[1]
|
N. Gruschka, V. Mavroeidis, K. Vishi, M. Jensen, Privacy issues and data protection in big data: A case study analysis under GDPR, in IEEE International Conference on Big Data (Big Data), (2018), 5027–5033. https://doi.org/10.1109/BigData.2018.8622621
|
[2]
|
M. Rhahla, T. Abdellatif, R. Attia, W. Berrayana, A GDPR controller for IoT systems: Application to e-Health, in IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), (2019), 170–173. https://doi.org/10.1109/wetice.2019.00044
|
[3]
|
X. Yu, Y. Yang, W. Wang, Y. Zhang, Whether the sensitive information statement of the IoT privacy policy is consistent with the actual behavior, in Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), (2021), 85–92. https://doi.org/10.1109/dsn-w52860.2021.00025
|
[4]
|
P. Liu, S. Ji, L. Fu, K. Lu, X, Zhang, J. Qin, et al., How IoT re-using threatens your sensitive data: Exploring the user-data disposal in used IoT devices, in IEEE Symposium on Security and Privacy (SP), (2023), 3365–3381. https://doi.org/10.1109/sp46215.2023.10179294 doi: 10.1109/sp46215.2023.10179294
|
[5]
|
C. Thirumalai, H. S. Kar, Memory efficient multi key (MEMK) generation scheme for secure transportation of sensitive data over cloud and IoT devices, in Innovations in Power and Advanced Computing Technologies (i-PACT), (2017), 1–6. https://doi.org/10.1109/ipact.2017.8244948
|
[6]
|
W. Xu, T. Xiao, J. Zhang, W. Liang, Z. Xu, X. Liu, et al., Minimizing the deployment cost of UAVs for delay-sensitive data collection in IoT networks, IEEE/ACM Trans. Networking, 30 (2022), 812–825. https://doi.org/10.1109/tnet.2021.3123606 doi: 10.1109/tnet.2021.3123606
|
[7]
|
R. Parasnis, S. Hosseinalipour, Y. W. Chu, M. Chiang, C. G. Brinton, Connectivity-aware semi-decentralized federated learning over time-varying D2D networks, in ACM on Mobile Computing and Communications (MobileCom), (2023), 31–40. https://doi.org/10.1145/3565287.3610278
|
[8]
|
P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, F. Piccialli, Model aggregation techniques in federated learning: A comprehensive survey, Future Gener. Comput. Syst., 150 (2024), 272–293. https://doi.org/10.1016/j.future.2023.09.008 doi: 10.1016/j.future.2023.09.008
|
[9]
|
M. Chahoud, S. Otoum, A. Mourad, On the feasibility of federated learning towards on-demand client deployment at the edge, Inf. Process. Manage., 60 (2023), 103150. https://doi.org/10.1016/j.ipm.2022.103150 doi: 10.1016/j.ipm.2022.103150
|
[10]
|
A. Rahan, K. Hasan, D. Kundu, Md. J. Islam, T. Debnath, S. S. Band, et al., On the ICN-IoT with federated learning integration of communication: Concepts, security-privacy issues, applications, and future perspectives, Future Gener. Comput. Syst., 138 (2023), 61–88. https://doi.org/10.1016/j.future.2022.08.004 doi: 10.1016/j.future.2022.08.004
|
[11]
|
G. Lan, X. Y. Liu, Y. Zhang, X. Wang, Communication-efficient federated learning for resource-constrained edge devices, IEEE Trans. Mach. Learn. Commun. Networking, 1 (2023), 210–224. https://doi.org/10.1109/TMLCN.2023.3309773 doi: 10.1109/TMLCN.2023.3309773
|
[12]
|
C. Zhang, J. Sun, X. Zhu, Y. Fang, Privacy and security for online social networks: Challenges and opportunities, IEEE Network, 24 (2010), 13–18. https://doi.org/10.1109/mnet.2010.5510913 doi: 10.1109/mnet.2010.5510913
|
[13]
|
K. Yang, K. Zhang, J. Ren, X. Shen, Security and privacy in mobile crowdsourcing networks: Challenges and opportunities, IEEE Commun. Mag., 53 (2015), 75–81. https://doi.org/10.1109/mcom.2015.7180511 doi: 10.1109/mcom.2015.7180511
|
[14]
|
H. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. Arcas, Communication-efficient learning of deep networks from decentralized data, arXiv preprint, (2023), arXiv: 1602.05629. https://doi.org/10.48550/arXiv.1602.05629
|
[15]
|
N. Shan, X. Cui, Z. Gao, "DRL+FL": An intelligent resource allocation model based on deep reinforcement learning for mobile edge computing, Comput. Commun., 160 (2020), 14–24. https://doi.org/10.1016/j.comcom.2020.05.037 doi: 10.1016/j.comcom.2020.05.037
|
[16]
|
X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, M. Chen, In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning, IEEE Network, 33 (2019), 156–165. https://doi.org/10.1109/mnet.2019.1800286 doi: 10.1109/mnet.2019.1800286
|
[17]
|
Z. Xu, J. Li, M. Zhang, A surveillance video real-time analysis system based on edge-cloud and FL-YOLO cooperation in coal mine, IEEE Access, 9 (2021), 68482–68497. https://doi.org/10.1109/access.2021.3077499 doi: 10.1109/access.2021.3077499
|
[18]
|
S. Ye, L. Zeng, Q. Wu, K. Luo, Q. Fang, X. Chen, Eco-FL: Adaptive federated learning with efficient edge collaborative pipeline training, in Proceedings of the 51st International Conference on Parallel Processing, (2022), 1–11. https://doi.org/10.1145/3545008.3545015
|
[19]
|
S. S. Musa, M. Zennaro, M. Libsie, E. Pietrosemoli, Convergence of information-centric networks and edge intelligence for IoV: Challenges and future directions, Future Internet, 14 (2022), 192. https://doi.org/10.3390/fi14070192 doi: 10.3390/fi14070192
|
[20]
|
Q. Qi, X. Chen, Robust design of federated learning for edge-intelligent networks, IEEE Trans. Commun., 70 (2022), 4469–4481. https://doi.org/10.1109/tcomm.2022.3175921 doi: 10.1109/tcomm.2022.3175921
|
[21]
|
S. Peng, Y. Yang, M. Mao, D. Park, Centralized machine learning versus federated averaging: A comparison using mnist dataset, KSII Trans. Internet Inf. Syst., 16 (2022), 742–756. https://doi.org/10.3837/tiis.2022.02.020 doi: 10.3837/tiis.2022.02.020
|
[22]
|
W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. Liang, Q. Yang, et al., Federated learning in mobile edge networks: A comprehensive survey, IEEE Commun. Surv. Tutorials, 22 (2020), 2031–2063. https://doi.org/10.1109/COMST.2020.2986024 doi: 10.1109/COMST.2020.2986024
|
[23]
|
D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, H. V. Poor, Federated learning for Internet of Things: A comprehensive survey, IEEE Commun. Surv. Tutorials, 23 (2021), 1622–1658. https://doi.org/10.1109/COMST.2021.3075439 doi: 10.1109/COMST.2021.3075439
|
[24]
|
R. Gupta, T. Alam, Survey on federated-learning approaches in distributed environment, Wireless Pers. Commun., 125 (2022), 1631–1652. https://doi.org/10.1007/s11277-022-09624-y doi: 10.1007/s11277-022-09624-y
|
[25]
|
L. Witt, M. Heyer, K. Toyoda, W. Samek, D. Li, Decentral and incentivized federated learning frameworks: A systematic literature review, IEEE Internet Things J., 10 (2023), 3642–3663. https://doi.org/10.1109/JIOT.2022.3231363 doi: 10.1109/JIOT.2022.3231363
|
[26]
|
H. Chen, H. Wang, Q. Long, D. Jin, Y. Li, Advancements in federated learning: Models, methods, and privacy, arXiv preprint, (2023), arXiv: 2302.11466. https://doi.org/10.48550/arXiv.2302.11466
|
[27]
|
M. Al-Quraan, L. Mohjazi, L. Bariah, A. Centeno, A. Zoha, K. Arshad, et al., Edge-native intelligence for 6G communications driven by federated learning: A survey of trends and challenges, IEEE Trans. Emerging Top. Comput. Intell., 7 (2023), 957–979. https://doi.org/10.1109/TETCI.2023.3251404 doi: 10.1109/TETCI.2023.3251404
|
[28]
|
B. Soltani, V. Haghighi, A. Mahmood, Q. Z. Sheng, L. Yao, A survey on participant selection for federated learning in mobile networks, in ACM Workshop on Mobility in the Evolving Internet Architecture, (2022), 19–24. https://doi.org/10.1145/3556548.3559633
|
[29]
|
L. Fu, H. Zhang, G. Gao, M. Zhang, X. Liu, Client selection in federated learning: Principles, challenges, and opportunities, IEEE Internet of Things J., 10 (2023), 21811–21819. https://doi.org/10.1109/jiot.2023.3299573. doi: 10.1109/jiot.2023.3299573
|
[30]
|
Y. Jin, L. Jiao, Z. Qian, S. Zhang, S. Lu, X. Wang, Resource-efficient and convergence-preserving online participant selection in federated learning, in IEEE 40th International Conference on Distributed Computing Systems (ICDCS), (2020), 606–616. https://doi.org/10.1109/ICDCS47774.2020.00049
|
[31]
|
Y. J. Cho, J. Wang, G. Joshi, Client selection in federated learning: Convergence analysis and power-of-choice selection strategies, arXiv preprint, (2020), arXiv: 2010.01243. https://doi.org/10.48550/arXiv.2010.01243
|
[32]
|
C. Li, X. Zeng, M. Zhang, Z. Cao, PyramidFL: A fine-grained client selection framework for efficient federated learning, in Annual International Conference on Mobile Computing and Networking, (2022), 158–171. https://doi.org/10.1145/3495243.3517017
|
[33]
|
T. Huang, W. Lin, L. Shen, K. Li, A. Y. Zomaya, Stochastic client selection for federated learning with volatile clients, IEEE Internet of Things J., 9 (2022), 20055–20070. https://doi.org/10.1109/jiot.2022.3172113 doi: 10.1109/jiot.2022.3172113
|
[34]
|
J. Zhao, P. Vandenhove, P. Xu, H. Tao, L. Wang, C. H. Liu, et al., Parallel and memory-efficient distributed edge learning in B5G IoT networks, IEEE J. Sel. Top. Signal Process., 17 (2022), 222–233. https://doi.org/10.1109/jstsp.2022.3223759 doi: 10.1109/jstsp.2022.3223759
|
[35]
|
C. Briggs, Z. Fan, P. Andras, Federated learning with hierarchical clustering of local updates to improve training on non-ⅡD data, in 2020 International Joint Conference on Neural Networks (IJCNN), (2020), 1–9. https://doi.org/10.1109/IJCNN48605.2020.9207469
|
[36]
|
W. Q. Shi, S. Zhou, Z. Niu, Device scheduling with fast convergence for wireless federated learning, in IEEE International Conference on Communications (ICC), (2020), 1–6. https://doi.org/10.1109/icc40277.2020.9149138
|
[37]
|
Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, F. R. Yu, Computation offloading for edge-assisted federated learning, IEEE Trans. Veh. Technol., 70 (2021), 9330–9344. https://doi.org/10.1109/tvt.2021.3098022 doi: 10.1109/tvt.2021.3098022
|
[38]
|
S. Wu, H. Xue, L. Zhang, Q-learning-aided offloading strategy in edge-assisted federated learning over industrial IoT, Electronics, 12 (2023), 1706. https://doi.org/10.3390/electronics12071706 doi: 10.3390/electronics12071706
|
[39]
|
C. Yu, S. Shen, K. Zhang, Z. Hai, Y. Shi, Energy-aware device scheduling for joint federated learning in edge-assisted internet of agriculture things, in IEEE Wireless Communications and Networking Conference (WCNC), (2022), 1140–1145. https://doi.org/10.1109/wcnc51071.2022.9771547
|
[40]
|
X. Yao, T. Huang, R. X. Zhang, R. Li, L. Sun, Federated learning with unbiased gradient aggregation and controllable meta updating, arXiv preprint, (2020), arXiv: 1910.08234. https://doi.org/10.48550/arXiv.1910.08234
|
[41]
|
A. R. Elkordy, A. S. Avestimehr, HeteroSAg: Secure aggregation with heterogeneous quantization in federated learning, IEEE Trans. Commun., 70 (2022), 2372–2386. https://doi.org/10.1109/tcomm.2022.3151126 doi: 10.1109/tcomm.2022.3151126
|
[42]
|
C. H. Hu, Z. Chen, E. G. Larsson, Device scheduling and update aggregation policies for asynchronous federated learning, arXiv preprint, (2021), arXiv: 2107.11415. https://doi.org/10.48550/arXiv.2107.11415
|
[43]
|
L. Wang, W. Wang, B. Li, CMFL: Mitigating communication overhead for federated learning, in IEEE 39th International Conference on Distributed Computing Systems (ICDCS), (2019), 954–964. https://doi.org/10.1109/ICDCS.2019.00099
|
[44]
|
S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, et al., A hybrid approach to privacy-preserving federated learning, in ACM Workshop on Artificial Intelligence and Security, (2019), 1–11. https://doi.org/10.1145/3338501.3357370 doi: 10.1145/3338501.3357370
|
[45]
|
P. Liu, S. Xie, Z. Shen, H. Wang, Enhancing location privacy through P2P network and caching in anonymizer, KSII Trans. Internet Inf. Syst., 16 (2022), 1653–1670. https://doi.org/10.3837/tiis.2022.05.013 doi: 10.3837/tiis.2022.05.013
|
[46]
|
Y. Zhu, C. Liu, Y. Zhang, W. You, Research on 5G core network trust model based on NF interaction behavior, KSII Trans. Internet Inf. Syst., 16 (2022), 3333–3354. http://doi.org/10.3837/tiis.2022.10.007
|
[47]
|
Network simulation version3, 2008. Available from: https://www.nsnam.org/.
|
[48]
|
G. F. Riley, T. R. Henderson, The ns-3 network simulator, in Modeling and Tools for Network Simulation, Springer, (2021), 15–34. https://doi.org/10.1007/978-3-642-12331-3_2
|
[49]
|
Gawłowicz, A. Zubow, ns3-gym: Extending OpenAI gym for networking research, arXiv preprint, (2018), arXiv: 1810.03943. https://doi.org/10.48550/arXiv.1810.03943
|
[50]
|
Network simulation version2, 1997. Available from: https://www.isi.edu/nsnam/ns/.
|
[51]
|
Mininet: Network emulator/simulator, 2010. Available from: http://mininet.org/.
|
[52]
|
Mininet WiFi, 2021. Available from: https://mininet-wifi.github.io/.
|
[53]
|
MATLAB. Available from: https://www.mathworks.com/help/index.html?s_tid = CRUX_lftnav.
|
[54]
|
OMNET++. Available from: https://omnetpp.org/download/models-and-tools.
|
[55]
|
OpenDaylight. Available from: https://www.opendaylight.org.
|
[56]
|
Floodlight. Available from: https://github.com/floodlight/floodlight.
|
[57]
|
Ryu-Controller. Available from: https://ryusdn.org/index.html.
|
[58]
|
OpenStack. Available from: https://www.openstack.org/.
|
[59]
|
Iperf. Available from: https://iperf.fr/.
|
[60]
|
S. Avallone, S. Guadagno, D. Emma, A. Pescapé, G. Ventre, D-ITG distributed internet traffic generator, in First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings, (2004), 316–317. https://doi.org/10.1109/qest.2004.1348045
|
[61]
|
Open network foundation. Available from: https://opennetworking.org/.
|
[62]
|
D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. de Gusmao, et al., Flower: A friendly federated learning research framework, arXiv preprint, (2022), arXiv: 2007.14390. https://doi.org/10.48550/arXiv.2007.14390
|
[63]
|
C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, et al., FedML: A research library and benchmark for federated machine learning, arXiv preprint, (2020), arXiv: 2007.13518. https://doi.org/10.48550/arXiv.2007.13518
|
[64]
|
FederatedAi/FATE. Available from: https://github.com/FederatedAI/FATE.
|
[65]
|
Tensorflow/federated. Available from: https://github.com/tensorflow/federated.
|
[66]
|
A. Ziller, A. Trask, A, Loardo, B. Wagner, J. Nounahon, J. Passerat-Palmach, et al., PySyft: A library for easy federated learning, in Federated Learning Systems, Springer, (2021), 111–139. https://doi.org/10.1007/978-3-030-70604-3_5
|
[67]
|
M. H. Garcia, A. Manoel, D. M. Diaz, F. Mireshghallah, R. Sim, D. Dimitriadis, Flute: A scalable, extensible framework for high-performance federated learning simulations, arXiv preprint, (2022), arXiv: 2203.13789. https://doi.org/10.48550/arXiv.2203.13789
|
[68]
|
E. Ekaireb, X. Yu, K. Ergun, Q. Zhao, K. Lee, M. Huzaifa, et al., ns3-fl: Simulating federated learning with ns-3, (2022), 99–104. https://doi.org/10.1145/3532577.3532591
|
[69]
|
H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni, et al., IBM federated learning: An enterprise framework white paper V0.1, arXiv preprint, (2020), arXiv: 2007.10987. https://doi.org/10.48550/arXiv.2007.10987
|
[70]
|
G. Ulm, E. Gustavsson, M. Jirstrand, Functional federated learning in Erlang (ffl-erl), in Functional and Constraint Logic Programming, Springer, (2018), 162–178. https://doi.org/10.1007/978-3-030-16202-3_10
|
[71]
|
M. Daole, A. Schiavo, J. Bárcena, P. Ducange, F. Marcelloni, A. Renda, OpenFL-XAI: Federated learning of explainable artificial intelligence models in Python, SoftwareX, 23 (2023), 101505. https://doi.org/10.1016/j.softx.2023.101505 doi: 10.1016/j.softx.2023.101505
|
[72]
|
B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, L. van der Maaten, CrypTen: Secure multi-party computation meets machine learning, arXiv preprint, (2022), arXiv: 2109.00984. https://doi.org/10.48550/arXiv.2109.00984
|
[73]
|
Y. Xie, Z. Wang, D. Chen, D. Gao, L. Yao, W. Kuang, et al., FederatedScope: A flexible federated learning platform for heterogeneity, in Proceedings of the VLDB Endowment, (2023), 1059–1072. https://doi.org/10.14778/3579075.3579081 doi: 10.14778/3579075.3579081
|
[74]
|
H. R. Roth, Y. Chen, Y. Wen, I. Yang, Z. Xu, Y. Hsieh, et al., Nvidia flare: Federated learning from simulation to real-world, arXiv preprint, (2023), arXiv: 2210.13291. https://doi.org/10.48550/arXiv.2210.13291
|
[75]
|
W. Zhuang, X. Gan, Y. Wen, S. Zhang, EasyFL: A low-code federated learning platform for dummies, IEEE Internet of Things J., 9 (2022), 13740–13754. https://doi.org/10.1109/jiot.2022.3143842 doi: 10.1109/jiot.2022.3143842
|
[76]
|
S. Caldas, S. Duddu, P. Wu, T. Li, J. Konecny, H. B. McMahan, et al., LEAF: A benchmark for federated settings, arXiv preprint, (2019), arXiv: 1812.01097. https://doi.org/10.48550/arXiv.1812.01097
|
[77]
|
PaddlePaddle/PaddleFL. Available from: https://github.com/PaddlePaddle/PaddleFL.
|
[78]
|
L. Sani, P. Porto, A. lacob, W. Zhao, X. Qiu, Y. Gao, et al., IBM federated learning: An enterprise framework white paper V0.1, arXiv preprint, (2020), arXiv: 2007.10987v1. https://doi.org/10.48550/arXiv.2007.10987
|
[79]
|
P. Tam, S. Math, C. Nam, S. Kim, Adaptive resource optimized edge federated learning in real-time image sensing classifications, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14 (2021), 10929–10940. https://doi.org/ 10.1109/JSTARS.2021.3120724 doi: 10.1109/JSTARS.2021.3120724
|
[80]
|
V. Balasubramanian, M. Aloqaily, M. Reisslein, A. Scaglione, Intelligent resource management at the edge for ubiquitous IoT: An SDN-based federated learning approach, IEEE Network, 35 (2021), 114–121. https://doi.org/10.1109/MNET.011.2100121 doi: 10.1109/MNET.011.2100121
|
[81]
|
R. Uddin, S. Kumar, SDN-based federated learning approach for satellite-iot framework to enhance data security and privacy in space communication, in 2022 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), (2022), 71–76. https://doi.org/10.1109/WiSEE49342.2022.9926943
|
[82]
|
V. Balasubramanian, M. Aloqaily, M. Reisslein, FedCo: A federated learning controller for content management in multi-party edge systems, in 2021 International Conference on Computer Communications and Networks (ICCCN), (2021), 1–9. https://doi.org/10.1109/ICCCN52240.2021.9522153
|
[83]
|
A. R. Mahmod, G. Caliciuri, P. Pace, A. Iera, Improving the quality of federated learning processes via software defined networking, in International Workshop on Networked AI Systems (NetAISys'23), (2023), 1–6. https://doi.org/10.1145/3597062.3597281
|
[84]
|
G. Li, J. Wu, S. Li, W. Yang, C. Li, Multi-tentacle federated learning over software-defined industrial internet of things against adaptive poisoning attacks, IEEE Trans. Ind. Inf., 19 (2022), 1260–1269. https://doi.org/10.1109/tii.2022.3173996 doi: 10.1109/tii.2022.3173996
|
[85]
|
L. Chen, H. Tang, Y. Zhao, W. You, K. Wang, A privacy-preserving and energy-efficient offloading algorithm based on lyapunov optimization, KSII Trans. Internet Inf. Syst., 16 (2022), 2490–2506. https://doi.org/10.3837/tiis.2022.08.002 doi: 10.3837/tiis.2022.08.002
|
[86]
|
K. M. M. Fathima, M. Suganthi, N. Santhiyakumari, Enhancing the quality of service by GBSO splay tree routing framework in wireless sensor network, KSII Trans. Internet Inf. Syst., 17 (2023), 2188–2208. https://doi.org/10.3837/tiis.2023.08.013 doi: 10.3837/tiis.2023.08.013
|
[87]
|
P. Tam, S. Math, S. Kim, Intelligent massive traffic handling scheme in 5G bottleneck backhaul networks, KSII Trans. Internet Inf. Syst., 15 (2021), 874–890. https://doi.org/10.3837/tiis.2021.03.004 doi: 10.3837/tiis.2021.03.004
|
[88]
|
X. Huang, Z. Chen, Q. Chen, J. Zhang, Federated learning based QoS-aware caching decisions in fog-enabled internet of things networks, Digital Commun. Networks, 9 (2023), 580–589. https://doi.org/10.1016/j.dcan.2022.04.022 doi: 10.1016/j.dcan.2022.04.022
|
[89]
|
P. Tam, S. Math, S. Kim, Optimized multi-service tasks offloading for federated learning in edge virtualization, IEEE Trans. Network Sci. Eng., 9 (2022), 4363–4378. https://doi.org/10.1109/TNSE.2022.3200057 doi: 10.1109/TNSE.2022.3200057
|
[90]
|
J. Xu, J. Lin, Y. Li, Z. Xu, MultiFed: A fast converging federated learning framework for services QoS prediction via cloud–edge collaboration mechanism, Knowledge-Based Syst., 268 (2023), 110463. https://doi.org/10.1016/j.knosys.2023.110463 doi: 10.1016/j.knosys.2023.110463
|
[91]
|
V. Gugueoth, S. Safavat, S. Shetty, Security of internet of things (IoT) using federated learning and deep learning-recent advancements, issues and prospects, ICT Express, 9 (2023), 941–960. https://doi.org/10.1016/j.icte.2023.03.006 doi: 10.1016/j.icte.2023.03.006
|
[92]
|
S. Zarandi, H. Tabassum, Federated double deep Q-learning for joint delay and energy minimization in IoT networks, in IEEE International Conference on Communications Workshops (ICC Workshops), (2021), 1–6. https://doi.org/10.1109/iccworkshops50388.2021.9473821
|
[93]
|
Y. Ren, A. Guo, C. Song, Multi-slice joint task offloading and resource allocation scheme for massive mimo enabled network, KSII Trans. Internet Inf. Syst., 17 (2023), 794–815. https://doi.org/10.3837/tiis.2023.03.007 doi: 10.3837/tiis.2023.03.007
|
[94]
|
Y. Xu, H. Zhou, J. Chen, T. Ma, S. Shen, Cybertwin assisted wireless asynchronous federated learning mechanism for edge computing, in IEEE Global Communications Conference (GLOBECOM), (2021), 1–6. https://doi.org/10.1109/globecom46510.2021.9685076
|
[95]
|
A. Alferaidi, K. Yadav, Y. Alharbi, W. Viriyasitavat, S. Kautish, G. Dhiman, Federated learning algorithms to optimize the client and cost selections, Math. Probl. Eng., 2022 (2022), 1–9. https://doi.org/10.1155/2022/8514562 doi: 10.1155/2022/8514562
|
[96]
|
S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, L. Fan, Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks, Phys. Commun., 47 (2021), 101381. https://doi.org/10.1016/j.phycom.2021.101381 doi: 10.1016/j.phycom.2021.101381
|
[97]
|
D. J. Han, M. Choi, J. Park, J. Moon, FedMes: Speeding up federated learning with multiple edge servers, IEEE J. Sel. Areas Commun., 39 (2021), 3870–3885. https://doi.org/10.1109/JSAC.2021.3118422 doi: 10.1109/JSAC.2021.3118422
|
[98]
|
W. Liu, L. Chen, Y. Chen, W. Zhang, Accelerating federated learning via momentum gradient descent, IEEE J. Sel. Areas Commun., 31 (2020), 1754–1766. https://doi.org/10.1109/TPDS.2020.2975189 doi: 10.1109/TPDS.2020.2975189
|
[99]
|
R. Chen, D. Shi, X. Qin, D. Liu, M. Pan, S. Cui, Service delay minimization for federated learning over mobile devices, IEEE J. Sel. Areas Commun., 41 (2023), 990–1006. https://doi.org/10.1109/JSAC.2023.3242711 doi: 10.1109/JSAC.2023.3242711
|
[100]
|
S. Caldas, J. Konečny, H. B. McMahan, A. Talwalkar, Expanding the reach of federated learning by reducing client resource requirements, arXiv preprint, (2019), arXiv: 1812.07210. https://doi.org/10.48550/arXiv.1812.07210
|
[101]
|
M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, S. Cui, A joint learning and communications framework for federated learning over wireless networks, IEEE Trans. Wireless Commun., 20 (2021), 269–283. https://doi.org/10.1109/TWC.2020.3024629 doi: 10.1109/TWC.2020.3024629
|
[102]
|
C. Ma, Distributed optimization with arbitrary local solvers, Optim. Methods Software, 32 (2017), 813–848. https://doi.org/10.1080/10556788.2016.1278445 doi: 10.1080/10556788.2016.1278445
|
[103]
|
X. Yao, C. Huang, L. Sun, Two-stream federated learning: Reduce the communication costs, in 2018 IEEE Visual Communications and Image Processing (VCIP), (2018), 1–4. https://doi.org/10.1109/VCIP.2018.8698609
|
[104]
|
B. Luo, X. Li, S. Wang, J. Huang, L. Tassiulas, Cost-effective federated learning in mobile edge networks, IEEE J. Sel. Areas Commun., 39 (2021), 3606–3621. https://doi.org/10.1109/JSAC.2021.3118436 doi: 10.1109/JSAC.2021.3118436
|
[105]
|
J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, D. Bacon, Federated learning: Strategies for improving communication efficiency, arXiv preprint, (2019), arXiv: 1610.05492. https://doi.org/10.48550/arXiv.1610.05492
|
[106]
|
J. Xu, H. Wang, L. Chen, Bandwidth allocation for multiple federated learning services in wireless edge networks, IEEE Trans. Wireless Commun., 21 (2022), 2534–2546. https://doi.org/10.1109/TWC.2021.3113346 doi: 10.1109/TWC.2021.3113346
|
[107]
|
A. K. Abasi, M. Aloqaily, M. Guizani, Grey wolf optimizer for reducing communication cost of federated learning, in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, (2022), 1049–1054. https://doi.org/10.1109/GLOBECOM48099.2022.10001681
|
[108]
|
D. Gurung, S. R. Pokhrel, G. Li, Quantum federated learning: Analysis, design and implementation challenges, arXiv preprint, (2023), arXiv: 2306.15708. https://doi.org/10.48550/arXiv.2306.15708
|
[109]
|
N. Bouacida, P. Mohapatra, Vulnerabilities in federated learning, IEEE Access, 9 (2021), 63229–63249. https://doi.org/10.1109/ACCESS.2021.3075203 doi: 10.1109/ACCESS.2021.3075203
|
[110]
|
F. K. Dankar, K. E. Emam, Practicing differential privacy in health care: A review, IEEE Intell. Inf. Bull., 6 (2013), 35–67. https://dl.acm.org/doi/10.5555/2612156.2612159
|
[111]
|
V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey on security and privacy of federated learning, Future Gener. Comput. Syst., 115 (2020), 619–640. https://doi.org/10.1016/j.future.2020.10.007 doi: 10.1016/j.future.2020.10.007
|