29] |
Ö. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl., 8 (2015), 1014–1021. https://doi.org/10.22436/jnsa.008.06.12 doi: 10.22436/jnsa.008.06.12
![]() |
[30] |
R. P. Pant, R. K. Bisht, Occasionally weakly compatible mappings and fixed points, B. Belg. Math. Soc., 19 (2012), 655–661. http://dx.doi.org/10.36045/bbms/1353695906 doi: 10.36045/bbms/1353695906
![]() |
[31] | H. K. Pathak, S. M. Kang, Y. J. Cho, J. S. Jung, Greguš type common fixed point theorems for compatible mappings of type (T) and variational inequalities, Publ. Math.-Debrecen, 46 (1995), 285–299. |
[32] | S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. I. Math.-Beograd, 32 (1982), 149–153. |
[33] | K. Takahashi, M. Fujita, M. Hashimoto, Remarks on Octonion-valued neural networks with application to robot manipulator control, In: 2021 IEEE International Conference on Mechatronics (ICM), Kashiwa, Japan, 2021, 1–6. https://doi.org/10.1109/ICM46511.2021.9385617 |
[34] |
N. Tas, I. Ayoob, N. Mlaiki, Some common fixed-point and fixed-figure results with a function family on Sb-metric spaces, AIMS Math., 8 (2023), 13050–13065. https://doi.org/10.3934/math.2023657 doi: 10.3934/math.2023657
![]() |
[35] |
J. Wu, L. Xu, F. Wu, Y. Kong, L. Senhadji, H. Shu, Deep octonion networks, Neurocomputing, 397 (2020), 179–191. https://doi.org/10.1016/j.neucom.2020.02.053 doi: 10.1016/j.neucom.2020.02.053
![]() |
[36] |
H. Zahed, Z. Ma, J. Ahmad, On fixed point results in F-metric spaces with applications, AIMS Math., 8 (2023), 16887–16905. https://doi.org/10.3934/math.2023863 doi: 10.3934/math.2023863
![]() |