Citation: Long Wen, Yan Dong, Liang Gao. A new ensemble residual convolutional neural network for remaining useful life estimation[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 862-880. doi: 10.3934/mbe.2019040
[1] | M. Ma, C. Sun and X. F. Chen, Discriminative deep belief networks with ant colony optimization for health status assessment of machine, IEEE T. Instrum. Meas., 66 (2017), 3115–3125. |
[2] | X. S. Si, W. B. Wang, C. H. Hu and D. H. Zhou, Remaining useful life estimation-a review on the statistical data driven approaches. Eur. J. Oper. Res., 213 (2011), 1–14. |
[3] | Y. G. Lei, N. P. Li, L. Guo, N. Li, T. Yan and J. Lin, Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal. Pr., 104 (2018), 799–834. |
[4] | K. Javed, R. Gouriveau and N. Zerhouni, A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering. IEEE Trans. Cybern., 45 (2015), 2626–2639. |
[5] | J. B. Ali, B. Chebel-Morello, L. Saidi, S. Malinowski and F. Fnaiech, Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mech. Syst. Signal. Pr., 56 (2015), 150–172. |
[6] | Y. G. Lei, N. P. Li and J. Lin, A new method based on stochastic process models for machine remaining useful life prediction. IEEE T. Instrum. Meas., 65 (2016), 2671–2684. |
[7] | X. Y. Li, C. Lu, L. Gao, S. Q. Xiao and L. Wen, An Effective Multi-Objective Algorithm for Energy Efficient Scheduling in a Real-Life Welding Shop. IEEE T. Ind. Inform., 14, 12(2018), 5400–5409. |
[8] | X. Y. Li, L. Gao, Q. Pan, L. Wan and K. M. Chao, An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop. IEEE Trans. Syst., (2018), doi: 10.1109/TSMC.2018.2881686. |
[9] | Y. Zhou, W. C. Yi, L. Gao and X. Y. Li, Adaptive differential evolution with sorting crossover rate for continuous optimization problems. IEEE Trans. Cybern., 47 (2017), 2742-2753. |
[10] | N. Daroogheh, A. Baniamerian, N. Meskin N and K. Khorasani, Prognosis and health monitoring of nonlinear systems using a hybrid scheme through integration of PFs and neural networks. IEEE Trans. Syst., 47 (2017), 1990–2004. |
[11] | R. Q. Huang, L. F. Xi, X. L. Li, C. R. Liu, H. Qiu and J. Lee, Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mech. Syst. Signal Pr., 21 (2017), 193–207. |
[12] | R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech and N. Zerhouni, Direct remaining useful life estimation based on support vector regression. IEEE T. Ind. Electron., 64 (2017), 2276–2285. |
[13] | C. Ordóñez, F. S. Lasheras, J. Roca-Pardiñas and F. J. de Cos Juez, A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines. J. Comput. Appl. Math., 346 (2019), 184–191. |
[14] | H. Z. Huang, H. K. Wang, Y. F. Li, L. Zhang and Z. Liu, Support vector machine based estimation of remaining useful life: Current research status and future trends. J. Mech. Sci. Technol., 29 (2015), 151–163. |
[15] | J. Wu, Y. H. Su, Y. W. Cheng, X. Y. Shao, C. Deng and C. Liu, Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system. Appl. Soft. Comput., 68, (2018), 13–23. |
[16] | C. Chen, B. Zhang, G. Vachtsevanos and M. Orchard, Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering. IEEE T. Ind. Electron., 58 (2011), 4353–4364. |
[17] | V. Mathew, T. Toby, V. Singh, B. M. Rao and M. G. Kumar, Prediction of Remaining Useful Lifetime (RUL) of turbofan engine using machine learning. 2017 IEEE International Conference on Circuits and Systems (ICCS), 306–311. |
[18] | J. L. Wang, J. Zhang and X. X. Wang, A data driven cycle time prediction with feature selection in a semiconductor wafer fabrication system. IEEE T. Semiconduct. M., 31 (2018), 173–182. |
[19] | R. Zhao, R. Q. Yan, Z. H. Chen, K. Z. Mao, P. Wang and R. X. Gao, Deep learning and its applications to machine health monitoring. Mech. Syst. Signal. Pr., 115 (2019), 213–237. |
[20] | J. Deutsch and D. He, Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst., 48 (2018), 11–20. |
[21] | J. Deutsch, M. He and D. He, Remaining useful life prediction of hybrid ceramic bearings using an integrated deep learning and particle filter approach. Appl. Sci., 7 (2017), 649. |
[22] | C. Zhang, P. Lim, A. K. Qin and K. C. Tan, Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans. Neural. Netw. Learn. Syst., 28 (2018), 2306–2318. |
[23] | L. Wen, L. Gao and X. Y. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans. Syst., 49 (2019), 136–144. |
[24] | H. H. Yan, J. F. Wan, C. H. Zhang, S. L. Tang, Q. S. Hua and Z. R. Wang, Industrial big data analytics for prediction of remaining useful life based on deep learning. IEEE Access, 6 (2018), 17190–17197. |
[25] | Y. Y. Zhang, X. Y. Li, L. Gao, L. H. Wang and L. Wen, Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning. J. Manuf. Syst., 48 (2018), 34–50. |
[26] | F. O. Heimes, Recurrent neural networks for remaining useful life estimation. International Conference on Prognostics and Health Management (PHM 2008), 1–6. |
[27] | Y. T. Wu, M. Yuan, S. P. Dong, L. Lin and Y. Q. Liu, Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing, 275 (2018), 167–179. |
[28] | J. L. Wang, J. Zhang and X. X. Wang, Bilateral LSTM: A two-dimensional long short-term memory model with multiply memory units for short-term cycle time forecasting in re-entrant manufacturing systems. IEEE T. Ind. Inform., 14 (2018), 748–758. |
[29] | W. N. Lu, Y. P. Li, Y. Cheng, D. S. Meng, B. Liang and P. Zhou, Early fault detection approach with deep architectures. IEEE T. Instrum. Meas., 67 (2018), 1679–1689. |
[30] | L. Wen, X. Y. Li and L. Gao, A new convolutional neural network based data-driven fault diagnosis method. IEEE T. Ind. Electron., 65 (2018), 5990–5998. |
[31] | G. S. Babu, P. L. Zhao and X. L. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life. Int. Conf. Database Syst. Adv. Appl., (2016), 214–228. |
[32] | X. Li, Q. Ding and J. Q. Sun, Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Safe., 172 (2018), 1–11. |
[33] | L. Ren, Y. Q. Sun, H. Wang and L. Zhang, Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access, 6 (2018), 13041–13049. |
[34] | L. Guo, Y. G. Lei, N. P. Li, T. Yan and N. B. Li, Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing, 292 (2018), 142–150. |
[35] | A. Z. Hinchi and M. Tkiouat, Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network. Procedia. Comput. Sci., 127 (2018), 123–132. |
[36] | K. M. He, X. Y. Zhang, S. Q. Ren SQ and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. Proceedings of the IEEE International Conference on Computer Vision, (2015), 1026–1034. |
[37] | K. M. He, X. Y. Zhang, S. Q. Ren, Ren SQ, J. Sun, Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. |
[38] | T. W. Rauber, F. Assis Boldt and F. M. Varejão, Heterogeneous feature models and feature selection applied to bearing fault diagnosis. IEEE T. Ind. Electron., 62 (2015), 637–646. |
[39] | P. Lim, C. K. Goh and K. C. Tan, A time window neural network based framework for Remaining Useful Life estimation. 2016 International Joint Conference on Neural Networks (IJCNN), 1746–1753. |
[40] | Y. LeCun and Y. Bengio, Convolutional networks for images, speech, and time series, In: The handbook of brain theory and neural networks, MIT Press Cambridge, MA, USA, 1995. |
[41] | Y. Bengio, A. Courville and P. Vincent, Representation learning: A review and new perspectives. IEEE T. Pattern. Anal., 35 (2013), 1798–1828. |
[42] | M. Xiao, L. Wen, X. Li and L. Gao, Modeling of the feed-motor transient current in end milling by using varying-coefficient model. Math. Probl. Eng., 2015. |
[43] | T. Han, D. Jiang, Q. Zhao Q, L. Wang and K. Yin, Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Trans. I. Meas. Control., (2017), 1–13. |
[44] | PHM08 Challenge Data Set, NASA Data Repository, 2018. Available from: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan. |
[45] | S. Zheng, K. Ristovski, A. Farahat A and C. Gupta, Long short-term memory network for remaining useful life estimation. 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), 88–95. |
[46] | S. K. Singh, S. Kumar, J. P. Dwivedi, A novel soft computing method for engine RUL prediction. Multimed. Tools Appl., (2017), 1–23. |