A two-parameter generalized Lindley distribution is proposed, whose probability density function contains two models that are particularly well-suited for lifetime studies: the inverted J-type and the unimodal left-leaning type. Some of the main numerical characteristics of the proposed distribution were investigated. Additionally, based on progressively type-Ⅱ censored samples, three estimation methods were used to estimate the parameters, reliability function, and hazard function of the distribution: maximum product spacing estimation, maximum likelihood estimation, and Bayesian estimation. Bayesian estimators were obtained under squared error and general entropy loss functions, and the Metropolis-Hastings algorithm was used to obtain Bayesian estimates. In addition to point estimation, corresponding asymptotic confidence intervals and the highest posterior density intervals were also studied. Through Monte Carlo simulation, we measured the performance of the three estimators using four criteria. Finally, the ability of the proposed distribution to accurately fit the data was demonstrated using a real dataset.
Citation: Haiping Ren, Jiajie Shi. A generalized Lindley distribution:Properties, estimation and applications under progressively type-Ⅱ censored samples[J]. AIMS Mathematics, 2025, 10(5): 10554-10590. doi: 10.3934/math.2025480
A two-parameter generalized Lindley distribution is proposed, whose probability density function contains two models that are particularly well-suited for lifetime studies: the inverted J-type and the unimodal left-leaning type. Some of the main numerical characteristics of the proposed distribution were investigated. Additionally, based on progressively type-Ⅱ censored samples, three estimation methods were used to estimate the parameters, reliability function, and hazard function of the distribution: maximum product spacing estimation, maximum likelihood estimation, and Bayesian estimation. Bayesian estimators were obtained under squared error and general entropy loss functions, and the Metropolis-Hastings algorithm was used to obtain Bayesian estimates. In addition to point estimation, corresponding asymptotic confidence intervals and the highest posterior density intervals were also studied. Through Monte Carlo simulation, we measured the performance of the three estimators using four criteria. Finally, the ability of the proposed distribution to accurately fit the data was demonstrated using a real dataset.
| [1] | D. V. Lindley, Fiducial distributions and Bayes' theorem, J. R. Stat. Soc. B., 1 (1958), 102–107. |
| [2] | C. S. Rajitha, A. Akhilnath, Generalization of the Lindley distribution with application to COVID-19 data, Int. J. Data Sci. Anal., 2022. https://doi.org/10.1007/s41060-022-00369-2 |
| [3] |
Y. E. Fatehi, D. S. Chhaya, Extended odd Weibull-Lindley distribution, Aip. Adv., 14 (2024), 035317. https://doi.org/10.1063/5.0192518 doi: 10.1063/5.0192518
|
| [4] |
S. K. Ashour, M. A. Eltehiwy, Exponentiated power Lindley distribution, J. Adv. Res., 6 (2015), 895–905. https://doi.org/10.1016/j.jare.2014.08.005 doi: 10.1016/j.jare.2014.08.005
|
| [5] |
M. Alizadeh, S. F. Bagheri, E. Samani, S. Ghobadi, S. Nadarajah, Exponentiated power Lindley power series class of distributions: Theory and applications, Commun. Stat. simul. C., 47 (2018), 2499–2531. https://doi.org/10.1080/03610918.2017.1350270 doi: 10.1080/03610918.2017.1350270
|
| [6] |
L. Schelin, S. S. Luna, Spatial prediction in the presence of left-censoring, Comput. Stat. Data Anal., 74 (2014), 125–141. https://doi.org/10.1016/j.csda.2014.01.004 doi: 10.1016/j.csda.2014.01.004
|
| [7] |
M. Du, J. Sun, Statistical analysis of interval-censored failure time data, J. Appl. Probab. Stat. (Chinese), 37 (2021), 627–654. https://doi.org/10.3969/j.issn.1001-4268.2021.06.006 doi: 10.3969/j.issn.1001-4268.2021.06.006
|
| [8] |
S. W. Lagakos, General right censoring and its impact on the analysis of survival dat, Biometrics, 35 (1979), 139–156. https://doi.org/10.2307/2529941 doi: 10.2307/2529941
|
| [9] |
O. E. Abo-Kasem, R. Ahmed, A. Ibrahim, Maximum product spacings for the Kumaraswamy distributions based on progressive type-Ⅱ censoring schemes, Sci. Rep., 13 (2023), 12063. https://doi.org/10.1038/s41598-023-38594-9 doi: 10.1038/s41598-023-38594-9
|
| [10] |
N. Balakrishnan, N. Kannan, C. T. Lin, S. Wu, Inference for the extreme value distribution under progressive type-Ⅱ censoring, J. Stat. Comput. Simul., 74 (2004), 25–45. https://doi.org/10.1080/0094965031000105881 doi: 10.1080/0094965031000105881
|
| [11] |
J. I. Seo, S. B. Kang, Y. Kim, Robust Bayesian estimation of a bathtub-shaped distribution under progressive type-Ⅱ censoring, Commun. Stat. simul. C., 46 (2017), 1008–1023. https://doi.org/10.1080/03610918.2014.988256 doi: 10.1080/03610918.2014.988256
|
| [12] |
R. Alshenawy, A. Al-Alwan, E. M. Almetwally, A. Z. Afify, H. M. Almongy, Progressive type-Ⅱ censoring schemes of extended Odd Weibull exponential distribution with applications in medicine and engineering, Mathematics., 8 (2020), 1679. https://doi.org/10.3390/math8101679 doi: 10.3390/math8101679
|
| [13] |
R. Shanker, S. N. Sharma, R. Shanker, A two-parameter Lindley distribution for modeling waiting and survival times data, Appl. Math., 4 (2013), 363–368. https://doi.org/10.4236/am.2013.42056 doi: 10.4236/am.2013.42056
|
| [14] |
C. W. Wu, A. Darmawan, N. Y. Wu, A double sampling plan for truncated life tests under two-parameter Lindley distribution, Ann. Oper. Res., 340 (2024), 619–641. https://doi.org/10.1007/s10479-024-05955-0 doi: 10.1007/s10479-024-05955-0
|
| [15] |
C. Tanış, A new Lindley distribution: applications to COVID-19 patients data, Soft. Comput., 28 (2024), 2863–2874. https://doi.org/10.1007/s00500-023-09339-7 doi: 10.1007/s00500-023-09339-7
|
| [16] |
H. K. T. Ng, L. Luo, Y. Hu, F. Duan, Parameter estimation of three-parameter Weibull distribution based on progressively type-Ⅱ censored samples, J. Stat. Comput. Simul., 82 (2012), 1661–1678. https://doi.org/10.1080/00949655.2011.591797 doi: 10.1080/00949655.2011.591797
|
| [17] |
R. Kumar Singh, S. Kumar Singh, U. Singh, Maximum product spacings method for the estimation of parameters of generalized inverted exponential distribution under progressive type Ⅱ censoring, J. Stat. Manag. Syst., 19 (2016), 219–245. https://doi.org/10.1080/09720510.2015.1023553 doi: 10.1080/09720510.2015.1023553
|
| [18] |
N. Alsadat, D. A. Ramadan, E. M. Almetwally, A. H. Tolba, Estimation of some lifetime parameter of the unit half logistic-geometry distribution under progressively type-Ⅱ censored data, J. Radiat. Res. Appl. Sci., 16 (2023), 100674. https://doi.org/10.1016/j.jrras.2023.100674 doi: 10.1016/j.jrras.2023.100674
|
| [19] |
R. Alotaibi, H. Rezk, A. Elshahhat, Analysis of generalized type-Ⅱ progressively hybrid Lindley-exponential data and its modeling in physics, engineering, and management, Aip. Adv., 14 (2024), 045213. https://doi.org/10.1063/5.0197082 doi: 10.1063/5.0197082
|
| [20] |
H. S. Mohammed, A. Elshahhat, R. Alotaibi, Inferences of inverted Gompertz parameters from an adaptive type-Ⅱ progressive hybrid censoring, Phys. Scripta, 98 (2023), 105222. https://doi.org/10.1088/1402-4896/acf5ad doi: 10.1088/1402-4896/acf5ad
|
| [21] |
S. Dey, M. Nassar, D. Kumar, Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function, J. Comput. Appl. Math., 348 (2019), 130–145. https://doi.org/10.1016/j.cam.2018.03.037 doi: 10.1016/j.cam.2018.03.037
|
| [22] | W. H. Greene, Econometric analysis 4th edition, New Jersey: Prentice-Hall, 2000. |
| [23] |
H. S. Mohammed, M. Nassar, R. Alotaibi, A. Elshahhat, Analysis of adaptive progressive type-Ⅱ hybrid censored dagum data with Applications, Symmetry, 14 (2022), 2146. https://doi.org/10.3390/sym14102146 doi: 10.3390/sym14102146
|
| [24] |
K. Ghosh, S. Jammalamadaka, A general estimation method using spacings, J. Stat. Plan. Infer., 93 (2001), 71–82. https://doi.org/10.1016/S0378-3758(00)00160-9 doi: 10.1016/S0378-3758(00)00160-9
|
| [25] | A. A. Mohamed, R. M. Refaey, G. R. AL-Dayian, Bayesian and E-Bayesian estimation for odd generalized exponential inverted Weibull distribution, J. Bus. Environ. Sci., 3 (2024), 275–301. |
| [26] | G. R. AL-Dayian, A. EL-Helbawy, F. Abd EL-Maksoud, Bayesian and maximum likelihood estimation for mixture models of the new Topp-Leone-G Family, Environ. Sci., 4 (2025), 210–253. |
| [27] |
Y. Y. Abdelall, A. S. Hassan, E. M. Almetwally, A new extention of the odd inverse Weibull-G family of distributions: Bayesian and non-Bayesian estimation with engineering applications, Comput. J. Math. Stat. Sci., 3 (2024), 359–388. https://doi.org/10.21608/cjmss.2024.285399.1050 doi: 10.21608/cjmss.2024.285399.1050
|
| [28] |
A. Tolba, Bayesian and non-Bayesian estimation methods for simulating the parameter of the Akshaya distribution, Comput. J. Math. Stat. Sci., 1 (2022), 13–25. https://doi.org/10.21608/cjmss.2022.270897 doi: 10.21608/cjmss.2022.270897
|
| [29] |
M. Nagy, Expected Bayesian estimation based on generalized progressive hybrid censored data for Burr-XII distribution with applications, Aip. Adv., 14 (2024), 015357. https://doi.org/10.1063/5.0184910 doi: 10.1063/5.0184910
|
| [30] |
R. Calabria, G. Pulcini, An engineering approach to Bayes estimation for the Weibull distribution, Microelectron. Reliab., 34 (1994), 789–802. https://doi.org/10.1016/0026-2714(94)90004-3 doi: 10.1016/0026-2714(94)90004-3
|
| [31] |
M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92. https://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802
|
| [32] |
H. Ren, Q. Gong, X. Hu, Estimation of entropy for generalized Rayleigh distribution under progressively Type-Ⅱ censored samples, Axioms, 12 (2023), 776. https://doi.org/10.3390/axioms12080776 doi: 10.3390/axioms12080776
|
| [33] |
A. Bekker, J. J. J. Roux, P. J. Mosteit, A generalization of the compound Rayleigh distribution: using a Bayesian method on cancer survival times, Commun. Stat. Theor. M., 29 (2000), 1419–1433. https://doi.org/10.1080/03610920008832554 doi: 10.1080/03610920008832554
|
| [34] |
K. H. Habib, M. A. Khaleel, H. Al-Mofleh, P. E. Oguntunde, S. J. Adeyeye, Parameters estimation for the [0, 1] truncated Nadarajah Haghighi Rayleigh distribution, Sci. Afr., 23 (2024), e02105. https://doi.org/10.1016/j.sciaf.2024.e02105 doi: 10.1016/j.sciaf.2024.e02105
|
| [35] |
B. Klefsjö, TTT-plotting-a tool for both theoretical and practical problems, J. Stat. Plan. Infer., 29 (1991), 99–110. https://doi.org/10.1016/0378-3758(92)90125-C doi: 10.1016/0378-3758(92)90125-C
|