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Abstract: Preventive identification of mechanical parts failures has always played a crucial role in 
machine maintenance. Over time, as the processing cycles are repeated, the machinery in the 
production system is subject to wear with a consequent loss of technical efficiency compared to 
optimal conditions. These conditions can, in some cases, lead to the breakage of the elements with 
consequent stoppage of the production process pending the replacement of the element. This situation 
entails a large loss of turnover on the part of the company. For this reason, it is crucial to be able to 
predict failures in advance to try to replace the element before its wear can cause a reduction in machine 
performance. Several systems have recently been developed for the preventive faults detection that use 
a combination of low-cost sensors and algorithms based on machine learning. In this work the different 
methodologies for the identification of the most common mechanical failures are examined and the 
most widely applied algorithms based on machine learning are analyzed: Support Vector Machine 
(SVM) solutions, Artificial Neural Network (ANN) algorithms, Convolutional Neural Network 
(CNN) model, Recurrent Neural Network (RNN) applications, and Deep Generative Systems. 
These topics have been described in detail and the works most appreciated by the scientific 
community have been reviewed to highlight the strengths in identifying faults and to outline the 
directions for future challenges. 
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1. Introduction  

Maintenance and related activities have always played a role of primary importance within a 
production context. Over time, as the processing cycles are repeated, the machinery in the 
production system is subject to wear with a consequent loss of technical efficiency compared to 
optimal conditions [1,2]. 

Maintenance, therefore, is of crucial importance in the industrial context, both to guarantee the 
continuity of processes and to ensure the safety of operators. This means ensuring maximum reliability 
and availability of the systems, supporting the minimum cost, and planning the necessary activities of 
both a technical and organizational nature, through the practical execution of the interventions. A 
maintenance policy is therefore essential for any production plant and, if implemented appropriately, 
can lead to the achievement of various objectives [3,4].  

Among these, it should be remembered that effective maintenance gives us an increase in plant 
productivity through the drastic reduction of machine downtime. Furthermore, a minimization of the 
costs related to the maintenance of the plant is achieved through an effective identification of the s 
spare parts, determining the correct management of the warehouse. Finally, as already mentioned, 
effective maintenance makes us safe from any accidents at work, guaranteeing the necessary safety of 
the operators working on the production line [5].  

Recently, industrial automation processes have seen an ever-increasing use of IIoT (Industrial 
Internet of Things) technologies [6]. With this acronym (IIoT) we refer to the connection between 
smart objects and smart grids. Smart objects can perform a series of activities - identification, 
localization, status diagnosis, data acquisition, processing, implementation, and communication - 
while smart grids are open, standard, and multifunctional [7]. This new way of conceiving the 
industrial process is part of the so-called Industry 4.0 according to which digital technologies such as 
IoT (Internet of Things) devices, but also sensors, cloud, machine learning, collaborative robotics, 3D 
printing, can increase the efficiency and the value of production by stimulating interconnection and 
cooperation between all resources [8]. Through their connection to the plants and instruments present 
in the supply chain, these technologies give the opportunity to process a huge amount of data in real 
time, contributing to the process’s optimization, reducing waste of resources and errors, increasing 
business competitiveness [9]. The opportunities provided by these tools have led to the renewal and 
evolution of the industrial maintenance approach in many companies, which has taken on an 
increasingly complex and central role in the production context. In this way, we witnessed the 
transition from a preventive maintenance policy to a predictive one. The preventive approach is often 
disconnected from a temporal point of view to the actual conditions of the production plants, as it is 
unable to provide efficient management of the interventions, lacking a historical memory that is the 
basis of the decisions. Conversely, with a predictive approach, supported by the necessary sensors and 
data analysis methodologies, it can have a lot of constantly updated information, which acts as a 
support to optimize the times and resources [10]. 

In this innovative context that has made available a large amount of data, the need to adopt data 
analysis methodologies that allow us to extract knowledge has become evident. When we deal with 
huge volumes of heterogeneous data, it is not easy to identify characteristics that can make the 
phenomenon we are observing more explanatory, at least it is not so for the human eye. In this regard, 
modern technologies based on artificial intelligence come to the rescue, which use algorithms based 
on machine learning to extract knowledge from data [11]. The information underlying the knowledge 



11455 

Mathematical Biosciences and Engineering  Volume 19, Issue 11, 11453–11490. 

is extracted from the data which are explored and analyzed with techniques called Data Mining in 
search of recurring patterns or to discover hidden causal associations or relationships [12]. Machine 
learning overturns the traditional paradigm that draws an output from the input data and uses an 
algorithm that explains how to use it. In new systems, however, knowledge is an inductive process: 
the input is the data and, possibly, a first example of the expected output, so it will be the machine that 
will learn the algorithm to follow to obtain the same result [13]. 

For the extraction of patterns, it is necessary to follow a process divided into various phases, 
called the knowledge discovery process, which initially starts with the selection of the data to be 
analyzed from the various available sources, such as data taken from databases [14]. Subsequently, a 
phase of fundamental importance for the final accuracy of the extracted patterns is passed, the 
preprocessing phase. In fact, this phase allows to improve the quality of the data, for example, by 
resolving eventually inconsistencies, by removing any anomalous data not useful for the analysis, so 
called because they differ from the rest of the data within the dataset, and by solving any conflicts 
present between the data after the integration of the different sources. This pre-processing phase is 
followed by a transformation phase that allows us to prepare the data for the next phase of Data Mining, 
thanks to which, as previously mentioned, it is possible to extract the patterns from the data by applying 
specific algorithms. Finally, after a phase of interpretation and evaluation of the extracted patterns, we 
move on to the final phase in which the final data of the analyzes are presented [15]. 

In this work we will analyze and describe the most common methods based on Machine Learning 
for machine fault diagnosis. The paper is structured as follows: Section 2 describes in detail the most 
common failures affecting machines, analyzing their characteristics and peculiarities that make 
mathematical modeling extremely complex. Section 3 analyzes the most popular machine learning-
based fault diagnosis methods. Finally, Section 4 summarizes the results obtained in applying these 
methods to real cases, highlighting their merits, and listing their limits. 

2. Maintenance and fault diagnostics  

2.1. Types of maintenance  

The purpose of a maintenance process is to preserve and keep industrial machinery in a state of 
full efficiency. But this definition must not diminish the role of an effective maintenance activity which 
cannot be understood as a simple corrective action. Maintenance is not just the activity that is carried 
out in the event of a fault that leads to the blocking of production in the event of a fault [16]. 

There are several approaches that can be adopted in the management of a maintenance process 
(Figure 1): Corrective maintenance is generated in response to an event whose effect is to prevent, at 
different levels of severity, the continuation of an activity, or the interruption of a service, or the 
degradation of the service itself which therefore can no longer be provided with an adequate level of 
safety or efficiency [17]. 

To prevent corrective maintenance activities, other maintenance methods can be adopted, aimed 
at a programming-based system, which tries to avoid the occurrence of the fault, foreseeing and 
correcting it before it occurs. These scheduled interventions are the basis of preventive maintenance, 
which offers the advantage of limiting the total time of the intervention which results in a system 
block [18]. Through experience and the improvement of maintenance activities, a more efficient way 
to carry out maintenance has been defined. This is how condition-based maintenance is defined, which 
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represents an advance over preventative maintenance [19]. 
This improvement is found in the useful life of the component: The concept underlying condition-

based maintenance is precisely that of being able to fully exploit the potential of the component [20]. 
To adopt this methodology, it is necessary to identify warning symptoms. 

 

Figure 1. Type of maintenance: In this scheme the different maintenance strategies are 
classified, distinguishing between those that are planned and those that are instead linked 
to events. 

The warning symptoms are signs that usually the machine or system communicates before the 
actual failure occurs and can be visual, audible, or even olfactory. These signals are recognizable 
because they are not part of the normal activity of the machinery, they are completely extraneous 
signals, and which often cause alarm. The detection of an anomaly condition occurs when some 
physical parameter of the machine is not compliant with normal operation. Typical examples are the 
increase in noise, vibrations, or temperature. It can be implemented either by man, for example by 
maintenance technicians with appropriate inspections or by expert operators who notice changes 
during use, or by means of special sensors, which continuously monitor the system parameters [21]. 

Predictive maintenance is a further specialization of condition-based maintenance. It is performed 
following a prediction derived from repeated analysis or from known characteristics and from the 
display of significant parameters relating to the degradation of the component [22]. According to this 
approach, the data relating to the functioning and conditions of the various components are recorded 
and saved in a history, to be then used to build a trend of the overall behavior. The information thus 
obtained is exploited to predict the evolution of the degradation level, and then plan a related 
maintenance activity [23]. The main advantage with respect to condition maintenance lies precisely in 
the part of analyzing the trend and building an evolution model of the state based on the experience 
deduced from the past analysis, which allows to be able to estimate the residual useful lifetime of the 
component after having detected a deviation from normal operation, when it is still in its first phase. 
An effective predictive system greatly improves and optimizes the availability of machinery and the 
time spent in production, reducing the number of maintenance interventions and their cost [24]. 
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Furthermore, it also has positive effects on the quality of the product. By connecting sensors to a 
machine, we can detect its operating parameters, such as the measurement of vibrations or the 
operating temperature, and thus profile its activity in optimal conditions. A variation in these 
parameters will indicate the increase in the degradation of the machinery components: Using 
appropriate mathematical models it will be possible to predict the time of failure. Often, however, these 
variations are made explicit to human sensory capacities too late, when the damage has already been 
done, making the ability to predict the failure useless. In this sense, the algorithms based on Machine 
Learning can help us which, on the other hand, are able to identify anomalies long before they become 
perceptible to humans [25]. 

2.2. Fault diagnostics  

A physical system, in its life cycle, can be subject to failures or malfunctions that can compromise 
its normal operation. It is therefore necessary to introduce a fault diagnosis system within a plant 
capable of preventing critical interruptions: This is called a fault diagnosis system and can identify the 
possible presence of a malfunction within the monitored system [26]. The search for the fault is one of 
the most important and qualifying maintenance intervention phases and it is necessary to act in a 
systematic and deterministic way. To carry out a complete search for the fault, it is necessary to analyze 
all the possible causes that may have determined it. 

Failure is the condition of non-preservation of the desired state of operation, or the cessation of 
an entity’s ability to perform the required function. It is deduced that the failure is an event, a passage 
from one state of good operation to another that does not respect the expected performance: The failure 
is a state, a stationary situation, in which the entity is unable to operate. A failure can occur due to a 
breakage of a component, involving the hardware structure of the object, or due to a software error, or 
a human error. A system can always have a functional defect when, while working regularly, it is called 
to do something for which it was not designed or is exposed to transitory conditions that cause the 
momentary failure [27].  

Depending on the technology involved in the event, the failures of a machine can be divided into 
mechanical, electrical, and IT. Mechanical failures generally involve breaking or permanent 
deformation of mechanical parts. The causes of mechanical failures can be many, among the most 
frequent are the following: corrosion, material fatigue, thermal shock, external mechanical loads higher 
than those foreseen by the designers. Electrical failures generally involve insulation failure and can be 
caused by overcurrent, overvoltage, unsuitable environmental conditions. Finally, in the computer 
electronic field, failures can concern both hardware and software during the execution of a program. 
Furthermore, faults can be permanent if once they appear they persist over time, not permanent if they 
occur in an unstable and repeated manner over time, and transients if they appear only in conjunction 
with particular and temporary environmental conditions. A fundamental distinction concerns the nature 
of the failure: In systematic failures there is a correlation of a deterministic nature to a certain cause. 
In other words, a precise origin can be identified for systematic failures. A failure of this type is usually 
caused by human errors in the design, production, installation, or from incorrect use. This type of error 
can only be eliminated by changing the design or production process or conditions of use. Non-
systematic failures, on the other hand, also occur if a component or system has been correctly designed, 
built, and is correctly used in accordance with the manufacturer’s specifications [28]. To search for the 
fault, we start with the identification of the symptom of malfunction and continue with the search for 
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the cause that generated it (Figure 2). 

 

Figure 2. Block diagram of a typical fault detection and isolation procedure. 

This occurs with a process of progressive elimination of the possible causes, until the one that 
caused the problem is identified. This way of proceeding requires that the maintenance technician 
know what the possible failures of the equipment are and therefore can verify the relationship between 
the failure and the cause that produced it. Upstream of the process there is therefore a specific 
knowledge of the device that requires the observation of its operation for an adequate time through the 
measurement procedures of the characteristic parameters [29]. 

3. Machine Learning-based methods for machine fault diagnosis 

Classical methods based on an approach that uses models or prior knowledge of the phenomenon 
are suitable for general supervision of processes. However, the situation becomes more complex if the 
process changes rapidly, as in the case of dynamic systems.  

Also, in the presence of closed loops, changes in the process are covered by control actions and 
cannot be detected by the output signals if the manipulated process inputs remain in the normal range. 
Therefore, feedback systems hinder the early detection of process errors. Advanced methods of 
supervision and fault diagnosis are therefore required, which ensure, for example, the timely detection 
of small faults with sudden temporal behavior, as well as the diagnosis of faults in the actuator, process 
components or sensors [30]. 

The methods based on Machine Learning provide for the identification and selection of functions 
and the classification of faults, allow a systematic approach to Fault Diagnosis, and can be used in 
automated and unattended environments (Figure 3). These types of solutions are increasingly used in 
many industrial sectors to maximize equipment uptime and minimize both maintenance and operating 
costs. But the types of algorithms available are many and varied, in the following subsections we will 
introduce the technologies most widely used by the scientific community to tackle different types 
of applications [31]. 

3.1. Support Vector Machine (SVM) solutions 

SVMs solve the learning problem starting from a training set of experimental data whose 
characteristic parameters are known. The goal will therefore be to build a system that learns from 
already correctly classified data and that thanks to them is able to build a classification function capable 
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of cataloging data even outside this set [32]. The main characteristic of SVMs is that they allow to 
reach high performances in practical applications based on simple ideas: they are rather simple to 
analyze mathematically but they allow to analyze complex models. The algorithm that allows to train 
them can be traced back to a quadratic programming problem with linear constraints: It finds 
application in very different fields, among which the most common are the recognition of patterns, the 
cataloging of texts and the identification of faces in images [33]. 

 

Figure 3. Scheme of a typical fault diagnosis process. 

Classification, understood as the assignment of a pattern to a specific class already known a priori, 
is a topic of extraordinary importance for solving real-world problems. It can be used in very different 
fields, even for problems that at first sight might seem of another kind. The first case to be analyzed is 
the one in which the training set samples are linearly separable [34]. The method to be used to solve 
the problem will be to determine a hyperplane that separates the data classes, so that the points can be 
divided between two half-spaces. In most practical cases it must also be considered that there may be 
errors in the experimental data. If there are points that result in the wrong half plane, in fact, an exact 
linear classification is almost impossible and approximation techniques are needed that try to minimize 
the number of errors. To use the classification through hyperplanes, even for data that would need to 
separate non-linear functions, we can apply the technique of the feature spaces (Figure 4). This method, 
which is the basis of the SVM theory, consists in mapping the initial data in a space of higher dimension: 
The data is mapped in a space in which it becomes linearly separable and in which it will be possible 
to find a hyperplane that separates them [35]. To do this, the input data is multiplied scalarly between 
them, and to make this calculation simple, which in large spaces becomes very complicated, a function 
called kernel is used that directly returns the scalar product of the images. To make it possible to 
generalize the problem, even in the non-linear case, in which the kernel functions will be used, a 
Lagrangian formulation is required [36], thanks to which the data will appear only in the form of a 
scalar product. 
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Widodo et al. [37] used SVMs for monitoring and diagnosing machine failures. The authors made 
a comparison between this technology and those based on other algorithms that exploit Machine 
Learning, showing that SVMs return high precision on the generalization of the problem. Fei et al. [38] 
used SVMs for power transformer fault diagnosis. The authors used information on the content of the 
characteristic gases of the transformer, then identified the optimal parameters of the classifier using a 
genetic algorithm, and finally used SVMs to solve the problem with small samplings, non-linearities 
and large sizes. 

 

Figure 4. Support Vector Machine (SVM) based classification. 

Wu et al. [39] applied SVMs for bearing failure diagnosis. The authors first subjected the vibration 
signal to a feature extraction procedure based on the multiscale permutation entropy (MPE) [40], and 
then proceeded to classify the conditions for the extracted characteristics. Tang et al. [41] diagnosed 
failures of a wind turbine transmission system using SVMs. The authors used non-stationary vibration 
signals from wind turbine transmission systems as inputs, extracting essential features. This high-
dimensional information was subsequently reduced by applying a manifold learning algorithm. This 
information was finally sent to a Shannon wavelet SVM classifier. 

Wang et al. [42] used semi-supervised mapping to diagnose rolling bearing failures in wind 
turbines. The authors first extracted the characteristics from the multi-scale rolling bearing vibration 
signals and subsequently, the low-dimensional characteristics were sent as input to the SVM-based 
classifier for pattern recognition. Yao et al. [43] exploited SVMs for fault diagnosis for electric vehicles 
powered by lithium batteries. To ensure the robustness of the method, the authors adopted an algorithm 
based on a grid search method to optimize the kernel function parameter and the penalty factor. Zhao 
et al. [44] applied a robust vector machine for least squares support for aircraft engine failure diagnosis. 
The implemented algorithms have been tested on both regression and classification problems. 

Machine Learning-based algorithms make extensive use of optimization methods to search for 
the optimal solution. A widely used optimization procedure is the one called particle swarm 
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optimization (PSO) [45]. At each iteration, the algorithm identifies a new candidate for the best in the 
search space, based on a specific quality measure called fitness. Van et al. [46] used SVMs in 
combination with a particle swarm optimization and a least squares procedure. These algorithms have 
been implemented for the elaboration of a classifier for the diagnosis of the bearing failures of a 
rotating machine. A similar procedure was implemented by Li et al. [47] for diagnosing machinery 
failures in high voltage circuit breakers. Again Fan et al. [48] exploited particle swarm optimization in 
combination with SVMs for rolling bearing failure detection. 

Mirakhorli [49] developed an SVM-based classifier for diagnosing faults in a distillation column. 
Gao et al. [50] used SVMs to diagnose the mechanical failures of an on-load tap-changer. Huang 
et al. [51] used SVMs with a modified gray wolf optimization for transformer fault diagnosis. The 
optimization is performed on the penalty factor and on the kernel parameter. Zhang et al. [52] used a 
combination of vector support machine (SVM) and genetic algorithms (GA) for transformer fault 
diagnosis. The methodology also makes it possible to evaluate the conditions of the transformer oil 
bath insulation, providing an accurate tool for predicting the operating conditions. Liu et al. [53] 
applied SVMs for the prediction and diagnosis of energy consumption of public buildings in China. 11 
input parameters were selected, including historical data on energy consumption, climatic factors, and 
time cycle factors, monitoring the energy consumption to produce air conditioning in the city of Wuhan, 
in the period from June to September. Ibrahim et al. [54] used SVM-based algorithms to diagnose 
failures of satellite subsystems using related telemetry parameters. Telemetry data was collected by the 
Egyptsat-1 satellite, launched into Earth orbit in April 2007 and which lost communication with the 
ground station in 2010. Zhao et al. [55] used SVMs for turboshaft engine failure detection. The method 
assigns a weight to each sample through a specific weight calculation method to improve the 
robustness of the algorithm. 

Guo et al. [56] exploited SVMs for monitoring and diagnostics of an industrial chemical process. 
The authors transformed a multi-class problem into multiple binary classification problems, thus 
training N models, each with the task of distinguishing one class from all the others and obtaining a 
correct diagnosis overall. Poyhonen et al. [57] used SVMs to solve an induction motor rotor failure 
diagnosis problem. The authors used vibration signals collected from real motors under different health 
conditions, with a vibration sampling rate of 40 KHz. Three different feature extraction techniques are 
then proposed, which are used as input for the SVM model. das Chagas Moura et al. [58] used SVMs 
to solve a regression problem for predicting the remaining life of turbochargers of diesel engines and 
the remaining travel distance of automobile engines. Chen et al. [59] exploited SVMs for detecting 
equipment failures in a thermal power plant. This work integrates a size reduction scheme to analyze 
turbine failures in thermal power plants. He et al. [60] used SVMs to identify weld quality using 
machine current, voltage, and speed data as inputs: The authors used SVM models in sequence. 

Yan et al. [61] used a semi-supervised SVM-based algorithm for ventilation air conditioning 
(HVAC) failure detection that only captures a few defective training samples. Yin et al. [62] verified 
the performance of an SVM-based model for process monitoring in complicated industrial processes. 
The authors showed that these algorithms are particularly advantageous in generalization performance 
and in the case of small input datasets. 

Islam et al. [63] collected acoustic emission signals for the diagnosis of bearing defects by 
adopting a model based on SVMs. First, they perform an extraction of the high-dimensional fault 
characteristics to train the classifier, which are composed of the statistical descriptors in the frequency 
domain and the complex analysis of the envelope spectrum. Monteiro et al. [64] developed an SVM-
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based decision model for fault diagnosis on automotive vehicle transmission gearboxes. Yang et al. [65] 
applied an SVM-based algorithm for bearing failure diagnosis. To overcome the limits to the model 
recognition capacity due to a not very good function of the kernel and its parameters, the authors have 
introduced an Ant Lion optimization [66]. You et al. [67] have applied SVMs for the diagnosis of 
failures of rotating machines. The vibration signal from the machinery functioning was subjected to a 
characteristic extraction procedure, returning the time spectrum of the dyadic wavelet energy and the 
power spectrum of the coefficients of the maximum wavelet energy level. Kumar et al. [68] used SVMs 
for automatic defect detection from the centrifugal pump’s vibration signal. The raw signal measured 
on the pump is subjected to a characteristic extraction procedure in the time-frequency domain, then a 
genetic algorithm is applied to identify the optimal parameters of the SVM-based model. Chen et al. [69] 
fault-diagnosed the Loader Gearbox using SVM-based algorithms. The authors measured the emitted 
noise using sound intensity probes and extracted the characteristics through the independent 
component analysis (ICA) technique [70]. Finally, they sent the correlation coefficient between the 
independent components and the source data as input to the classifier. Wenyi et al. [71] developed a 
wind turbine failure diagnosis model using SVMs. Vibration signals from the rotating parts of wind 
turbines were used as inputs, the diagonal spectrum was extracted from them. Djeziri et al. [72] has 
developed an automatic system for identifying the presence of a pollutant in a gas mixture using an 
intelligent sensor based on temporal based SVM.  

3.2. Artificial Neural Network (ANN) algorithms 

Artificial Neural Networks (ANNs) are mathematical models that are used to solve engineering 
problems of Artificial Intelligence. They are mathematical-informatic computation models whose 
functioning is like that of biological neural networks, in fact, they are models made up of 
interconnections of information. ANNs are inspired by the functioning of the animal brain, defining 
the central body as a mathematical model, called a node, characterized by an activation function, a 
threshold value and possibly a bias. 

Each node receives as input a set of signals from the previous units: These signals reach the 
neuron after being weighed, their combination, after having algebraically summed the bias if present, 
becomes the variable of the activation function (𝑓), determining the activation, or non-activation, of 
the neuron [73]. 

A neural network is therefore a set of nodes arranged in layers connected to each other by weights. 
The first layer is called the input layer, the last is the output layer, while the intermediate ones are 
defined as hidden layers, and are not accessible from the outside as all the characteristics of the 
complete network are stored in the matrices that define the weights [74]. The type of network 
determines the type of connections that are present between the nodes of different layers and between 
those of the same layer. The typical architecture of an ANN provides a feedforward configuration, in 
which each node is connected to those of the previous layer, from which it receives inputs, and to those 
of the next layer, to which it provides output [75] (Figure 5). 

The choice of the activation function determines the substantial difference with the equivalent of 
the biological neuron: In the latter the sum of the incoming impulses is transmitted directly to the axons 
if the threshold is exceeded, essentially behaving like a linear regression model, approximating the 
distribution of data with a straight line [76]. The use of a non-linear function allows, however, to have 
a better representation of the signals, without considering that sometimes a linear regression is not 
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usable. The most used activation functions are step, sigmoid, rectified linear unit (ReLU), hyperbolic, 
and logistic [77]. 

 

Figure 5. Artificial Neural Network architecture. 

For neural networks, both training and error evaluation are fundamental: For this reason, the data 
are divided into training sets, validation sets and possibly a testing set. The first group is used for neural 
network training and contains the correct inputs and outputs, as supervised training is required: It 
usually consists of about 70–80% of the total data [78]. The second is used for validation, that is, to 
evaluate the accuracy of the neural network by calculating the prediction error that is chosen to use. 
The third allows you to test the network, so it consists in the real use of the designed network [79]. 

The training phase is crucial in the development of the model as it is in this phase that the system 
learns the characteristics of the system to be able to simulate them later. This ability is acquired by 
updating the connection weights, with an optimization procedure [80]. At each iteration, the system 
compares the output obtained with the target provided in the training set and evaluates the error made. 
Based on this value, it proceeds to update the weights until the iterative procedure converges [81]. 

Feedforward networks are those with the simplest architecture, being composed of an input layer, 
one or more hidden layers and an output layer. Each neuron has its input parameters from the previous 
layer and no cross connections are possible between nodes of the same layer or cycles in which the 
output is sent to previous layers. The information flow, therefore, proceeds in only one direction and 
the output of each cycle is determined only by the current input. Being a very simple type of network, 
it is by far the most used [82]. 

There are many scientific works that have adopted the ANNs for the elaboration of models for 
the diagnosis and detection of faults. Zhang et al. [83] investigated the problem of faults diagnosing in 
oil-filled power transformers. The model detects the gas dissolved in the oil and identifies the possible 
failure. Hoskins et al. [84] applied ANNs to identify failures in complex chemical plants. Ali et al. [85] 
used vibrational signals to diagnose rolling bearing failures using an ANN-based model. The feature 
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extraction was performed using an algorithm based on the energetic entropy of decomposition in an 
empirical mode. Sorsa et al. [86] detected the acoustic signals of a continuous stirred tank reactor with 
heat exchanger and developed an ANN-based fault classification model. Saravanan et al. [87] used 
ANNs for fault diagnosis of a mechanical gearbox. The discrete wavelet transform (DWT) is evaluated 
for the extraction of the characteristics demonstrating its validity in representing all possible types of 
transients in the vibration signals generated by faults in a reducer. Chine et al. [88] have adopted ANNs 
for the diagnosis of faults for photovoltaic systems. The authors evaluated several attributes through 
simulation models and compared these values with those measured in the field. They then labeled the 
fault conditions and submitted the input to the ANN classifier. Li et al. [89] have studied the problem 
of fault diagnosis of rolling bearings of an electric motor with the use of ANNs. The authors extracted 
the characteristics from the vibration signals of the bearings in the time/frequency domain and 
subjected the results to an ANN classifier. 

Samanta et al. [90] compared three ANN-based models for bearing fault diagnosis. Multilayer 
perceptron (MLP), radial basis function network (RBF) and probabilistic neural network (PNN) were 
treated by the authors using time domain vibration signals as input signals. Han et al. [91] proposed a 
method of diagnosing induction motor failures using ANNs. The stator current signals were detected 
and subjected to discrete wavelet transformation (DWT), subsequently a genetic algorithm was applied 
for the optimization of the characteristic parameters of the ANNs, finally the ANN was trained and 
tested. Wang et al. [92] developed a classification model based on partially linearized neural networks 
(PNNs) for the diagnosis of failures of a rolling element bearing. The vibration signals were detected 
in the frequency domain and used as input of the classification model. Hashim et al. [93] have proposed 
a method of diagnosing positive ignition engine combustion failures. The method uses the detected 
vibration signals, performs a wavelet packet transformation for the extraction of the characteristics, 
operates an optimization process for the selection of the wavelet denoising, and finally uses the latter 
for classification through an ANN.  

Iannace et al. [94] used ANNs to diagnose failure in the blades of an unmanned aerial vehicle 
(UAV). The acoustic signals produced by the blades of the UAV were detected in an anechoic chamber, 
and subsequently the frequency components of the signals were extracted, finally the records were 
labeled. This data was sent as input to an ANN classifier for the detection of fault conditions. 
Kordestani et al. [95] applied ANNs for the diagnosis of faults in the multifunctional spoiler (MFS) of 
a jet aircraft. The model correctly classified three types of faults: zero bias current, actuator leakage 
coefficient, and internal leakage faults. The features extraction was performed with the discrete 
wavelet transform (DWT). Shi et al. [96] developed a refrigerant charge failure diagnosis system of a 
variable refrigerant flow (VRF) system. The model uses the ReliefF algorithm for feature selection 
and processes and optimizes the ANN with the Bayesian regularization algorithm. Xu et al. [97] used 
vibration signals to diagnose failures of rotating machines, developing a model based on neural 
networks and fuzzy systems. For the extraction of the characteristics, the authors applied the principle 
of function selection of the wavelet transform and the principle of the soft threshold of the denoising 
of wavelet packets. Viveros-Wacher et al. [98] proposed a method of diagnosing failures in an ANN-
based CMOS RF negative feedback amplifier. Heo et al. [99] studied the problem of fault detection in 
process systems engineering with the use of ANNs. The authors developed a classification model for 
fault detection problems, and subsequently trained the neural networks to perform fault detection. 
Furthermore, the effects of two hyperparameters such as the number of hidden layers and the number 
of neurons in the last hidden layer, and the increase in data on the performance of neural networks 
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were investigated. Agrawal et al. [100] compared the results of ANN-based and SVM-based models 
for diagnosing bearing failures. The vibration signals of the bearings were detected on an experimental 
test bench, and the wavelets are used for the extraction of the characteristics, selecting them according 
to the criteria of maximum energy and minimum entropy. The authors concluded that the SVM-based 
model is the most accurate of all the classification algorithms considered followed by ANN 
showing 98% accuracy. 

3.3. Convolutional Neural Network (CNN) model 

Deep Learning is a branch of Machine Learning that is based on the use of algorithms whose 
purpose is the modeling of high-level abstractions on data [101]. It is part of a family of techniques 
aimed at learning methods for representing data. In Deep Learning, specialized learning algorithms are 
developed in the automatic extrapolation of features in a data set, to be used later for the training of 
machine learning systems. The result is relevant because without these techniques the features would 
have to be produced and evaluated manually and prior to training. The key concept on which deep 
learning is based is to subject the input data to numerous levels of cascade processing, the result of 
which is the emergence of these features [102]. 

In the field of neural networks this concept has been put into practice with the addition of 
numerous hidden levels of neurons. Like classical neural networks, deep neural networks can model 
complex relationships between input and output data. Among the most successful applications we find 
computer vision, with tasks that include classification, image regression and object detection. In object 
detection, for example, a deep neural network can generate a layered representation of objects in which 
each object is identified by a set of characteristics in the form of visual primitives, that is, edges, 
oriented lines, textures, and patterns recurring [103]. 

 

Figure 6. Typical Convolutional Neural Network Architecture for a fault diagnosis system. 

Convolutional neural networks (CNNs) represent a type of neural network in which the 
connection pattern between neurons is inspired by the structure of the visual cortex in the animal world. 
The single neurons present in this part of the brain respond to certain stimuli in a restricted region of 
observation, called the receptive field. The receptive fields of different neurons are partially overlapped 
so that they cover the entire visual field as a whole [104]. The response of a single neuron to stimuli 
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that take place in its receptive field can be mathematically approximated by a convolution operation. 
CNNs are designed to recognize visual patterns directly in pixelated images and require little or no 
preprocessing. They can recognize extremely variable patterns, such as freehand writing and images 
representing the real world. Typically, a CNN consists of several alternating levels of convolution and 
subsampling or pooling, followed by one or more fully connected final levels in the case of 
classification, or by several up-sampling levels in the case of regression. In the latter case we speak of 
a fully convolutional neural network (FCN) [105]. 

In a typical convolutional neural network architecture, we can find the following layers (Figure 6): 
 Input Level: Provides the data that needs to be analyzed. 
 Convolutional level: it aims to identify patterns, there are more than one and each of them focuses 

on the search for essential characteristics present in the initial dataset. 
 ReLu level (Rectified Linear Units): the objective is to cancel negative values obtained in 

previous levels. 
 Pool level: allows you to identify if the study feature is present in the previous level. 
 Fully connected level: connects all the neurons of the previous level in order to establish the 

various identifying classes according to a certain probability. Each class represents a possible 
final answer. 
Typically, CNNs use a higher number of hyperparameters than classic neural networks. Among 

those that differentiate them from the latter we find for example the number of filters: Since the spatial 
dimensions of the feature maps decrease going deeper into the network, the levels close to the input 
level will tend to have a reduced number of filters while you near the output will have more filters [106]. 
To try to equalize the number of filters along the entire network, we usually try to keep the product 
between the number of feature maps and the number of spatial positions that are considered in the 
input constant between all levels. By doing this, the information deriving from the input is preserved 
throughout the network [107]. 

The shape of the filters represents another hyperparameter, it usually varies from network to 
network and is chosen based on the characteristics of the dataset used. The goal is to find the right 
compromise between granularity and detail to create abstractions of the right scale for a particular 
dataset. Furthermore, the shape of the filters used in max pooling represents a parameter that depends 
on the specific dataset used. High resolution images may need large filters to appropriately reduce the 
size of the inputs, while for low resolution images too large rectangles may lead to too small 
representations in the most advanced stages of the network, with consequent loss of information. 
Typically, 2 × 2 size rectangles are used [108]. 

As with classic neural networks, even for CNNs it is possible to use the classic regularization 
techniques to combat overfitting. Furthermore, it is possible to make use of the so-called data 
augmentation technique. This technique consists in making small random changes in the inputs, such 
as rotations, translations, cropping and other image processing operations, with the aim of increasing 
the effective number of examples and consequently counteracting overfitting [109]. 

CNNs represent one of the latest evolutions of Machine Learning and the fault diagnosis sector 
immediately understood the usefulness of this tool in dealing with such problems. Wen et al. [110] 
applied CNNs to develop a method of diagnosing mechanical component failures. The LeNet-5 
architecture [111] was used by converting the vibrational signals acquired into two-dimensional (2-D) 
images, in this way the effect of the extraction of the preventive characteristics is eliminated. The 
authors tested the model on three datasets: motor bearing dataset, self-priming centrifugal pump 
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dataset, and axial piston hydraulic pump datasets. Wu et al. [112] developed a CNN-based model for 
diagnosing faults in chemical processes. For the extraction of features in the spatial and temporal 
domains, the authors exploited convolutional layers, pooling layers, dropouts, and FC layers. The 
Tennessee Eastman (TE) reference process was used for performance verification. Zhang et al. [113] 
proposed a methodology for diagnosing bearing failures in noisy environments based on the use of 
CNNs. Raw acoustic signals were used as input without any pre-denoising method. The model 
demonstrated strong domain adaptability with returning high accuracy under different workloads. Jing 
et al. [114] for the monitoring of the conditions of the reducer of a mechanical system they exploited 
the abstraction capacity of CNN. The authors demonstrated that learning the features offered by a CNN 
architecture provides better results than hand-crafted feature extraction. Chen et al. [115] used CNNs 
for fault identification in a gearbox. Gearbox vibration signals were detected and preprocessed using 
statistical measurements from the time domain signal such as standard deviation, asymmetry, and 
kurtosis. In the frequency domain, the spectrum obtained with FFT is divided into multiple bands, and 
the mean square value (RMS) is calculated for each so that the energy retains its shape at the peaks of 
the spectrum. The authors tested the model with 20 test cases with different combinations of condition 
models, where each test case includes 12 combinations of different underlying condition models. Guo 
et al. [116] used an algorithm based on hierarchical adaptive deep CNN for determining the severity 
of bearing failures. The vibrational signals were acquired on a test bench and sent to CNN which 
returned a good recognition of the failure pattern and a good evaluation of the failure size. Janssens 
et al. [117] detected failures of rotating machines using a CNN-based algorithm. The authors detected 
the vibrational signals of different types of bearing defects, such as outer race failures and lubrication 
degradation, while also adding healthy bearing signals and rotor imbalance signals to these defects. 
The performance of the model was compared with those returned by a model based on a random forest 
classifier, from the comparison the CNNs obtained greater accuracy in the classification of faults. 
Zhang et al. [118] developed a CNN-based fault diagnosis system. The authors sent the raw vibration 
signals to a CNN that uses large kernels in the first convolutional layer to extract features and suppress 
high-frequency noise. The small convolutional kernels in the previous layers are used for multilayer 
nonlinear mapping. Adaptive Batch Normalization (AdaBN) [119] was used to improve the 
adaptability of the model. Ince et al. [120] proposed CNNs for early detection of engine failures. The 
authors applied a 1-D CNN with an inherent adaptive design that merges the features extraction and 
classification steps into a single tool. The raw vibrational signals were detected and sent to the fault 
detection system in real time. 

Zhang et al. [121] studied bearing failure diagnosis using CNNs. To overcome the critical issues 
related to the use of these methodologies, the authors extracted an input image from the vibrational 
data through the application of the theory of the short-lived Fourier transform. In addition, they 
exploited the Scaled Exponential Linear Unit (SELU) activation function to avoid the deactivation of 
an excessive number of nodes during the training process, and finally applied hierarchical smoothing 
for better results. Azamfar et al. [122] performed a motor current signature analysis using CNNs to 
diagnose gearbox failures. The authors detected the current signals through multiple sensors and sent 
those raw signals directly to CNN without doing any manual feature extraction. The method was 
validated using motor current data measured on a test bench equipped with industrial gearboxes in 
various health conditions and with different working speeds. Zhou et al. [123] used CNNs on an 
unbalanced dataset of rotating machinery failures. The authors adopted a non-linear self-regressive 
neural network (NARNN) to expand the small number of failure records available in the dataset. 
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Subsequently, the detected one-dimensional vibration signals are processed with the continuous 
wavelet transform to convert them into two-dimensional time-frequency images. Finally, a CNN-based 
classification model is developed to automatically learn characteristics and obtain fault identification. 
Zhang et al. [124] adopted an augmented CNN for bearing failure diagnosis. In the application of 
Machine Learning-based algorithms, the crucial component for the success of modeling is the quality 
and quantity of the samples. A reduced or unbalanced dataset on a class is unlikely to return good 
classification performance. To overcome these problems, the authors added a multiscale feature 
extraction unit to the deep neural network layers to extract features at different time scales without 
adding convolution layers. This technological solution reduces the depth of the network while still 
providing a good classification capacity, and the simplicity in its architecture reduces any overfitting 
problems. Yongbo et al. [125] used infrared thermal imaging (IRT) to diagnose failures of rotating 
machinery by applying CNNs. The authors first detected IRT images of rotating machines by 
predicting the different operating conditions including failures. Subsequently, they developed a CNN 
to extract the characteristics of the faults; the obtained characteristics are inserted in a Softmax 
regression classifier (SR). Chen et al. [126] developed a bearing failure diagnosis model based on the 
combination of Cyclic Spectral Coherence (CSCoh) [127] and CNN. The Cyclic Spectral Coherence 
is exploited to extract the discriminating characteristics of the bearing health states in different 
operating conditions, starting from the vibration signals. The data obtained, after group normalization 
(GN), are subjected to a classifier based on CNN. Zhou et al. [128] proposed a gas turbine failure 
diagnosis methodology that leverages CNNs. The authors note that there is a strong coupling between 
gas path failures and sensor failures, when both failures occur simultaneously then it becomes difficult 
to correctly identify the nature of the failure. In this work, a method based on a CNN optimized by 
Extreme Gradient Boosting (XGBoost) [129] is developed to make the effects of sequencing on the 
diagnostic accuracy of the network interpretable. 

Li et al. [130] applied CNNs to develop a fault diagnosis system. The method is structured with 
a fusion layer in the frequency domain and a feature extractor. The first layer uses convolution 
operations to filter signals at different frequency bands and combine them into new input signals. 
These signals are sent to the feature extractor to extract features and perform domain adaptation. 
Chen et al. [131] diagnose rolling bearing failures with CNNs. The authors detected the vibration 
signals at the rolling bearing. Raw signals are divided into training, validation, and test sets. The 
training set is sent as input to a one-dimensional CNN. After validation, the test set is sent to the trained 
model for fault detection. Liu et al. [132] developed a rotating machinery failure diagnosis technique 
using CNNs. The authors transform the vibration signal acquired through the decomposition of the 
wavelet packet into an energy spectrum matrix containing information relating to faults. The training 
of the model is performed with dynamic adaptation to adaptively extract the robust characteristics from 
the spectrum matrix. Hoang et al. [133] applied CNNs for bearing failure diagnosis. The authors 
demonstrated that a CNN could extract discriminating features automatically with greater efficacy than 
that returned by multiple sensors connected in parallel. 

3.4. Recurrent Neural Network (RNN) applications 

Recurrent Neural Networks (RNN) are neural networks specialized in processing sequential data. 
This type of network is therefore optimized for tasks related to the recognition of defects in machines. 
The sequential input data is analyzed one at a time following the order of the sequence of discrete 
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times [134]. At the base of the RNNs architectures there is the sharing of parameters in different parts 
of the model. This property makes it possible to extend and apply the model to examples of different 
forms of data by increasing the generalization capabilities of the network on these parameters. During 
the input processing phase, the RNNs keep a state vector in their hidden layers that implicitly contains 
information about the history of all the elements of the past of the sequence, that is, of the previous 
instants of time. Considering the output of the hidden layers at different times of the sequence as the 
output of different neurons of a deep multilayer neural network, it becomes easy to apply backward 
propagation to train the network. However, although RNNs are powerful dynamic systems, the training 
phase often turns out to be problematic because the gradient obtained with the backward propagation 
either increases or decreases at each discrete time, so after many instants of time it can either become 
too large or become little appreciable.  

Figure 7 shows a typical training process of an RNN with an indication of the typical recursive 
structure. In the Figure 7, to the left of the arrow we used a cyclical representation of sequential 
processing, while to the right of the arrow the same sequence is deployed along all the processing 
processes iterated during sequential processing: This procedure is called network unfolding. The 
clustered hidden units take input from the neurons of the previous phase, so the network can map an 
input sequence formed by the input elements into a sequence of output elements, where each element 
depends on all input data at instants prior to the current one. The same parameters are reused at each 
subsequent stage [135]. 

 

Figure 7. Recurrent Neural Network architecture with the unfolded scheme. 

Many other architectures are possible: An example can be obtained by including a variant in 
the network that causes it to generate an output sequence that is used as an input for subsequent 
instants. The backward propagation algorithm is applied directly to the computational graph 
obtained by deploying the sequential branch of the network, which in this situation can be 
considered as a multilayer network of which each layer represents a single cycle of the sequence, 
having shared weights [136]. 

Despite the main purposes of recurrent networks in long-term learning, theoretical and empirical 
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evidence shows that it is difficult to learn by storing so much information for very long-time sequences. 
In fact, the web often tends to focus on recent information. Data learned in very previous instants of 
time could generate errors during training. The solution to this problem is to increase the size of the 
network by adding explicit memory [137]. 

One type of networks that implement this is long short-term memory networks (LSTM). These 
networks use special hidden layers formed by units that specialize in remembering inputs for very large 
time intervals [138]. A special unit called a memory cell act as an accumulator, as if the neuron in the 
network were equipped with a permeable membrane (gate). It has connections on itself to the next time 
with a unit weight, so it can copy the real value of the state by accumulating external signals. This 
auto-connection is linked to a unit instructed to decide when to clear the memory contents. The 
concatenated structure of LSTMs allows instead to have a single layer with several interacting neurons 
according to a particular pattern. The state cell undergoes few linear operations allowing the 
information to travel unaltered. The network can remove or add information to the state cell by means 
of the gate structure. These structures are composed of a neural layer with a sigmoid activation function 
and a point multiplication operation. The output values of this state, between 0 and 1, quantify how 
much information from the input must be allowed to flow into the network. A value of 0 means that 
nothing must pass while a value of 1 indicates the total passage of information. The mechanism of this 
gate-like cell that opens and closes explains its name gate and justifies the use of the sigmoid function 
to control the flow of input information [139]. 

An LSTM has three gates to protect and control the state cell. The first, called the forget gate 
layer, decides what information you want to put into the network flow. The second, called input gate 
layer, decides which values must be updated, immediately after a hyperbolic tangent layer creates a 
vector having as elements the new candidate values to add to the state. The last gate finally decides 
which part of the state vector must be returned in output. LSTMs are more effective than traditional 
RNNs in many applications, especially when they have many layers for each instant of time [140]. 

Given the sequential nature of the vibrational and sound signals of the machines, this type of 
algorithm has been widely used by the scientific community to address the problems associated with 
the diagnosis of faults in machines. Jiang et al. [141] have adopted RNNs for fault diagnosis for rolling 
bearings. The authors used the frequency spectrum sequences of the vibrational signals as input to 
reduce the data size and ensure good robustness. The recurring hidden layer is adopted to automatically 
extract features from the input spectrum sequences, and an adaptive learning rate is applied in the 
training process to improve model performance. De Bruin et al. [142] proposed a system for diagnosing 
faults in railway circuits with the use of LSTMs. The authors detected signals from multiple railway 
tracks in a specific geographic area and sought to diagnose failures as a function of spatial and temporal 
dependencies. They showed that the LSTM network can learn these dependencies directly from the 
data. Yang et al. [143] applied LSTMs for diagnosing wind turbine transmission failures. The authors 
exploited the spatial and temporal dependencies of the measurement signals detected by multiple 
sensors in rotating machines, to detect the different types of faults and proceed with their classification. 
Talebi et al. [144] developed an RNN-based fault detection and isolation (FDI) system. The authors 
applied this model to the data collected by the attitude control subsystem of satellites in low earth orbit. 
Faults related to both actuators and sensors were considered. Zhang et al. [145] used RNNs to study a 
fault diagnosis system in chemical industrial processes. Data-based fault detection and diagnosis (FDD) 
methods are particularly suitable for this type of problem even if they require a great deal of 
computational effort given the amount of information to be handled. The methods based on the RNN, 
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can extract the characteristics from the raw data for time series data. The authors adopted a 
bidirectional RNN to improve the number of features extracted and thus improve the performance of 
the system. An et al. [146] exploited a dataset containing vibration signals from bearings of rotating 
machines with varying speeds and loads over time to test an LSTM-based fault detection model. To 
begin, the data is segmented, then the classification labels are transferred to the LSTM, and finally the 
probability of occurrence of the failure is detected by the output network.  

Rotating machines are once again studied by Liu et al. [147] who applied LSTMs to detect failures. 
The authors measured the vibration signals and subsequently segmented them to shorten the length of 
the timeline. Furthermore, they addressed the problem of the large number of parameters and 
calculations required by an LSTM, exploiting a cellular structure with a forgetful gate. Liang et al. [148] 
addressed the problem of diagnosing faults in the bogie of a high-speed train with the adoption of a 
model based on a recurrent convolutional neural network. The authors detected the cart’s vibrational 
signals and then used convolutional layers to filter the characteristics of those signals. These 
characteristics are sent to the recurring layers with a simple recurring cell, recording performances 
superior to a CNN and to models based on the learning of the ensemble. The same problem was 
subsequently addressed by Huang et al. [149] exploiting a model based on an LSTM. The authors used 
SIMPACK simulation software to generate fault data. These data were subsequently exploited to train 
and test the network showing a good ability to learn the spatial and temporal correlation of fault 
characteristics in vibration signals, without data preprocessing and prior knowledge. 

Shahnazari et al. [150] applied RNNs for fault detection and isolation of a heating, ventilation, 
and air conditioning (HVAC) system. The authors developed predictive models by exploiting the plant 
data to incorporate them into the filters of the diagnosis system. The method was tested using 
simulation data on a test bench, and real data. The same author then applied RNN more generally for 
fault diagnosis for non-linear systems [151]. Guo et al. [152] instead applied RNNs to predict the 
remaining useful life of the bearings. The difficulties related to this problem are to be referred to the 
different contribution of the characteristics and the difficulties in identifying a threshold value. The 
authors extracted six similarity characteristics from the vibration signals and correlated them with eight 
time-frequency characteristics. Then they selected the most sensitive ones and sent them to an RNN. 
A similar work but this time related to the aeronautical field was carried out by Yuan et al. [153]. In 
this case, a model based on LSTMs was adopted and tested with vibrational signals from aircraft 
turbofan engines supplied by NASA.  

Wu et al. [154] once again dealt with the problem of bearing diagnosis using an LSTM. In this 
work, LSTMs are used to generate ancillary datasets, so using a small amount of labeled data you can 
achieve more effective and robust fault diagnosis performance than other methods. Yin et al. [155] 
modeled the operating conditions of a wind turbine gearbox with the aid of an LSTM. The authors 
used Cosine Loss to reduce the signal strength product and improve the accuracy of the diagnosis. The 
characteristics of the energy sequence and the entropy of the wavelet energy were extracted from the 
vibration signals and sent to the LSTM for fault diagnosis. Xia et al. [156] estimated the useful life of 
the machines by developing a forecasting model based on LSTMs. The authors detected the sequential 
vibrational data with the use of different sensors and then merged them and sent them as input to the 
model without operating any feature extraction. The long-term memory levels of LSTMs are exploited 
to extract temporal characteristics from sequential data and keep track of them. The model training 
process is performed by adopting the dropout technique and decreasing learning rate. Wang et al. [157] 
studied an automatic fault diagnosis system for use on Internet Data Center chillers. The system adopts 
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a hybrid approach using a 1-Dimensional Convolutional Neural Network (1D-CNN) and a Gated 
Recurrent Unit (GRU). First the time series sequences for the refrigeration system are detected, which 
are sent to the convolutional layer which extracts the local characteristics, then the GRU intervenes 
which, with its memory, can extract the global characteristics. 

3.5. Deep generative systems 

Generative models have the purpose of learning a certain distribution defined on a set of data 
belonging to some space. The model analyzes a training dataset from an unknown distribution and 
learns to represent an estimate of that distribution in some way. The result is a probability distribution 
that can be explicitly estimated or used implicitly only to generate new examples [158]. Generative 
models search for joint probabilities, creating points where a given input characteristic and a desired 
output exist simultaneously. Generative models then estimate probabilities and likelihood, modeling 
the data presented to them and distinguishing between classes based on these probabilities. Having 
learned a probability distribution, the model builds on this probability distribution to generate new data 
instances. By learning the distribution of data, it is therefore possible to build new ones with 
characteristics like those of the originals. To do this we can see our examples as if they belonged to a 
distribution and our goal is to learn another distribution sufficiently like the starting one [159]. 
 Generative models can be grouped into two types: 
 Generative Adversarial Networks (GAN) 
 Autoencoders 

The basic idea of opposing generative networks (GANs) is to establish a non-cooperative game 
between two players, one player being called a generator and the other a discriminator [160]. The 
generator creates samples from an estimate of the distribution of the training data, while the 
discriminator obtains samples from both the generator and the training set and must be able to 
distinguish where each of these come from, or in other words determine whether they are true or 
false [161]. So, the goal of the generator is to induce the discriminator to classify the generated images 
as true. As the game progresses, the generator learns to produce more and more real samples and the 
discriminator on its part learns to better recognize the data generated from the real data: All this with 
the aim that at the end of the competition the generated data are indistinguishable from actual data. To 
know the distribution of the generator on the training data, which have an unknown distribution, and 
a priori probability distribution is defined on the input variables, which are generated randomly [162]. 

Autoencoders are a type of neural network used to obtain a compressed representation of a data 
with many dimensions, such as an image. The structure includes a neural network called encoder, 
which has the task of compressing the input into a small-sized vector z, and a neural network called 
decoder, which taken as input z tries to reconstruct the starting image [163]. A cost function that 
evaluates the difference between the starting image and the reconstructed image allows the network to 
learn and reconstruct increasingly similar images. If the activation function that regulates the activation 
of the neurons of the hidden level is linear, and the criterion of mean square error is used to train the 
network, then the n hidden units learn to project the input in the interval of the first n main components 
of the data. If, on the other hand, the non-linearity characteristic is somehow conferred on the hidden 
level, the auto-encoder acquires the ability to capture multi-modal aspects regarding the distribution 
of the input [164]. 

The decoder could be a useful tool for generating content, eliminating the encoder. However, the 
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space of latent variables produced by an autoencoder consists of a series of scattered points without a 
precise structure. By randomly sampling the latent space, it would be unlikely to obtain a vector of 
variables that corresponds to a reasonable encoding of an input data, precluding the possibility of 
generating realistic content. A solution to this difficulty is offered by the Variational Autoencoder 
(VAE), whose basic structure remains the same as an autoencoder, with the only difference that the 
encoder no longer generates a vector of latent variables, but, for each variable, a mean µ and a variance 
Σ. From the normal distribution with mean µ and variance Σ the z is then sampled and taken as input 
by the decoder. This procedure allows to define, for each record of the training set, not only a single 
point in the latent space, but a point and its surroundings. However, the problem of the structure of 
latent space has not been solved. We still have spots that, although they offer more coverage, are still 
scattered around. The structuring is obtained by adding the Kullback-Leibler divergence between the 
distribution produced by the encoder and the normal distribution with mean 0 and variance 1 to the cost 
function of the model. in this distribution and from which it is then possible to sample in the future [165]. 

Finally, there is a third model called adversarial autoencoder (AAE), which deals with generative 
models produced by the union of VAE and GAN. What differentiates this structure from a VAE is the 
fact that what drives the distribution learned from the encoder towards that learned from the decoder 
is an opposing network [166]. The VAE encoder is considered as the generator of a GAN for which a 
discriminator can be used that tries to distinguish data belonging to the encoder from those coming 
from decoders. The training of the opposing network and the autoencoder takes place jointly, using 
stochastic gradient descent. Two phases are performed on each minibatch [167]: 
 the reconstruction phase, in which the encoder and decoder try to minimize the input 

reconstruction error. 
 the regularization phase, in which the discriminator parameters are modified to identify the data 

generated by the encoder from those belonging to the decoder. 
A generative model represents a design choice suitable for learning any type of data distribution 

using unsupervised learning. To do this, we can use the power of neural networks to learn a function 
that can approximate the true distribution to allow us to predict the distribution of the model. What we 
get is not an exact copy of the original distribution but an approximation of it that can remind us of the 
essential characteristics. The usefulness of such a representation for identifying faults is intuitive. In 
fact, a fault represents a deviation from the normal operating conditions of the machine, therefore a 
model that can capture the essential information of the operation of the machine will also be able to 
identify these conditions of deviation. Liu et al. [168] used GANs to diagnose rolling bearing failures. 
The authors showed how convenient it is to use an unsupervised methodology for fault diagnosis while 
negating the operational cost of data labeling. The mixed time-frequency characteristics of the 
vibrational signal were first extracted, and the GAN showed its great ability to group the data. Shao 
et al. [169] leveraged GANs for data augmentation. The authors detected the vibration signals of an 
induction motor through sensors and generated one-dimensional raw data using a GAN. Zhang et al. [170] 
developed a GAN-based fault diagnosis system. The noise distributions and data on temporal 
vibrations of real machinery were first collected: The dataset obtained is unbalanced due to the 
difficulty of collecting fault data compared to those relating to normal operating conditions. To balance 
the data content, a GAN-based model is used to explicitly produce failure data. Wang et al. [171] 
studied a planetary gearbox failure diagnosis model based on GANs. The model uses both Generative 
Adversarial Networks and a Stacked Denoising Autoencoder (SDAE) [172]. The vibration signals 
from the planetary gearbox are sent to a GAN generator which creates new samples with similar 
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distribution to the original samples. Subsequently, these data are transformed by the SDAE 
discriminator to automatically extract the fault characteristics and discriminate their authenticity and 
fault categories. Li et al. [173] applied GANs to enrich the dataset of vibrational data measured on 
rotating machines to identify fault conditions. The problem of unbalanced data was also addressed 
with the help of GAN by Wang et al. [174] who studied the classification of mechanical failures. A 
similar thing was performed by Xie et al. [175] who have exploited the GAN as part of the work 
process of industrial machines. The authors developed an algorithm that combines GANs with CNNs 
to simulate the original distribution from minority classes and generate new data to solve the 
imbalance problem. Zhong et al. [176] exploited GANs for fault diagnosis of air handling units for 
residential buildings. 

Zhao et al. [177] exploited a VAE model to generate additional vibration signals using the hidden 
variables sampled from the Gaussian distribution. These signals are mixed with the original signals 
and used for training a classifier for fault identification. An et al. [178] propose a method of detection 
of anomalies based on VAE. The method exploits the probability of reconstruction of a variational 
autoencoder which measures the variability of the distribution of variables. The results of this work 
tell us that the method allows to derive the reconstruction of the data to analyze the underlying cause 
of the anomaly. San Martin et al. [179] applied VAE for the diagnosis of ball bearing element failures. 
An unsupervised VAE is applied resulting in reduced dimensionality and automatic coding capability. 
To do this, the latent representations provided by the variational self-encoders are compared with those 
of the principal component analysis. Kawachi et al. [180] used VAEs for the detection of invisible 
anomalies. The approach provides for the discrimination between the normal distribution and that 
relating to the anomaly using the relationship between a set and the complementary set: An 
unsupervised VAE is transformed into a supervised VAE. Park et al. [181] detected multimodal 
anomalies of a robot-assisted feeding system by combining VAE and LSTM. The model combines the 
signals and reconstructs their expected distribution by introducing a variation based on previous 
progress, thanks to the use of the LSTM. Lee et al. [182] monitored the thin-film transistor liquid 
crystal visualization process using the VAE, while Wang et al. [183] exploited EVAs for monitoring 
non-linear processes. Ping et al. [184] applied VAE in the prognostics and health management of 
rolling bearings. The authors developed an asymmetric feature extraction system based on VAE 
logarithmic distribution algorithms. Wu et al. [185] applied an AAE-based algorithm for machine 
anomaly detection. The authors studied this technology to automatically identify the low-dimensional 
collector embedded in the high-dimensional space of the starting signal. 

4. Summary and discussion 

In the previous sections we have analyzed the approaches for fault diagnosis based on Machine 
Learning most used by the scientific community. Fault detection requires in-depth knowledge of the 
system which is often not available. The monitoring of the environment with the use of the most 
modern sensors does not ensure the return of a complete representation of the phenomenon. An 
efficient fault detection system must therefore manage this lack of information and add missing data 
through the different techniques available. The diagnostic system is then designed in discrete time and 
includes a term for the compensation of the effect of non-modeled dynamics and disturbances. The 
compensation term, in turn, is calculated based on the dynamics of the manipulator and the state 
estimation error. Furthermore, the modeling of the machine must give us a system capable of 
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generalizing. The main goal of machine learning is to obtain an algorithm that is performing in the 
classification of new inputs and not only in the classification of the set of examples used during the 
learning phase [186]. The ability to perform well on inputs not observed during training returns the 
generalization capacity of the system. The factors that determine how well a machine learning 
algorithm is are its ability to obtain a low training error and to keep the difference between training 
and test error small. These two factors correspond to the two most common problems associated with 
Machine Learning: overfitting and underfitting. Underfitting occurs when the model is unable to obtain 
a sufficiently small training error. Overfitting, on the other hand, occurs when the gap between training 
and test errors is too large [187,188]. 

One aspect to consider when choosing a method for identifying failures is the optimization 
procedure. The optimization techniques of the classification models play an important role in the 
convergence of the models to avoid local optimal. The presence of local minima of the error function 
constitutes a difficulty to be taken into account in the design of an optimization algorithm for training 
machine learning based algorithms. The study of the theoretical properties of the error function in 
relation to local minima has been the subject of various works [189,190]. The calculation experience 
shows that in many applications the greatest difficulties in the training process are due to the presence 
of plateaus in the error function rather than that of local minima. Furthermore, the training of an 
algorithm is not necessarily aimed at identifying a global minimum point of the associated optimization 
problem but has the purpose of determining a vector of parameters corresponding to a sufficiently low 
value of the error committed on the samples. of the training set, so that the algorithm has an adequate 
generalization capacity. For these reasons, the study of specific global optimization algorithms has not 
been one of the most relevant aspects in the literature. In general, global optimization algorithms are 
divided into stochastic methods [191] and deterministic methods [192]. The online version of the 
backpropagation algorithm represents one of the most widely used stochastic methods. Hybrid training 
strategies have also been proposed, consisting of a stochastic phase followed by one in which a 
standard optimization method is applied. The reasons for such strategies are, on the one hand, to avoid 
local minima through the stochastic phase, and on the other hand to accelerate the convergence towards 
the desired minimum with the second phase. 

Table 1. ML algorithms features for fault diagnosis. 

Model Strengths Weaknesses 
Support Vector Machine (SVM) High accuracy, low 

storage 
Slow Computing for big data, 
noise sensitive  

Artificial Neural Network (ANN) High accuracy, fault 
tolerance 

Physical meaning, high 
computing cost 

Convolutional Neural Network 
(CNN) 

Feature extraction free, 
efficient for big data 

High computing cost, long 
time training 

Recurrent Neural Network (RNN) Robust to input size, 
short memory problem 
free 

Computing complexity, higher 
memory required 

Deep Generative Systems (DGM) Complex structure 
detection, generalized 
training 

Harder to train, physical 
meaning 
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There are many algorithms based on Machine Learning and each family of algorithms has specific 
characteristics that govern their use in every context. Table 1 summarizes the strengths and weaknesses 
of each family of algorithms. The different potentials make us understand how the choice of the 
algorithm depends on the characteristics of the system that needs to be modeled. 

From Table 1 the complexity of the model is linked to the characteristics of the input to be 
processed. Systems with significant input dimensions require more complex modeling tools with an 
increase in the computational cost. However, this does not tell us that necessarily the most complex 
choice is the most suitable for the solution of the problem; in fact, it often happens that the 
performances of the algorithms are different according to different inputs. 

Table 2 compares the performances returned by the models adopted by the scientific community 
for the identification of faults. To facilitate comparison, ranges of values have been reported as declared 
by the authors in their respective papers. The Accuracy metric was adopted for the performance 
evaluation. Accuracy measures how close the forecast is to the current value; it is usually indicated as 
a percentage. 

Table 2. Performance of different Machine Learning-based models for fault diagnosis. 

Model Min Accuracy (%) Max Accuracy (%) 
Support Vector Machine (SVM) 71.5 [44] 98.5 [38] 
Artificial Neural Network (ANN) 85.6 [90] 99.4 [99] 
Convolutional Neural Network 
(CNN) 

97.4 [120] 99.8 [110] 

Recurrent Neural Network (RNN) 98.5 [155] 99.7 [142] 
Deep Generative Systems (DGM) 86.3 [175] 99.8 [171]  

Analyzing the table, we can see that the accuracy returned by the models for identifying faults 
has comparable values. This confirms that the evaluation metric, referable to works available in the 
literature, is not the right tool to guide the researcher in choosing the most appropriate algorithm for 
identifying a specific fault. This choice can be made only after verifying how the different algorithms 
adapt to the available data, providing the system with an adequate generalization capacity. However, a 
comparison of the results in Table 2 tells some things: The algorithms based on CNN and RNN seem 
to return results with greater accuracy, this can be justified by the ability to automatically extract the 
features. This greater ability to extract knowledge is paid for in computational costs which become 
more expensive. 

The review of a substantial number of contributions, which have received the approval of the 
scientific community in terms of citations, has clearly outlined what the hotspots are and where the 
future challenges awaiting experts in the sector are headed. 
 Machine learning-based methods require reliable data and correct labeling. In the case of fault 

diagnosis, this availability of information strongly depends on the sensors used for data collection 
and the labeling process. To improve the performance of these methodologies, it is therefore 
necessary to invest in the quality of sensors and in the labeling procedure, which requires 
substantial economic resources. On the other hand, the increasingly widespread availability of low-
cost sensors that can be connected to the data network imposes a cost-benefit balance between 
systems that, using cutting-edge technologies, require excessive costs and systems that, based on 
economic sensors, return less precise results. 
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 Automated fault detection systems are highly dependent on feature selection, feature extraction, 
and data collection. Deep learning has been shown to yield excellent results in the automatic 
selection of features: This frees the researcher from the onerous task of identifying those features 
that best highlight the presence of anomalies in the behavior of the machine. On the other hand, 
the computational cost required by these algorithms, even if partially offset by the increase in 
performance offered by modern hardware platforms, represents a parameter to be evaluated in the 
choice of survey methodology. 

 Most of the automatic fault identification systems we have analyzed treat the case as a supervised 
classification problem. The fault diagnosis process could instead be approached as a clustering 
problem. However, most current studies tend to address the problem by devising a pattern 
recognition system. In the future, research should be concentrated on developing suitable clustering. 
he availability of low-cost sensors that can be connected to each other through wireless networks 
according to modern IoT technologies offers the scientific community the opportunity to develop 
automatic fault detection that is increasingly within everyone’s reach. These systems, therefore, 
will not only be developed for the detection of faults in the industrial environment but can be 
extended to local realities up to the needs of the individual user within their own home. Systems 
of this type can be offered together with home automation systems, offering new functions aimed 
at improving home security. 

5. Conclusions 

In this review we have analyzed the Machine Learning based methods most widely used by the 
scientific community for diagnosing machine failures. For each type of methodology, we first provided 
the background necessary to understand the method and then we analyzed the most representative 
works that have yielded these techniques to identify failures in the industrial machine. The work carried 
out highlighted the strong use of these methods which confirms the extreme usefulness of these 
techniques in identifying failures in scenarios heavily contaminated by residual noise. The automatic 
extraction of knowledge today represents a valid tool for identifying faults: Technicians who must 
manage the maintenance of an industrial process must necessarily use these methods for a correct 
forecast of the mechanical parts to be replaced.  
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