Networks are commonly represented as graphs, where vertices denote entities and edges capture relationships based on shared attributes. Granulation of a network is important for the structural analysis and understanding of its underlying patterns. In this paper, we introduce a distance-based granular computing framework for analyzing networks modeled by intersection graphs. We define these networks as information systems and investigate their granular structures using a distance-based representation. Based on the concepts of indiscernibility between two vertices using the distance from a set, we study indiscernibility partitions on the vertex set. Using the concept of discernibility between vertices, we define the distance-based discernibility matrix and explore its properties. We identify all minimal resolving sets using the discernibility matrix. Furthermore, using the proposed method, we study a transportation network for urban traffic planning.
Citation: Rehab Alharbi, Hibba Arshad, Imran Javaid, Ali. N. A. Koam, Azeem Haider. Distance-based granular computing in networks modeled by intersection graphs[J]. AIMS Mathematics, 2025, 10(5): 10528-10553. doi: 10.3934/math.2025479
Networks are commonly represented as graphs, where vertices denote entities and edges capture relationships based on shared attributes. Granulation of a network is important for the structural analysis and understanding of its underlying patterns. In this paper, we introduce a distance-based granular computing framework for analyzing networks modeled by intersection graphs. We define these networks as information systems and investigate their granular structures using a distance-based representation. Based on the concepts of indiscernibility between two vertices using the distance from a set, we study indiscernibility partitions on the vertex set. Using the concept of discernibility between vertices, we define the distance-based discernibility matrix and explore its properties. We identify all minimal resolving sets using the discernibility matrix. Furthermore, using the proposed method, we study a transportation network for urban traffic planning.
| [1] |
M. Akram, A. N. Al-Kenani, A. Luqman, Degree based models of granular computing under fuzzy indiscernibility relations, Math. Biosci. Eng., 18 (2021), 8415–8443. https://doi.org/10.3934/mbe.2021417 doi: 10.3934/mbe.2021417
|
| [2] |
S. Akbari, F. Heydari, M. Maghasedi, The intersection graph of a group, J. Algebra Appl., 14 (2015), 1550065. https://doi.org/10.1142/S0219498815500656 doi: 10.1142/S0219498815500656
|
| [3] | H. Arshad, I. Javaid, Metric-based granular computing in networks, 2025, arXiv: 2503.02901. |
| [4] |
H. Arshad, I. Javaid, A. Fahad, Granular computing in zero-divisor graphs of Zn, Kuwait J. Sci., 51 (2024), 100231. https://doi.org/10.1016/j.kjs.2024.100231 doi: 10.1016/j.kjs.2024.100231
|
| [5] |
I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5 doi: 10.1016/0021-8693(88)90202-5
|
| [6] |
L. Baldini, A. Martino, A. Rizzi, A class-specific metric learning approach for graph embedding by information granulation, Appl. Soft Comput., 115 (2022), 108199. https://doi.org/10.1016/j.asoc.2021.108199 doi: 10.1016/j.asoc.2021.108199
|
| [7] |
G. Chiaselotti, D. Ciucci, T. Gentile, Simple graphs in granular computing, Inform. Sci., 340–341 (2016), 279–304. https://doi.org/10.1016/j.ins.2015.12.042 doi: 10.1016/j.ins.2015.12.042
|
| [8] | G. Chiaselotti, D. Ciucci, T. Gentile, F. Infusino, Rough set theory applied to simple undirected graphs, In: Rough sets and knowledge technology, Cham: Springer, 2015,423–434. https://doi.org/10.1007/978-3-319-25754-9_37 |
| [9] |
P. J. Cameron, S. Ghosh, The power graph of a finite group, Discrete Math., 311 (2011), 1220–1222. https://doi.org/10.1016/j.disc.2010.02.011 doi: 10.1016/j.disc.2010.02.011
|
| [10] |
A. El-Mesady, O. Bazighifan, H. M. Shabana, On graph‐transversal designs and graph‐authentication codes based on mutually orthogonal graph squares, J. Math., 2022 (2022), 8992934. https://doi.org/10.1155/2022/8992934 doi: 10.1155/2022/8992934
|
| [11] |
A. Fatima, I. Javaid, Rough set theory applied to finite dimensional vector spaces, Inform. Sci., 659 (2024), 120072. https://doi.org/10.1016/j.ins.2023.120072 doi: 10.1016/j.ins.2023.120072
|
| [12] |
S. J. Guan, M. Li, S. B. Deng, Granular computing based on graph theory, J. Phys. Conf. Ser., 1631 (2020), 012056. https://doi.org/10.1088/1742-6596/1631/1/012056 doi: 10.1088/1742-6596/1631/1/012056
|
| [13] | M. R. Garey, D. S. Johnson, Computers and intractability 174. San Francisco: freeman. 1979 |
| [14] |
M. Higazy, A. El-Mesady, M. S. Mohamed, On graph-orthogonal arrays by mutually orthogonal graph squares, Symmetry, 12 (2020), 1–13. https://doi.org/10.3390/sym12111895 doi: 10.3390/sym12111895
|
| [15] |
T. F. Halaszovich, A. Kinra, The impact of distance, national transportation systems and logistics performance on FDI and international trade patterns: results from Asian global value chains, Transp. Policy, 98 (2020), 35–47. https://doi.org/10.1016/j.tranpol.2018.09.003 doi: 10.1016/j.tranpol.2018.09.003
|
| [16] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
| [17] | C. Hernando, M. Mora, P. J. Slater, D. R. Wood, Fault-tolerant metric dimension of graphs, Convexity Discrete Struct., 5 (2008), 81–85. |
| [18] |
I. Javaid, S. Ali, S. U. Rehman, A. Shah, Rough sets in graphs using similarity relations, AIMS Math., 7 (2022), 5790–5807. https://doi.org/10.3934/math.2022320 doi: 10.3934/math.2022320
|
| [19] |
S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 doi: 10.1016/0166-218X(95)00106-2
|
| [20] | C. J. Liau. Social networks and granular computing, In: Encyclopedia of complexity and systems science, New York: Springer, 2009, 8333–8345. https://doi.org/10.1007/978-0-387-30440-3_495 |
| [21] |
F. Moh'd, M. Ahmed, Simple-intersection graphs of rings, AIMS Math., 8 (2023), 1040–1054. https://doi.org/10.3934/math.2023051 doi: 10.3934/math.2023051
|
| [22] |
O. R. Oellermann, J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math., 155 (2007), 356–364. https://doi.org/10.1016/j.dam.2006.06.009 doi: 10.1016/j.dam.2006.06.009
|
| [23] | M. Pal, Intersection graphs: an introduction, 2014, arXiv: 1404.5468. |
| [24] |
Z. Pawlak, Rough set theory and its applications to data analysis, Cybernet. Syst., 29 (1998), 661–688. https://doi.org/10.1080/019697298125470 doi: 10.1080/019697298125470
|
| [25] |
R. Rajkumar, P. Devi, Intersection graphs of cyclic subgroups of groups, Electron. Notes Discrete Math., 53 (2016), 15–24. https://doi.org/10.1016/j.endm.2016.05.003 doi: 10.1016/j.endm.2016.05.003
|
| [26] | P. J. Slater, Leaves of trees, In: Proceedings of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, 14 (1975), 549–559. |
| [27] | J. G. Stell, Granulation for graphs, In: Spatial information theory. Cognitive and computational foundations of geographic information science, Berlin, Heidelberg: Springer, 1999,417–432. https://doi.org/10.1007/3-540-48384-5_27 |
| [28] | J. G. Stell, Relations in mathematical morphology with applications to graphs and rough sets, In: Spatial information theory, Berlin, Heidelberg: Springer, 2007,438-454. https://doi.org/10.1007/978-3-540-74788-8_27 |
| [29] |
P. Singh, S. Sharma, S. K. Sharma, V. K. Bhat, Metric dimension and edge metric dimension of windmill graphs, AIMS Math., 6 (2021), 9138–9153. https://doi.org/10.3934/math.2021531 doi: 10.3934/math.2021531
|
| [30] |
V. Terziyan, Social distance metric: from coordinates to neighborhoods, Int. J. Geogr. Inform. Sci., 31 (2017), 2401–2426. https://doi.org/10.1080/13658816.2017.1367796 doi: 10.1080/13658816.2017.1367796
|
| [31] | I. Tomescu, M. Imran, On metric and partition dimensions of some infinite regular graphs, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 461–472. |
| [32] |
A. Tizghadam, A. Leon-Garcia, Betweenness centrality and resistance distance in communication networks, IEEE Netw., 24 (2010), 10–16. https://doi.org/10.1109/MNET.2010.5634437 doi: 10.1109/MNET.2010.5634437
|
| [33] | D. B. West, Introduction to graph theory, Upper Saddle River: Prentice Hall, 2001. |
| [34] |
K. Walkowiak, R. Goscien, M. Klinkowski, M. Wozniak, Optimization of multicast traffic in elastic optical networks with distance-adaptive transmission, IEEE Commun. Lett., 18 (2014), 2117–2120. https://doi.org/10.1109/LCOMM.2014.2367511 doi: 10.1109/LCOMM.2014.2367511
|
| [35] |
S. C. Wang, H. C. Hsiao, C. C. Lin, H. H. Chin, Multi-objective wireless sensor network deployment problem with cooperative distance-based sensing coverage, Mobile Netw. Appl., 27 (2022), 3–14. https://doi.org/10.1007/s11036-020-01704-2 doi: 10.1007/s11036-020-01704-2
|
| [36] | M. J. Williams, M. Musolesi, Spatio-temporal networks: reachability, centrality and robustness, R. Soc. Open Sci., 3 (2016), 160196. |
| [37] |
R. R. Yager, Intelligent social network analysis using granular computing, Int. J. Intell. Syst., 23 (2008), 1197–1219. https://doi.org/10.1002/int.20314 doi: 10.1002/int.20314
|
| [38] |
Q. Yang, N. Yang, T. R. Browning, B. Jiang, T. Yao, Clustering product development project organization from the perspective of social network analysis, IEEE Trans. Eng. Manag., 69 (2022), 2482–2496. https://doi.org/10.1109/TEM.2019.2939398 doi: 10.1109/TEM.2019.2939398
|
| [39] | L. A. Zadeh, Fuzzy sets and information granularity, In: Advances in fuzzy set theory and applications, Amsterdam: World Scientific Publishing, 1979, 3–18. |
| [40] | B. Zelinka, Intersection graphs of finite abelian groups, Czechoslovak Math. J., 25 (1975), 171–174. |
| [41] |
P. F. Zhang, Y. Y. Zhao, X. H. Zhu, Z. W. Cai, J. X. Xu, S. Shi, Spatial structure of urban agglomeration under the impact of high-speed railway construction: based on the social network analysis, Sustainable Cities Soc., 62 (2020), 102404. https://doi.org/10.1016/j.scs.2020.102404 doi: 10.1016/j.scs.2020.102404
|