In this paper, we established the boundedness of higher-order commutators $ I_{\beta, b}^{m} $ generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces $ \mathrm{M\dot{K}}_{\lambda, p(\cdot)}^{\alpha, r), \theta}(\omega) $. We also obtained the boundedness of the $ m- $order multilinear fractional Hardy operator $ \mathcal{H}_{\beta, m} $ and its adjoint operator $ \mathcal{H}^{\ast}_{\beta, m} $ on weighted variable-exponent Herz-Morrey spaces $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) $.
Citation: Ming Liu, Binhua Feng. Grand weighted variable Herz-Morrey spaces estimate for some operators[J]. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012
In this paper, we established the boundedness of higher-order commutators $ I_{\beta, b}^{m} $ generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces $ \mathrm{M\dot{K}}_{\lambda, p(\cdot)}^{\alpha, r), \theta}(\omega) $. We also obtained the boundedness of the $ m- $order multilinear fractional Hardy operator $ \mathcal{H}_{\beta, m} $ and its adjoint operator $ \mathcal{H}^{\ast}_{\beta, m} $ on weighted variable-exponent Herz-Morrey spaces $ \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) $.
| [1] |
O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 582–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
|
| [2] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
| [3] |
L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr., 268 (2004), 31–43. https://doi.org/10.1002/mana.200310157 doi: 10.1002/mana.200310157
|
| [4] |
A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^{n})$, Math. Inequal. Appl., 7 (2004), 255–265. https://doi.org/10.7153/mia-07-28 doi: 10.7153/mia-07-28
|
| [5] | H. Wang, Z. Fu, Z. Liu, Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces, Acta Math. Sci. A, 32 (2012), 1092–1101. |
| [6] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
|
| [7] |
M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
|
| [8] |
L. Wang, M. Qu, L. Shu, Higher Order Commutators of Fractional Integral Operator on the Homogeneous Herz Spaces with Variable Exponent, J. Funct. Space. Appl., 2013 (2013), 1–7. https://doi.org/10.1155/2013/257537 doi: 10.1155/2013/257537
|
| [9] |
S. Lu, L. Xu, Boundedness of rough singular integral operators on the Homogeneous Morrey-Herz spaces, Hokkaido Math. J., 34 (2005), 299–314. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
|
| [10] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
| [11] |
M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
|
| [12] | J. Wu, P. Zhang, Boundedness of Multilinear Fractional Hardy Operators on the Product of Herz-Morrey Spaces with Variable Exponent, J. Coll. Univ., 2 (2013), 154–164. |
| [13] |
J. Wu, Boundedness for commutators of fractional integrals on Herz-Morrey spaces with variable exponent, Kyoto J. Math., 54 (2014), 483–495. https://doi.org/10.1215/21562261-2693397 doi: 10.1215/21562261-2693397
|
| [14] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 223–238. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
|
| [15] |
D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Am. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730
|
| [16] | M. Izuki, Remarks on Muckebhoupt weights with variable exponent, J.Anal. Appl., 11 (2013), 27–41. |
| [17] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
|
| [18] |
M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 1–15. https://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9
|
| [19] |
M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 11 (2017), 799–816. https://doi.org/10.7153/jmi-2017-11-62 doi: 10.7153/jmi-2017-11-62
|
| [20] |
M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
|
| [21] |
M. Asim, A. Hussain, N. Sarfraz, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 1–12. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
|
| [22] |
A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the Fractional Hardy Operator on Weighted Variable Herz-Morrey Spaces, J. Funct. Space., 2021 (2021), 1–10. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
|
| [23] | S. Wang, J. Xu, Commutators of bilinear hardy operators on weighted Herz-Morrey spaces with variable exponent, Acta Math. Sin., 64 (2021), 123–138. |
| [24] |
S. Wang, J. Xu, Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponent, Open Math., 19 (2021), 412–426. https://doi.org/10.1515/math-2021-0024 doi: 10.1515/math-2021-0024
|
| [25] | D. Xiao, L. Shu, Boundedness of Marcinkiewicz integrals in weighted variable exponent Herz-Morrey spaces, Math. Res. Commun., 34 (2018), 371–382. |
| [26] | H. Zhao, Z. Liu, Boundedness of commutators of fractional integral operators on variable weighted Herz-Morrey spaces, Adv. Math., 51 (2022), 103–116. |
| [27] |
H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New Estimations of Hermite-Hadamard Type Integral Inequalities for Special Functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
|
| [28] |
F. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
|
| [29] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
|
| [30] |
M. Chirst, L. Grafakos, Best constants for two non-convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6
|
| [31] |
Z. Fu, Z. Liu, S. Lu, H. Wong, Characterization for commutators of $n-$dimensional fractional Hardy operators, Sci. China, Ser. A: Math., 50 (2007), 1418–1426. https://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
|
| [32] |
B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of Fractional Integrals on Grand Weighted Herz-Morrey Spaces with Variable Exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
|
| [33] |
B. Sultan, M. Sultan, M. Mehmood, M. Azmi, F. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
|
| [34] | C. Bennett, R. C. Sharpley, Interpolation of Operators, Springer-Verlag, New York, 1988. |
| [35] |
A. L. Bernardis, E. D. Dalmasso, G. G. Pradolini, Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces, Ann. Acad. Sci. Fenn. Math., 39 (2014), 23–50. https://doi.org/10.5186/aasfm.2014.3904 doi: 10.5186/aasfm.2014.3904
|
| [36] |
A. W. Huang, J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69–77. https://doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
|
| [37] |
C. Kening, E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1991), 1–15. http://dx.doi.org/10.4310/mrl.1999.v6.n1.a1 doi: 10.4310/mrl.1999.v6.n1.a1
|