Review

Machine fault detection methods based on machine learning algorithms: A review

  • Received: 29 April 2022 Revised: 20 June 2022 Accepted: 18 July 2022 Published: 10 August 2022
  • Preventive identification of mechanical parts failures has always played a crucial role in machine maintenance. Over time, as the processing cycles are repeated, the machinery in the production system is subject to wear with a consequent loss of technical efficiency compared to optimal conditions. These conditions can, in some cases, lead to the breakage of the elements with consequent stoppage of the production process pending the replacement of the element. This situation entails a large loss of turnover on the part of the company. For this reason, it is crucial to be able to predict failures in advance to try to replace the element before its wear can cause a reduction in machine performance. Several systems have recently been developed for the preventive faults detection that use a combination of low-cost sensors and algorithms based on machine learning. In this work the different methodologies for the identification of the most common mechanical failures are examined and the most widely applied algorithms based on machine learning are analyzed: Support Vector Machine (SVM) solutions, Artificial Neural Network (ANN) algorithms, Convolutional Neural Network (CNN) model, Recurrent Neural Network (RNN) applications, and Deep Generative Systems. These topics have been described in detail and the works most appreciated by the scientific community have been reviewed to highlight the strengths in identifying faults and to outline the directions for future challenges.

    Citation: Giuseppe Ciaburro. Machine fault detection methods based on machine learning algorithms: A review[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11453-11490. doi: 10.3934/mbe.2022534

    Related Papers:

  • Preventive identification of mechanical parts failures has always played a crucial role in machine maintenance. Over time, as the processing cycles are repeated, the machinery in the production system is subject to wear with a consequent loss of technical efficiency compared to optimal conditions. These conditions can, in some cases, lead to the breakage of the elements with consequent stoppage of the production process pending the replacement of the element. This situation entails a large loss of turnover on the part of the company. For this reason, it is crucial to be able to predict failures in advance to try to replace the element before its wear can cause a reduction in machine performance. Several systems have recently been developed for the preventive faults detection that use a combination of low-cost sensors and algorithms based on machine learning. In this work the different methodologies for the identification of the most common mechanical failures are examined and the most widely applied algorithms based on machine learning are analyzed: Support Vector Machine (SVM) solutions, Artificial Neural Network (ANN) algorithms, Convolutional Neural Network (CNN) model, Recurrent Neural Network (RNN) applications, and Deep Generative Systems. These topics have been described in detail and the works most appreciated by the scientific community have been reviewed to highlight the strengths in identifying faults and to outline the directions for future challenges.



    加载中


    [1] A. Muller, A. C. Marquez, B. Iung, On the concept of e-maintenance: Review and current research, Reliab. Eng. Syst. Saf., 93 (2008), 1165–1187. https://doi.org/10.1016/j.ress.2007.08.006 doi: 10.1016/j.ress.2007.08.006
    [2] K. Gandhi, A. H. Ng, Machine maintenance decision support system: a systematic literature review, in Advances in Manufacturing Technology XXXⅡ: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, University of Skö vde, IOS Press, Sweden, 8 (2018), 349.
    [3] A. Garg, S. G. Deshmukh, Maintenance management: literature review and directions, J. Qual. Maint. Eng., 12 (2006), 205–238. https://doi.org/10.1108/13552510610685075 doi: 10.1108/13552510610685075
    [4] D. Sherwin, A review of overall models for maintenance management, J. Qual. Maint. Eng., 6 (2000), 138–164. https://doi.org/10.1108/13552510010341171 doi: 10.1108/13552510010341171
    [5] K. C. Ng, G. G. G. Goh, U. C. Eze, Critical success factors of total productive maintenance implementation: a review, in 2011 IEEE international conference on industrial engineering and engineering management, IEEE, Singapore, 269–273. https://doi.org/10.1109/IEEM.2011.6117920
    [6] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, M. Gidlund, Industrial internet of things: Challenges, opportunities, and directions, IEEE Trans. Ind. Inf., 14 (2018), 4724–4734. https://doi.org/10.1109/TⅡ.2018.2852491 doi: 10.1109/TⅡ.2018.2852491
    [7] H. Boyes, B. Hallaq, J. Cunningham, T. Watson, The industrial internet of things (ⅡoT): An analysis framework, Comput. Ind., 101 (2018), 1–12. https://doi.org/10.1016/j.compind.2018.04.015 doi: 10.1016/j.compind.2018.04.015
    [8] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, et al., Software-defined industrial internet of things in the context of industry 4.0, IEEE Sens. J., 16 (2016), 7373–7380. https://doi.org/10.1109/JSEN.2016.2565621 doi: 10.1109/JSEN.2016.2565621
    [9] Y. Liao, E. D. F. R. Loures, F. Deschamps, Industrial Internet of Things: A systematic literature review and insights, IEEE Internet Things J., 5 (2018), 4515–4525. https://doi.org/10.1109/JIOT.2018.2834151 doi: 10.1109/JIOT.2018.2834151
    [10] M. Hartmann, B. Halecker, Management of innovation in the industrial internet of things, in The International Society for Professional Innovation Management ISPIM Conference Proceedings, 2015.
    [11] M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning, MIT press, 2018.
    [12] C. Sammut, G. I. Webb, Encyclopedia of Machine Learning, Springer Science & Business Media, 2011.
    [13] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, et al., Machine learning and the physical sciences, Rev. Mod. Phys., 91 (2019), 045002. https://doi.org/10.1103/RevModPhys.91.045002 doi: 10.1103/RevModPhys.91.045002
    [14] M. Du, N. Liu, X. Hu, Techniques for interpretable machine learning, Commun. ACM, 63 (2019), 68–77. https://doi.org/10.1145/3359786 doi: 10.1145/3359786
    [15] H. Sahli, An introduction to machine learning, in TORUS 1-Toward an Open Resource Using Services: Cloud Computing for Environmental Data, (2020), 61–74. https://doi.org/10.1002/9781119720492.ch7
    [16] R. H. P. M. Arts, G. M. Knapp, L. Mann, Some aspects of measuring maintenance performance in the process industry, J. Qual. Maint. Eng., 4 (1998) 6–11. https://doi.org/10.1108/13552519810201520 doi: 10.1108/13552519810201520
    [17] C. Stenströ m, P. Norrbin, A. Parida, U. Kumar, Preventive and corrective maintenance-cost comparison and cost-benefit analysis, Struct. Infrastruct. Eng., 12 (2016), 603–617. https://doi.org/10.1080/15732479.2015.1032983 doi: 10.1080/15732479.2015.1032983
    [18] H. P. Bahrick, L. K. Hall, Preventive and corrective maintenance of access to knowledge, Appl. Cognit. Psychol., 5 (1991), 1–18. https://doi.org/10.1002/acp.2350050102 doi: 10.1002/acp.2350050102
    [19] J. Shin, H. Jun, On condition based maintenance policy, J. Comput. Des. Eng., 2 (2015), 119–127. https://doi.org/10.1016/j.jcde.2014.12.006 doi: 10.1016/j.jcde.2014.12.006
    [20] R. Ahmad, S. Kamaruddin, An overview of time-based and condition-based maintenance in industrial application, Comput. Ind. Eng., 63 (2012), 135–149. https://doi.org/10.1016/j.cie.2012.02.002 doi: 10.1016/j.cie.2012.02.002
    [21] J. H. Williams, A. Davies, P. R. Drake, Condition-Based Maintenance and Machine Diagnostics, Springer Science & Business Media, 1994.
    [22] R. K. Mobley, An Introduction to Predictive Maintenance, 2nd edition, Elsevier, 2002. https://doi.org/10.1016/B978-0-7506-7531-4.X5000-3
    [23] C. Scheffer, P. Girdhar, Practical Machinery Vibration Analysis and Predictive Maintenance, Elsevier, 2004.
    [24] K. Efthymiou, N. Papakostas, D. Mourtzis, G. Chryssolouris, On a predictive maintenance platform for production systems, Procedia CIRP, 3 (2012), 221–226. https://doi.org/10.1016/j.procir.2012.07.039 doi: 10.1016/j.procir.2012.07.039
    [25] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, A. Beghi, Machine learning for predictive maintenance: A multiple classifier approach, IEEE Trans. Ind. Inf., 11 (2014), 812–820. https://doi.org/10.1109/TⅡ.2014.2349359 doi: 10.1109/TⅡ.2014.2349359
    [26] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer Science & Business Media, 2005.
    [27] Z. Gao, C. Cecati, S. X. Ding, A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches, IEEE Trans. Ind. Electron., 62 (2015), 3757–3767. https://doi.org/10.1109/TIE.2015.2417501 doi: 10.1109/TIE.2015.2417501
    [28] S. Leonhardt, M. Ayoubi, Methods of fault diagnosis, Control Eng. Pract., 5 (1997), 683–692. https://doi.org/10.1016/S0967-0661(97)00050-6 doi: 10.1016/S0967-0661(97)00050-6
    [29] R. J. Patton, P. M. Frank, R. N Clark, Issues of Fault Diagnosis for Dynamic Systems, Springer Science & Business Media, 2013.
    [30] M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science, 349 (2015), 255–260. https://doi.org/10.1126/science.aaa8415 doi: 10.1126/science.aaa8415
    [31] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu, M. Stanley, A brief survey of machine learning methods and their sensor and IoT applications, in 2017 8th International Conference on Information, Intelligence, Systems & Applications (ⅡSA), IEEE, (2017), 1–8. https://doi.org/10.1109/ⅡSA.2017.8316459
    [32] D. A. Pisner, D. M. Schnyer, Support vector machine, in Machine Learning, Academic Press, (2020), 101–121. https://doi.org/10.1016/B978-0-12-815739-8.00006-7
    [33] W. S. Noble, What is a support vector machine, Nat. Biotechnol., 24 (2006), 1565–1567. https://doi.org/10.1038/nbt1206-1565 doi: 10.1038/nbt1206-1565
    [34] L. Wang, Support Vector Machines: Theory and Applications, Springer Science & Business Media, 2005. https://doi.org/10.1007/b95439
    [35] S. I. Amari, S. Wu, Improving support vector machine classifiers by modifying kernel functions, Neural Networks, 12 (1999), 783–789. https://doi.org/10.1016/S0893-6080(99)00032-5 doi: 10.1016/S0893-6080(99)00032-5
    [36] O. L. Mangasarian, D. R. Musicant, Lagrangian support vector machines, J. Mach. Learn. Res., 1 (2001), 161–177.
    [37] A. Widodo, B. S. Yang, Support vector machine in machine condition monitoring and fault diagnosis, Mech. Syst. Sig. Process., 21 (2007), 2560–2574. https://doi.org/10.1016/j.ymssp.2006.12.007 doi: 10.1016/j.ymssp.2006.12.007
    [38] S. W. Fei, X. B. Zhang, Fault diagnosis of power transformer based on support vector machine with genetic algorithm, Expert Syst. Appl., 36 (2009), 11352–11357. https://doi.org/10.1016/j.eswa.2009.03.022 doi: 10.1016/j.eswa.2009.03.022
    [39] S. D. Wu, P. H. Wu, C. W. Wu, J. J. Ding, C. C. Wang, Bearing fault diagnosis based on multiscale permutation entropy and support vector machine, Entropy, 14 (2012), 1343–1356. https://doi.org/10.3390/e14081343 doi: 10.3390/e14081343
    [40] W. Aziz, M. Arif, Multiscale permutation entropy of physiological time series, in 2005 Pakistan Section Multitopic Conference, IEEE, (2005), 1–6. https://doi.org/10.1109/INMIC.2005.334494
    [41] B. Tang, T. Song, F. Li, L. Deng, Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine, Renewable Energy, 62 (2014), 1–9. https://doi.org/10.1016/j.renene.2013.06.025 doi: 10.1016/j.renene.2013.06.025
    [42] Z. Wang, L. Yao, Y. Cai, J. Zhang, Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis, Renewable Energy, 155 (2020), 1312–1327. https://doi.org/10.1016/j.renene.2020.04.041 doi: 10.1016/j.renene.2020.04.041
    [43] L. Yao, Z. Fang, Y. Xiao, J. Hou, Z. Fu, An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine, Energy, 214 (2021), 118866. https://doi.org/10.1016/j.energy.2020.118866 doi: 10.1016/j.energy.2020.118866
    [44] Y. P. Zhao, J. J. Wang, X. Y. Li, G. J. Peng, Z. Yang, Extended least squares support vector machine with applications to fault diagnosis of aircraft engine, ISA Trans., 97 (2020), 189–201. https://doi.org/10.1016/j.isatra.2019.08.036 doi: 10.1016/j.isatra.2019.08.036
    [45] F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial, Chemom. Intell. Lab. Syst., 149 (2015), 153–165. https://doi.org/10.1016/j.chemolab.2015.08.020 doi: 10.1016/j.chemolab.2015.08.020
    [46] M. Van, D. T. Hoang, H. J. Kang, Bearing fault diagnosis using a particle swarm optimization-least squares wavelet support vector machine classifier, Sensors, 20 (2020), 3422. https://doi.org/10.3390/s20123422 doi: 10.3390/s20123422
    [47] X. Li, S. Wu, X. Li, H. Yuan, D. Zhao, Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers, Chin. J. Mech. Eng., 33 (2020), 1–10. https://doi.org/10.1186/s10033-019-0428-5 doi: 10.1186/s10033-019-0428-5
    [48] Y. Fan, C. Zhang, Y. Xue, J. Wang, F. Gu, A bearing fault diagnosis using a support vector machine optimised by the self-regulating particle swarm, Shock Vib., 2020 (2020). https://doi.org/10.1155/2020/9096852 doi: 10.1155/2020/9096852
    [49] E. Mirakhorli, Fault diagnosis in a distillation column using a support vector machine based classifier, Int. J. Smart Electr. Eng., 8 (2020), 105–113.
    [50] S. Gao, C. Zhou, Z. Zhang, J. Geng, R. He, Q. Yin, C. Xing, Mechanical fault diagnosis of an on-load tap changer by applying cuckoo search algorithm-based fuzzy weighted least squares support vector machine, Math. Probl. Eng., 2020 (2020). https://doi.org/10.1155/2020/3432409 doi: 10.1155/2020/3432409
    [51] X. Huang, X. Huang, B. Wang, Z. Xie, Fault diagnosis of transformer based on modified grey wolf optimization algorithm and support vector machine, IEEJ Trans. Electr. Electron. Eng., 15 (2020), 409–417. https://doi.org/10.1002/tee.23069 doi: 10.1002/tee.23069
    [52] Y. Zhang, J. Li, X. Fan, J. Liu, H. Zhang, Moisture prediction of transformer oil-immersed polymer insulation by applying a support vector machine combined with a genetic algorithm, Polymers, 12 (2020), 1579. https://doi.org/10.3390/polym12071579 doi: 10.3390/polym12071579
    [53] Y. Liu, H. Chen, L. Zhang, X. Wu, X. J. Wang, Energy consumption prediction and diagnosis of public buildings based on support vector machine learning: A case study in China, J. Cleaner Prod., 272 (2020), 122542. https://doi.org/10.1016/j.jclepro.2020.122542 doi: 10.1016/j.jclepro.2020.122542
    [54] S. K. Ibrahim, A. Ahmed, M. A. E. Zeidan, I. E. Ziedan, Machine learning techniques for satellite fault diagnosis, Ain Shams Eng. J., 11 (2020), 45–56. https://doi.org/10.1016/j.asej.2019.08.006 doi: 10.1016/j.asej.2019.08.006
    [55] Y. P. Zhao, G. Huang, Q. K. Hu, B. Li, An improved weighted one class support vector machine for turboshaft engine fault detection, Eng. Appl. Artif. Intell., 94 (2020), 103796. https://doi.org/10.1016/j.engappai.2020.103796 doi: 10.1016/j.engappai.2020.103796
    [56] M. Guo, L. Xie, S. Q. Wang, J. M. Zhang, Research on an integrated ICA-SVM based framework for fault diagnosis, in SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), IEEE, 3 (2003), 2710–2715. https://doi.org/10.1109/ICSMC.2003.1244294
    [57] S. Poyhonen, P. Jover, H. Hyotyniemi, Signal processing of vibrations for condition monitoring of an induction motor, in First International Symposium on Control, Communications and Signal Processing, IEEE, Tunisia, (2004), 499–502. https://doi.org/10.1109/ISCCSP.2004.1296338
    [58] M. C. Moura, E. Zio, I. D. Lins, E. Droguett, Failure and reliability prediction by support vector machines regression of time series data, Reliab. Eng. Syst. Saf., 96 (2011), 1527–1534. https://doi.org/10.1016/j.ress.2011.06.006 doi: 10.1016/j.ress.2011.06.006
    [59] K. Y. Chen, L. S. Chen, M. C. Chen, C. L. Lee, Using SVM based method for equipment fault detection in a thermal power plant, Comput. Ind., 62 (2011), 42–50. https://doi.org/10.1016/j.compind.2010.05.013 doi: 10.1016/j.compind.2010.05.013
    [60] K. He, X. Li, A quantitative estimation technique for welding quality using local mean decomposition and support vector machine, J. Intell. Manuf., 27 (2016), 525–533. https://doi.org/10.1007/s10845-014-0885-8 doi: 10.1007/s10845-014-0885-8
    [61] K. Yan, C. Zhong, Z. Ji, J. Huang, Semi-supervised learning for early detection and diagnosis of various air handling unit faults, Energy Build., 181 (2018), 75–83. https://doi.org/10.1016/j.enbuild.2018.10.016 doi: 10.1016/j.enbuild.2018.10.016
    [62] Z. Yin, J. Hou, Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes, Neurocomputing, 174 (2016), 643–650. https://doi.org/10.1016/j.neucom.2015.09.081 doi: 10.1016/j.neucom.2015.09.081
    [63] M. M. Islam, J. M. Kim, Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines, Reliab. Eng. Syst. Saf., 184 (2019), 55–66. https://doi.org/10.1016/j.ress.2018.02.012 doi: 10.1016/j.ress.2018.02.012
    [64] R. P. Monteiro, M. Cerrada, D. R. Cabrera, R. V. Sánchez, C. J. Bastos-Filho, Using a support vector machine based decision stage to improve the fault diagnosis on gearboxes, Comput. Intell. Neurosci., 2019 (2019). https://doi.org/10.1155/2019/1383752 doi: 10.1155/2019/1383752
    [65] D. Yang, J. Miao, F. Zhang, J. Tao, G. Wang, Y. Shen, Bearing fault diagnosis using a support vector machine optimized by an improved ant lion optimizer, Shock Vib., 2019 (2019). https://doi.org/10.1155/2019/9303676 doi: 10.1155/2019/9303676
    [66] S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015), 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010 doi: 10.1016/j.advengsoft.2015.01.010
    [67] L. You, W. Fan, Z. Li, Y. Liang, M. Fang, J. Wang, A fault diagnosis model for rotating machinery using VWC and MSFLA-SVM based on vibration signal analysis, Shock Vib., 2019 (2019). https://doi.org/10.1155/2019/1908485 doi: 10.1155/2019/1908485
    [68] A. Kumar, R. Kumar, Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump, Measurement, 108 (2017), 119–133. https://doi.org/10.1016/j.measurement.2017.04.041 doi: 10.1016/j.measurement.2017.04.041
    [69] Z. Chen, F. Zhao, J. Zhou, P. Huang, X. Zhang, Fault diagnosis of loader gearbox based on an Ica and SVM algorithm, Int. J. Environ. Res. Public Health, 16 (2019), 4868. https://doi.org/10.3390/ijerph16234868 doi: 10.3390/ijerph16234868
    [70] T. W. Lee, Independent component analysis, in Independent Component Analysis, Springer, Boston, (1998), 27–66. https://doi.org/10.1007/978-1-4757-2851-4_2
    [71] W. Liu, Z. Wang, J. Han, G. Wang, Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM, Renewable Energy, 50 (2013), 1–6. https://doi.org/10.1016/j.renene.2012.06.013 doi: 10.1016/j.renene.2012.06.013
    [72] M. A. Djeziri, O. Djedidi, N. Morati, J. L. Seguin, M. Bendahan, T. Contaret, A temporal-based SVM approach for the detection and identification of pollutant gases in a gas mixture, Appl. Intell., 52 (2022), 6065–6078. https://doi.org/10.1007/s10489-021-02761-0 doi: 10.1007/s10489-021-02761-0
    [73] G. Ciaburro, G. Iannace, J. Passaro, A. Bifulco, D. Marano, M. Guida, et al., Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly (vinyl pyrrolidone)/silica composite, Appl. Acoust., 169 (2020), 107472. https://doi.org/10.1016/j.apacoust.2020.107472 doi: 10.1016/j.apacoust.2020.107472
    [74] S. Agatonovic-Kustrin, R. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research, J. Pharm. Biomed. Anal., 22 (2000), 717–727. https://doi.org/10.1016/S0731-7085(99)00272-1 doi: 10.1016/S0731-7085(99)00272-1
    [75] G. Ciaburro, G. Iannace, M. Ali, A. Alabdulkarem, A. Nuhait, An artificial neural network approach to modelling absorbent asphalts acoustic properties, J. King Saud Univ. Eng. Sci., 33 (2021), 213–220. https://doi.org/10.1016/j.jksues.2020.07.002 doi: 10.1016/j.jksues.2020.07.002
    [76] J. Misra, I. Saha, Artificial neural networks in hardware: A survey of two decades of progress, Neurocomputing, 74 (2010), 239–255. https://doi.org/10.1016/j.neucom.2010.03.021 doi: 10.1016/j.neucom.2010.03.021
    [77] Z. Zhang, K. Friedrich, Artificial neural networks applied to polymer composites: a review, Compos. Sci. Technol., 63 (2003), 2029–2044. https://doi.org/10.1016/S0266-3538(03)00106-4 doi: 10.1016/S0266-3538(03)00106-4
    [78] G. Iannace, G. Ciaburro, A. Trematerra, Modelling sound absorption properties of broom fibers using artificial neural networks, Appl. Acoust., 163 (2020), 107239. https://doi.org/10.1016/j.apacoust.2020.107239 doi: 10.1016/j.apacoust.2020.107239
    [79] K. P. Singh, A. Basant, A. Malik, G. Jain, Artificial neural network modeling of the river water quality—a case study, Ecol. Modell., 220 (2009), 888–895. https://doi.org/10.1016/j.ecolmodel.2009.01.004 doi: 10.1016/j.ecolmodel.2009.01.004
    [80] H. Zhu, X. Li, Q. Sun, L. Nie, J. Yao, G. Zhao, A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks, Energies, 9 (2015), 1–15. https://doi.org/10.3390/en9010011 doi: 10.3390/en9010011
    [81] V. P. Romero, L. Maffei, G. Brambilla, G. Ciaburro, Modelling the soundscape quality of urban waterfronts by artificial neural networks, Appl. Acoust., 111 (2016), 121–128. https://doi.org/10.1016/j.apacoust.2016.04.019 doi: 10.1016/j.apacoust.2016.04.019
    [82] S. Fabio, D. N. Giovanni, P. Mariano, Airborne sound insulation prediction of masonry walls using artificial neural networks, Build. Acoust., 28 (2021), 391–409. https://doi.org/10.1177/1351010X21994462 doi: 10.1177/1351010X21994462
    [83] Y. Zhang, X. Ding, Y. Liu, P. J. Griffin, An artificial neural network approach to transformer fault diagnosis, IEEE Trans. Power Delivery, 11 (1996), 1836–1841. https://doi.org/10.1109/61.544265 doi: 10.1109/61.544265
    [84] J. C. Hoskins, K. M. Kaliyur, D. M. Himmelblau, Fault diagnosis in complex chemical plants using artificial neural networks, AIChE J., 37 (1991), 137–141. https://doi.org/10.1002/aic.690370112 doi: 10.1002/aic.690370112
    [85] J. B. Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, F. Fnaiech, Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals, Appl. Acoust., 89 (2015), 16–27. https://doi.org/10.1016/j.apacoust.2014.08.016 doi: 10.1016/j.apacoust.2014.08.016
    [86] T. Sorsa, H. N. Koivo, Application of artificial neural networks in process fault diagnosis, Automatica, 29 (1993), 843–849. https://doi.org/10.1016/0005-1098(93)90090-G doi: 10.1016/0005-1098(93)90090-G
    [87] N. Saravanan, K. I. Ramachandran, Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN), Expert Syst. Appl., 37 (2010), 4168–4181. https://doi.org/10.1016/j.eswa.2009.11.006 doi: 10.1016/j.eswa.2009.11.006
    [88] W. Chine, A. Mellit, V. Lughi, A. Malek, G. Sulligoi, A. M. Pavan, A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks, Renewable Energy, 90 (2016), 501–512. https://doi.org/10.1016/j.renene.2016.01.036 doi: 10.1016/j.renene.2016.01.036
    [89] B. Li, M. Y. Chow, Y. Tipsuwan, J. C. Hung, Neural-network-based motor rolling bearing fault diagnosis, IEEE Trans. Ind. Electron., 47 (2000), 1060–1069. https://doi.org/10.1109/41.873214 doi: 10.1109/41.873214
    [90] B. Samanta, K. R. Al-Balushi, S. A. Al-Araimi, Artificial neural networks and genetic algorithm for bearing fault detection, Soft Comput., 10 (2006), 264–271. https://doi.org/10.1007/s00500-005-0481-0 doi: 10.1007/s00500-005-0481-0
    [91] T. Han, B. S. Yang, W. H. Choi, J. S. Kim, Fault diagnosis system of induction motors based on neural network and genetic algorithm using stator current signals, Int. J. Rotating Mach., 2006 (2006). https://doi.org/10.1155/IJRM/2006/61690 doi: 10.1155/IJRM/2006/61690
    [92] H. Wang, P. Chen, Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network, Comput. Ind. Eng., 60 (2011), 511–518. https://doi.org/10.1016/j.cie.2010.12.004 doi: 10.1016/j.cie.2010.12.004
    [93] M. A. Hashim, M. H. Nasef, A. E. Kabeel, N. M. Ghazaly, Combustion fault detection technique of spark ignition engine based on wavelet packet transform and artificial neural network, Alexandria Eng. J., 59 (2020), 3687–3697. https://doi.org/10.1016/j.aej.2020.06.023 doi: 10.1016/j.aej.2020.06.023
    [94] G. Iannace, G. Ciaburro, A. Trematerra, Fault diagnosis for UAV blades using artificial neural network, Robotics, 8 (2019), 59. https://doi.org/10.3390/robotics8030059 doi: 10.3390/robotics8030059
    [95] M. Kordestani, M. F. Samadi, M. Saif, K. Khorasani, A new fault diagnosis of multifunctional spoiler system using integrated artificial neural network and discrete wavelet transform methods, IEEE Sens. J., 18 (2018), 4990–5001. https://doi.org/10.1109/JSEN.2018.2829345 doi: 10.1109/JSEN.2018.2829345
    [96] S. Shi, G. Li, H. Chen, J. Liu, Y. Hu, L. Xing, et al., Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter, Appl. Therm. Eng., 112 (2017), 698–706. https://doi.org/10.1016/j.applthermaleng.2016.10.043 doi: 10.1016/j.applthermaleng.2016.10.043
    [97] X. Xu, D. Cao, Y. Zhou, J. Gao, Application of neural network algorithm in fault diagnosis of mechanical intelligence, Mech. Syst. Sig. Process., 141 (2020), 106625. https://doi.org/10.1016/j.ymssp.2020.106625 doi: 10.1016/j.ymssp.2020.106625
    [98] A. Viveros-Wacher, J. E. Rayas-Sánchez, Analog fault identification in RF circuits using artificial neural networks and constrained parameter extraction, in 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), IEEE, (2018), 1–3. https://doi.org/10.1109/NEMO.2018.8503117
    [99] S. Heo, J. H. Lee, Fault detection and classification using artificial neural networks, IFAC-PapersOnLine, 51 (2018), 470–475. https://doi.org/10.1016/j.ifacol.2018.09.380 doi: 10.1016/j.ifacol.2018.09.380
    [100] P. Agrawal, P. Jayaswal, Diagnosis and classifications of bearing faults using artificial neural network and support vector machine, J. Inst. Eng. (India): Ser. C, 101 (2020), 61–72. https://doi.org/10.1007/s40032-019-00519-9 doi: 10.1007/s40032-019-00519-9
    [101] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, et al., Handwritten digit recognition with a back-propagation network, in Advances in Neural Information Processing Systems, (1990), 396–404.
    [102] T. Chen, Y. Sun, T. H. Li, A semi-parametric estimation method for the quantile spectrum with an application to earthquake classification using convolutional neural network, Comput. Stat. Data Anal., 154 (2021), 107069. https://doi.org/10.1016/j.csda.2020.107069 doi: 10.1016/j.csda.2020.107069
    [103] F. Perla, R. Richman, S. Scognamiglio, M. V. Wüthrich, Time-series forecasting of mortality rates using deep learning, Scand. Actuarial J., 2021 (2021), 1–27. https://doi.org/10.1080/03461238.2020.1867232 doi: 10.1080/03461238.2020.1867232
    [104] G. Ciaburro, G. Iannace, V. Puyana-Romero, A. Trematerra, A comparison between numerical simulation models for the prediction of acoustic behavior of giant reeds shredded, Appl. Sci., 10 (2020), 6881. https://doi.org/10.3390/app10196881 doi: 10.3390/app10196881
    [105] C. Yildiz, H. Acikgoz, D. Korkmaz, U. Budak, An improved residual-based convolutional neural network for very short-term wind power forecasting, Energy Convers. Manage., 228 (2021), 113731. https://doi.org/10.1016/j.enconman.2020.113731 doi: 10.1016/j.enconman.2020.113731
    [106] G. Ciaburro, Sound event detection in underground parking garage using convolutional neural network, Big Data Cognit. Comput., 4 (2020), 20. https://doi.org/10.3390/bdcc4030020 doi: 10.3390/bdcc4030020
    [107] R. Ye, Q. Dai, Implementing transfer learning across different datasets for time series forecasting, Pattern Recognit., 109 (2021), 107617. https://doi.org/10.1016/j.patcog.2020.107617 doi: 10.1016/j.patcog.2020.107617
    [108] J. Han, L. Shi, Q. Yang, K. Huang, Y. Zha, J. Yu, Real-time detection of rice phenology through convolutional neural network using handheld camera images, Precis. Agric., 22 (2021), 154–178. https://doi.org/10.1016/j.patcog.2020.107617 doi: 10.1016/j.patcog.2020.107617
    [109] G. Ciaburro, G. Iannace, Improving smart cities safety using sound events detection based on deep neural network algorithms, Informatics, 7 (2020), 23. https://doi.org/10.3390/informatics7030023 doi: 10.3390/informatics7030023
    [110] L. Wen, X. Li, L. Gao, Y. Zhang, A new convolutional neural network-based data-driven fault diagnosis method, IEEE Trans. Ind. Electron., 65 (2017), 5990–5998. https://doi.org/10.1109/TIE.2017.2774777 doi: 10.1109/TIE.2017.2774777
    [111] Y. LeCun, LeNet-5, Convolutional Neural Networks, 2015, Available from: http://yann.lecun.com/exdb/lenet/, Accessed date: 28 April 2022.
    [112] H. Wu, J. Zhao, Deep convolutional neural network model based chemical process fault diagnosis, Comput. Chem. Eng., 115 (2018), 185–197. https://doi.org/10.1016/j.compchemeng.2018.04.009 doi: 10.1016/j.compchemeng.2018.04.009
    [113] W. Zhang, C. Li, G. Peng, Y. Chen, Z. Zhang, A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load, Mech. Syst. Sig. Process., 100 (2018), 439–453. https://doi.org/10.1016/j.ymssp.2017.06.022 doi: 10.1016/j.ymssp.2017.06.022
    [114] L. Jing, M. Zhao, P. Li, X. Xu, A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox, Measurement, 111 (2017), 1–10. https://doi.org/10.1016/j.measurement.2017.07.017 doi: 10.1016/j.measurement.2017.07.017
    [115] Z. Chen, C. Li, R. V. Sanchez, Gearbox fault identification and classification with convolutional neural networks, Shock Vib., 2015 (2015). https://doi.org/10.1155/2015/390134 doi: 10.1155/2015/390134
    [116] X. Guo, L. Chen, C. Shen, Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Measurement, 93 (2016), 490–502. https://doi.org/10.1016/j.measurement.2016.07.054 doi: 10.1016/j.measurement.2016.07.054
    [117] O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S. Verstockt, et al., Convolutional neural network based fault detection for rotating machinery, J. Sound Vib., 377 (2016), 331–345. https://doi.org/10.1016/j.jsv.2016.05.027 doi: 10.1016/j.jsv.2016.05.027
    [118] W. Zhang, G. Peng, C. Li, Y. Chen, Z. Zhang, A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals, Sensors, 17 (2017), 425. https://doi.org/10.3390/s17020425 doi: 10.3390/s17020425
    [119] Y. Li, N. Wang, J. Shi, X. Hou, J. Liu, Adaptive batch normalization for practical domain adaptation, Pattern Recognit., 80 (2018), 109–117. https://doi.org/10.1016/j.patcog.2018.03.005 doi: 10.1016/j.patcog.2018.03.005
    [120] T. Ince, S. Kiranyaz, L. Eren, M. Askar, M. Gabbouj, Real-time motor fault detection by 1-D convolutional neural networks, IEEE Trans. Ind. Electron., 63 (2016), 7067–7075. https://doi.org/10.1109/TIE.2016.2582729 doi: 10.1109/TIE.2016.2582729
    [121] Y. Zhang, K. Xing, R. Bai, D. Sun, Z. Meng, An enhanced convolutional neural network for bearing fault diagnosis based on time-frequency image, Measurement, 157 (2020), 107667. https://doi.org/10.1016/j.measurement.2020.107667 doi: 10.1016/j.measurement.2020.107667
    [122] M. Azamfar, J. Singh, I. Bravo-Imaz, J. Lee, . Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis, Mech. Syst. Sig. Process., 144 (2020), 106861. https://doi.org/10.1016/j.ymssp.2020.106861 doi: 10.1016/j.ymssp.2020.106861
    [123] Q. Zhou, Y. Li, Y. Tian, L. Jiang, A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery, Measurement, 161 (2020), 107880. https://doi.org/10.1016/j.measurement.2020.107880 doi: 10.1016/j.measurement.2020.107880
    [124] K. Zhang, J. Chen, T. Zhang, Z. Zhou, A compact convolutional neural network augmented with multiscale feature extraction of acquired monitoring data for mechanical intelligent fault diagnosis, J. Manuf. Syst., 55 (2020), 273–284. https://doi.org/10.1016/j.jmsy.2020.04.016 doi: 10.1016/j.jmsy.2020.04.016
    [125] Y. Li, X. Du, F. Wan, X. Wang, H. Yu, Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging, Chin. J. Aeronaut., 33 (2020), 427–438. https://doi.org/10.1016/j.cja.2019.08.014 doi: 10.1016/j.cja.2019.08.014
    [126] Z. Chen, A. Mauricio, W. Li, K. Gryllias, A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks, Mech. Syst. Sig. Process., 140 (2020), 106683. https://doi.org/10.1016/j.ymssp.2020.106683 doi: 10.1016/j.ymssp.2020.106683
    [127] J. Antoni, Cyclic spectral analysis in practice, Mech. Syst. Sig. Process., 21 (2007), 597–630. https://doi.org/10.1016/j.ymssp.2006.08.007 doi: 10.1016/j.ymssp.2006.08.007
    [128] D. Zhou, Q. Yao, H. Wu, S. Ma, H. Zhang, Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks, Energy, 200 (2020), 117467. https://doi.org/10.1016/j.energy.2020.117467 doi: 10.1016/j.energy.2020.117467
    [129] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, Xgboost: extreme gradient boosting, R package version 0.4-2, 1 (2015), 1–4.
    [130] X. Li, J. Zheng, M. Li, W. Ma, Y. Hu, Frequency-domain fusing convolutional neural network: A unified architecture improving effect of domain adaptation for fault diagnosis, Sensors, 21 (2021), 450. https://doi.org/10.3390/s21020450 doi: 10.3390/s21020450
    [131] C. C. Chen, Z. Liu, G. Yang, C. C. Wu, Q. Ye, An improved fault diagnosis using 1D-convolutional neural network model, electronics, 10 (2021), 59. https://doi.org/10.3390/electronics10010059
    [132] Y. Liu, Y. Yang, T. Feng, Y. Sun, X. Zhang, Research on rotating machinery fault diagnosis method based on energy spectrum matrix and adaptive convolutional neural network, Processes, 9 (2021), 69. https://doi.org/10.3390/pr9010069 doi: 10.3390/pr9010069
    [133] D. T. Hoang, X. T. Tran, M. Van, H. J. Kang, A deep neural network-based feature fusion for bearing fault diagnosis, Sensors, 21 (2021), 244. https://doi.org/10.3390/s21010244 doi: 10.3390/s21010244
    [134] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, S. Khudanpur, Recurrent neural network based language model, in Eleventh Annual Conference of the International Speech Communication Association, 2010.
    [135] K. Gregor, I. Danihelka, A. Graves, D. Rezende, D. Wierstra, Draw: A recurrent neural network for image generation, in International Conference on Machine Learning (PMLR), 37 (2015), 1462–1471.
    [136] T. Mikolov, G. Zweig, Context dependent recurrent neural network language model, in 2012 IEEE Spoken Language Technology Workshop (SLT), IEEE, (2012), 234–239. https://doi.org/10.1109/SLT.2012.6424228
    [137] G. Ciaburro, Time series data analysis using deep learning methods for smart cities monitoring, in Big Data Intelligence for Smart Applications, Springer, Cham, (2022), 93–116. https://doi.org/10.1007/978-3-030-87954-9_4
    [138] H. Sak, A. W. Senior, F. Beaufays, Long short-term memory recurrent neural network architectures for large scale acoustic modeling, Interspeech, (2014), 338–342. https://doi.org/10.21437/Interspeech.2014-80 doi: 10.21437/Interspeech.2014-80
    [139] J. Kim, J. Kim, H. L. T. Thu, H. Kim, Long short term memory recurrent neural network classifier for intrusion detection, in 2016 International Conference on Platform Technology and Service (PlatCon), IEEE, (2016), 1–5. https://doi.org/10.1109/PlatCon.2016.7456805
    [140] Y. Tian, L. Pan, Predicting short-term traffic flow by long short-term memory recurrent neural network, in 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), IEEE, (2015), 153–158. https://doi.org/10.1109/SmartCity.2015.63
    [141] H. Jiang, X. Li, H. Shao, K. Zhao, Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network, Meas. Sci. Technol., 29 (2018), 065107. https://doi.org/10.1088/1361-6501/aab945 doi: 10.1088/1361-6501/aab945
    [142] T. De Bruin, K. Verbert, R. Babuška, Railway track circuit fault diagnosis using recurrent neural networks, IEEE Trans. Neural Networks Learn. Syst., 28 (2016), 523–533. https://doi.org/10.1109/TNNLS.2016.2551940 doi: 10.1109/TNNLS.2016.2551940
    [143] R. Yang, M. Huang, Q. Lu, M. Zhong, Rotating machinery fault diagnosis using long-short-term memory recurrent neural network, IFAC-PapersOnLine, 51 (2018), 228–232. https://doi.org/10.1016/j.ifacol.2018.09.582 doi: 10.1016/j.ifacol.2018.09.582
    [144] H. A. Talebi, K. Khorasani, S. Tafazoli, A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem, IEEE Trans. Neural Networks, 20 (2008), 45–60. https://doi.org/10.1109/TNN.2008.2004373 doi: 10.1109/TNN.2008.2004373
    [145] S. Zhang, K. Bi, T. Qiu, Bidirectional recurrent neural network-based chemical process fault diagnosis, Ind. Eng. Chem. Res., 59 (2019), 824–834. https://doi.org/10.1021/acs.iecr.9b05885 doi: 10.1021/acs.iecr.9b05885
    [146] Z. An, S. Li, J. Wang, X. Jiang, A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network, ISA Trans., 100 (2020), 155–170. https://doi.org/10.1016/j.isatra.2019.11.010 doi: 10.1016/j.isatra.2019.11.010
    [147] W. Liu, P. Guo, L. Ye, A low-delay lightweight recurrent neural network (LLRNN) for rotating machinery fault diagnosis, Sensors, 19 (2019), 3109. https://doi.org/10.3390/s19143109 doi: 10.3390/s19143109
    [148] K. Liang, N. Qin, D. Huang, Y. Fu, Convolutional recurrent neural network for fault diagnosis of high-speed train bogie, Complexity, 2018 (2018). https://doi.org/10.1155/2018/4501952 doi: 10.1155/2018/4501952
    [149] D. Huang, Y. Fu, N. Qin, S. Gao, Fault diagnosis of high-speed train bogie based on LSTM neural network, Sci. Chin. Inf. Sci., 64 (2021), 1–3. https://doi.org/10.1007/s11432-018-9543-8 doi: 10.1007/s11432-018-9543-8
    [150] H. Shahnazari, P. Mhaskar, J. M. House, T. I. Salsbury, Modeling and fault diagnosis design for HVAC systems using recurrent neural networks, Comput. Chem. Eng., 126 (2019), 189–203. https://doi.org/10.1016/j.compchemeng.2019.04.011 doi: 10.1016/j.compchemeng.2019.04.011
    [151] H. Shahnazari, Fault diagnosis of nonlinear systems using recurrent neural networks, Chem. Eng. Res. Des., 153 (2020), 233–245. https://doi.org/10.1016/j.cherd.2019.09.026 doi: 10.1016/j.cherd.2019.09.026
    [152] L. Guo, N. Li, F. Jia, Y. Lei, J. Lin, A recurrent neural network based health indicator for remaining useful life prediction of bearings, Neurocomputing, 240 (2017), 98–109. https://doi.org/10.1016/j.neucom.2017.02.045 doi: 10.1016/j.neucom.2017.02.045
    [153] M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network, in 2016 IEEE international conference on aircraft utility systems (AUS), IEEE, (2016), 135–140. https://doi.org/10.1109/AUS.2016.7748035
    [154] Z. Wu, H. Jiang, K. Zhao, X. Li, An adaptive deep transfer learning method for bearing fault diagnosis, Measurement, 151 (2020), 107227. https://doi.org/10.1016/j.measurement.2019.107227 doi: 10.1016/j.measurement.2019.107227
    [155] A. Yin, Y. Yan, Z. Zhang, C. Li, R. V. Sánchez, Fault diagnosis of wind turbine gearbox based on the optimized LSTM neural network with cosine loss, Sensors, 20 (2020), 2339. https://doi.org/10.3390/s20082339 doi: 10.3390/s20082339
    [156] M. Xia, X. Zheng, M. Imran, M. Shoaib, Data-driven prognosis method using hybrid deep recurrent neural network, Appl. Soft Comput., 93 (2020), 106351. https://doi.org/10.1016/j.asoc.2020.106351 doi: 10.1016/j.asoc.2020.106351
    [157] Z. Wang, Y. Dong, W. Liu, Z. Ma, A novel fault diagnosis approach for chillers based on 1-D convolutional neural network and gated recurrent unit, Sensors, 20 (2020), 2458. https://doi.org/10.3390/s20092458 doi: 10.3390/s20092458
    [158] R. Salakhutdinov, Learning deep generative models, Annu. Rev. Stat. Appl., 2 (2015), 361–385. https://doi.org/10.1146/annurev-statistics-010814-020120 doi: 10.1146/annurev-statistics-010814-020120
    [159] A. Gupta, A. Agarwal, P. Singh, P. Rai, A deep generative framework for paraphrase generation, in Proceedings of the AAAI Conference on Artificial Intelligence, 32 (2018). https://doi.org/10.1609/aaai.v32i1.11956
    [160] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative adversarial networks, 2014, preprint, arXiv: 1406.2661.
    [161] L. Metz, B. Poole, D. Pfau, J. Sohl-Dickstein, Unrolled generative adversarial networks, 2016, preprint, arXiv: 1611.02163.
    [162] G. Ciaburro, Security systems for smart cities based on acoustic sensors and machine learning applications, in Machine Intelligence and Data Analytics for Sustainable Future Smart Cities, Springer, Cham, (2021), 369–393. https://doi.org/10.1007/978-3-030-72065-0_20
    [163] X. Hou, L. Shen, K. Sun, G. Qiu, Deep feature consistent variational autoencoder, in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, (2017), 1133–1141. https://doi.org/10.1109/WACV.2017.131
    [164] M. J. Kusner, B. Paige, J. M. Hernández-Lobato, Grammar variational autoencoder, in International Conference on Machine Learning (PMLR), 70 (2017), 1945–1954.
    [165] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, et al., Variational autoencoder for deep learning of images, labels and captions, 2016, preprint, arXiv: 1609.08976.
    [166] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial autoencoders, 2015, preprint, arXiv: 1511.05644.
    [167] Z. Zhang, Y. Song, H. Qi, Age progression/regression by conditional adversarial autoencoder, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 5810–5818. https://doi.org/10.1109/CVPR.2017.463
    [168] H. Liu, J. Zhou, Y. Xu, Y. Zheng, X. Peng, W. Jiang, Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks, Neurocomputing, 315 (2018), 412–424. https://doi.org/10.1016/j.neucom.2018.07.034 doi: 10.1016/j.neucom.2018.07.034
    [169] S. Shao, P. Wang, R. Yan, Generative adversarial networks for data augmentation in machine fault diagnosis, Comput. Ind., 106 (2019), 85–93. https://doi.org/10.1016/j.compind.2019.01.001 doi: 10.1016/j.compind.2019.01.001
    [170] W. Zhang, X. Li, X. D. Jia, H. Ma, Z. Luo, X. Li, Machinery fault diagnosis with imbalanced data using deep generative adversarial networks, Measurement, 152 (2020), 107377. https://doi.org/10.1016/j.measurement.2019.107377 doi: 10.1016/j.measurement.2019.107377
    [171] Z. Wang, J. Wang, Y. Wang, An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition, Neurocomputing, 310 (2018), 213–222. https://doi.org/10.1016/j.neucom.2018.05.024 doi: 10.1016/j.neucom.2018.05.024
    [172] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P. A. Manzagol, L. Bottou, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res., 11 (2010), 3371–3408.
    [173] Q. Li, L. Chen, C. Shen, B. Yang, Z. Zhu, Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data, Meas. Sci. Technol., 30 (2019), 115005. https://doi.org/10.1088/1361-6501/ab3072 doi: 10.1088/1361-6501/ab3072
    [174] J. Wang, S. Li, B. Han, Z. An, H. Bao, S. Ji, Generalization of deep neural networks for imbalanced fault classification of machinery using generative adversarial networks, IEEE Access, 7 (2019), 111168–111180. https://doi.org/10.1109/ACCESS.2019.2924003 doi: 10.1109/ACCESS.2019.2924003
    [175] Y. Xie, T. Zhang, Imbalanced learning for fault diagnosis problem of rotating machinery based on generative adversarial networks, in 2018 37th Chinese Control Conference (CCC), IEEE, (2018), 6017–6022. https://doi.org/10.23919/ChiCC.2018.8483334
    [176] C. Zhong, K. Yan, Y. Dai, N. Jin, B. Lou, Energy efficiency solutions for buildings: Automated fault diagnosis of air handling units using generative adversarial networks, Energies, 12 (2019), 527. https://doi.org/10.3390/en12030527 doi: 10.3390/en12030527
    [177] D. Zhao, S. Liu, D. Gu, X. Sun, L. Wang, Y. Wei, et al., Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder, Meas. Sci. Technol., 31 (2019), 035004. https://doi.org/10.1088/1361-6501/ab55f8 doi: 10.1088/1361-6501/ab55f8
    [178] J. An, S. Cho, Variational autoencoder based anomaly detection using reconstruction probability, Spec. Lect. IE, 2 (2015), 1–18.
    [179] G. San Martin, E. López Droguett, V. Meruane, M. das Chagas Moura, Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis, Struct. Health Monit., 18 (2019), 1092–1128. https://doi.org/10.1177/1475921718788299 doi: 10.1177/1475921718788299
    [180] Y. Kawachi, Y. Koizumi, N. Harada, Complementary set variational autoencoder for supervised anomaly detection, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, (2018), 2366–2370. https://doi.org/10.1109/ICASSP.2018.8462181
    [181] D. Park, Y. Hoshi, C. C. Kemp, A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder, IEEE Rob. Autom. Lett., 3 (2018), 1544–1551. https://doi.org/10.1109/LRA.2018.2801475 doi: 10.1109/LRA.2018.2801475
    [182] S. Lee, M. Kwak, K. L. Tsui, S. B. Kim, Process monitoring using variational autoencoder for high-dimensional nonlinear processes, Eng. Appl. Artif. Intell., 83 (2019), 13–27. https://doi.org/10.1016/j.engappai.2019.04.013 doi: 10.1016/j.engappai.2019.04.013
    [183] K. Wang, M. G. Forbes, B. Gopaluni, J. Chen, Z. Song, Systematic development of a new variational autoencoder model based on uncertain data for monitoring nonlinear processes, IEEE Access, 7 (2019), 22554–22565. https://doi.org/10.1109/ACCESS.2019.2894764 doi: 10.1109/ACCESS.2019.2894764
    [184] G. Ping, J. Chen, T. Pan, J. Pan, Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational auto-encoder, Comput. Ind., 109 (2019), 72–82. https://doi.org/10.1016/j.compind.2019.04.013 doi: 10.1016/j.compind.2019.04.013
    [185] J. Wu, Z. Zhao, C. Sun, R. Yan, X. Chen, Fault-attention generative probabilistic adversarial autoencoder for machine anomaly detection, IEEE Trans. Ind. Inf., 16 (2020), 7479–7488. https://doi.org/10.1109/TⅡ.2020.2976752 doi: 10.1109/TⅡ.2020.2976752
    [186] G. Ciaburro, An ensemble classifier approach for thyroid disease diagnosis using the AdaBoostM algorithm, in Machine Learning, Big Data, and IoT for Medical Informatics, Academic Press, (2021), 365–387. https://doi.org/10.1016/B978-0-12-821777-1.00002-1
    [187] Z. Gao, C. Cecati, S. X. Ding, A survey of fault diagnosis and fault-tolerant techniques—Part I: fault diagnosis with model-based and signal-based approaches, IEEE Trans. Ind. Electron., 62 (2015), 3757–3767. https://doi.org/10.1109/TIE.2015.2417501 doi: 10.1109/TIE.2015.2417501
    [188] M. Djeziri, O. Djedidi, S. Benmoussa, M. Bendahan, J. L. Seguin, Failure prognosis based on relevant measurements identification and data-driven trend-modeling: Application to a fuel cell system, Processes, 9 (2021), 328. https://doi.org/10.3390/pr9020328 doi: 10.3390/pr9020328
    [189] M. Aliramezani, C. R. Koch, M. Shahbakhti, Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions, Prog. Energy Combust. Sci., 88 (2022), 100967. https://doi.org/10.1016/j.pecs.2021.100967 doi: 10.1016/j.pecs.2021.100967
    [190] D. Passos, P. Mishra, A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks, Chemom. Intell. Lab. Syst., 233 (2022), 104520. https://doi.org/10.1016/j.chemolab.2022.104520 doi: 10.1016/j.chemolab.2022.104520
    [191] A. Zakaria, F. B. Ismail, M. H. Lipu, M. A. Hannan, Uncertainty models for stochastic optimization in renewable energy applications, Renewable Energy, 145 (2020), 1543–1571. https://doi.org/10.1016/j.renene.2019.07.081 doi: 10.1016/j.renene.2019.07.081
    [192] M. H. Lin, J. F. Tsai, C. S. Yu, A review of deterministic optimization methods in engineering and management, Math. Probl. Eng., 2012 (2012). https://doi.org/10.1155/2012/756023 doi: 10.1155/2012/756023
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6699) PDF downloads(959) Cited by(2)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog