This paper focuses on a class of fourth-order parabolic systems involving logarithmic and Rellich nonlinearities arising from modeling epitaxial thin film growth:
$ \left\{ {\begin{array}{*{20}{c}} {{u_t} + {\Delta ^2}u = {{\left| v \right|}^p}{{\left| u \right|}^{p - 2}}u\ln \left| {uv} \right| - \mu \frac{u}{{{{\left| x \right|}^4}}},}\\ {{v_t} + {\Delta ^2}v = {{\left| u \right|}^p}{{\left| v \right|}^{p - 2}}v\ln \left| {uv} \right| - \gamma \frac{v}{{{{\left| x \right|}^4}}}}. \end{array}} \right. $
By using some new techniques to deal with the Rellich nonlinearities $ \mu \frac{u}{{{{\left| x \right|}^4}}} $ and $ \gamma \frac{v}{{{{\left| x \right|}^4}}} $, as well as the coupled logarithmic nonlinearities $ {\left| v \right|^p}{\left| u \right|^{p - 2}}u\ln \left| {uv} \right| $ and $ {\left| u \right|^p}{\left| v \right|^{p - 2}}v\ln \left| {uv} \right| $, we prove the global existence and finite time blow-up of weak solutions. Furthermore, we not only obtain a new algebraic decay estimate and study the behavior of global weak solutions, but we also derive a new upper bound estimate for the blow-up time in case of the occurrence of blow-up.
Citation: Tingfu Feng, Yan Dong, Kelei Zhang, Yan Zhu. Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth[J]. Communications in Analysis and Mechanics, 2025, 17(1): 263-289. doi: 10.3934/cam.2025011
This paper focuses on a class of fourth-order parabolic systems involving logarithmic and Rellich nonlinearities arising from modeling epitaxial thin film growth:
$ \left\{ {\begin{array}{*{20}{c}} {{u_t} + {\Delta ^2}u = {{\left| v \right|}^p}{{\left| u \right|}^{p - 2}}u\ln \left| {uv} \right| - \mu \frac{u}{{{{\left| x \right|}^4}}},}\\ {{v_t} + {\Delta ^2}v = {{\left| u \right|}^p}{{\left| v \right|}^{p - 2}}v\ln \left| {uv} \right| - \gamma \frac{v}{{{{\left| x \right|}^4}}}}. \end{array}} \right. $
By using some new techniques to deal with the Rellich nonlinearities $ \mu \frac{u}{{{{\left| x \right|}^4}}} $ and $ \gamma \frac{v}{{{{\left| x \right|}^4}}} $, as well as the coupled logarithmic nonlinearities $ {\left| v \right|^p}{\left| u \right|^{p - 2}}u\ln \left| {uv} \right| $ and $ {\left| u \right|^p}{\left| v \right|^{p - 2}}v\ln \left| {uv} \right| $, we prove the global existence and finite time blow-up of weak solutions. Furthermore, we not only obtain a new algebraic decay estimate and study the behavior of global weak solutions, but we also derive a new upper bound estimate for the blow-up time in case of the occurrence of blow-up.
| [1] | F. Rellich, Halbbeschränkte Differentialoperatoren Höherer Ordnung, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. Ⅲ, 243–250, 1956. |
| [2] | F. Rellich, J. Berkowitz, Perturbation theory of eigenvalue problems, Gordon and Breach, New York, 1969. |
| [3] |
E. B. Davies, A. M. Hinz, Explicit constants for Rellich inequalities in $L_p\left(\Omega \right) $, Math. Z., 227 (1998), 511–523. https://doi.org/10.1007/PL00004389 doi: 10.1007/PL00004389
|
| [4] |
P. Caldiroli, R. Musina, Rellich inequalities with weights, Calc. Var. Partial Differential Equations, 45 (2012), 147–164. https://doi.org/10.1007/s00526-011-0454-3 doi: 10.1007/s00526-011-0454-3
|
| [5] |
A. Zangwill, Some causes and a consequence of epitaxial roughening, J. Cryst. Growth, 163 (1996), 8–21. https://doi.org/10.1016/0022-0248(95)01048-3 doi: 10.1016/0022-0248(95)01048-3
|
| [6] |
M. Ortiz, E. A. Repetto, H. Si, A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47 (1999), 697–730. https://doi.org/10.1016/S0022-5096(98)00102-1 doi: 10.1016/S0022-5096(98)00102-1
|
| [7] |
T. P. Schulze, R. V. Kohn, A geometric model for coarsening during spiral-mode growth of thin films, Phys. D, 132 (1999), 520–542. https://doi.org/10.1016/S0167-2789(99)00108-6 doi: 10.1016/S0167-2789(99)00108-6
|
| [8] |
M. Raible, S. Linz, P. Hanggi, Amorphous thin film growth: minimal deposition equation, Phys. Rev. E, 62 (2000), 1691–1694. https://doi.org/10.1103/PhysRevE.62.1691 doi: 10.1103/PhysRevE.62.1691
|
| [9] |
M. Raible, S. G. Mayr, S. J. Linz, M. Moske, P. Hänggi, K. Samwer, Amorphous thin film growth:theory compared with experiment, Europhys. Lett., 50 (2000), 61–67. https://doi.org/10.1209/epl/i2000-00235-7 doi: 10.1209/epl/i2000-00235-7
|
| [10] |
M. Raible, S. Linz, P. Hanggi, Amorphous thin film growth: modeling and pattern formation, Adv. Solid State Phys., 41 (2001), 391–403. https://doi.org/10.1007/3-540-44946-9_32 doi: 10.1007/3-540-44946-9_32
|
| [11] |
O. Stein, M. Winkler, Amorphous molecular beam epitaxy: global solutions and absorbing sets, European J. Appl. Math., 16 (2005), 767–798. https://doi.org/10.1017/S0956792505006315 doi: 10.1017/S0956792505006315
|
| [12] |
D. Blömker, C. Nolde, J. Robinson, Rigorous numerical verification of uniqueness and smoothness in a surface growth model, J. Math. Anal. Appl., 4 (2015), 311–325. https://doi.org/10.1016/j.jmaa.2015.04.025 doi: 10.1016/j.jmaa.2015.04.025
|
| [13] |
J. Yang, Energy conservation for weak solutions of a surface growth model, J. Differ. Equ., 283 (2021), 71–84. https://doi.org/10.1016/j.jde.2021.02.040 doi: 10.1016/j.jde.2021.02.040
|
| [14] |
D. Blömker, C. Gugg, On the existence of solutions for amorphous molecular beam epitaxy, Nonlinear Anal. Real World Appl., 3 (2002), 61–73. https://doi.org/10.1016/S1468-1218(01)00013-X doi: 10.1016/S1468-1218(01)00013-X
|
| [15] |
D. Blömker, C. Gugg, M. Raible, Thin-film-growth models: Roughness and correlation functions, Eur. J. Appl. Math., 13 (2002), 385–402. https://doi.org/10.1017/S0956792502004886 doi: 10.1017/S0956792502004886
|
| [16] |
R. V. Kohn, X. Yan, Upper bound on the coarsening rate for an epitaxial growth model, Comm. Pure Appl. Math., 56 (2003), 1549–1564. https://doi.org/10.1002/cpa.10103 doi: 10.1002/cpa.10103
|
| [17] |
B. B. King, O. Stein, M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth reaction-diffusion systems, J. Math. Anal. Appl., 286 (2003), 459–490. https://doi.org/10.1016/S0022-247X(03)00474-8 doi: 10.1016/S0022-247X(03)00474-8
|
| [18] |
M. Winkler, Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth, Z. Angew. Math. Phys., 62 (2011), 575–608. https://doi.org/10.1007/s00033-011-0128-1 doi: 10.1007/s00033-011-0128-1
|
| [19] |
C. Liu, Regularity of solutions for a fourth order parabolic equation, Bull. Belg. Math. Soc. Simon Stevin, 13 (2006), 527–535. https://doi.org/10.36045/bbms/1161350694 doi: 10.36045/bbms/1161350694
|
| [20] |
C. Liu, A fourth order parabolic equation with nonlinear principal part, Nonlinear Anal., 68 (2008), 393–401. https://doi.org/10.1016/j.na.2006.11.005 doi: 10.1016/j.na.2006.11.005
|
| [21] |
X. Li, C. Melcher, Well-posedness and stability for a class of fourth-order nonlinear parabolic equations, J. Differ. Equ., 391 (2024), 25–56. https://doi.org/10.1016/j.jde.2024.01.038 doi: 10.1016/j.jde.2024.01.038
|
| [22] |
J. Zhao, B. Guo, J. Wang, Global existence and blow-up of weak solutions for a fourth-order parabolic equation with gradient nonlinearity, Z. Angew. Math. Phys., 75 (2024), 12. https://doi.org/10.1007/s00033-023-02148-w doi: 10.1007/s00033-023-02148-w
|
| [23] |
Y. Feng, B. Hu, X. Xu, Suppression of epitaxial thin film growth by mixing, J. Differ. Equ., 317 (2022), 561–602. https://doi.org/10.1016/j.jde.2022.02.011 doi: 10.1016/j.jde.2022.02.011
|
| [24] |
L. Agelas, Global regularity of solutions of equation modeling epitaxy thin film growth in ${\mathbb{R}^d}, d = 1, 2$, J. Evol. Equ., 15 (2015), 89–106. https://doi.org/10.1007/s00028-014-0250-6 doi: 10.1007/s00028-014-0250-6
|
| [25] |
R. Xu, T. Chen, C. Liu, Y. Ding, Global well-posedness and global attractor of fourth order semilinear parabolic equation, Math. Methods Appl. Sci., 38 (2015), 1515–1529. https://doi.org/10.1002/mma.3165 doi: 10.1002/mma.3165
|
| [26] |
G. T. Dee, W. Van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett., 60 (1988), 2641–2644. https://doi.org/10.1103/PhysRevLett.60.2641 doi: 10.1103/PhysRevLett.60.2641
|
| [27] |
Y. Liu, W. Li, A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 4367–4381. https://doi.org/10.3934/dcdss.2021112 doi: 10.3934/dcdss.2021112
|
| [28] |
J. Zhou, Global asymptotical behavior and some new blow-up conditions of solutions to a thin-film equation, J. Math. Anal. Appl., 464 (2018), 1290–1312. https://doi.org/10.1016/j.jmaa.2018.04.058 doi: 10.1016/j.jmaa.2018.04.058
|
| [29] |
Q. Li, W. Gao, Y. Han, Global existence blow up and extinction for a class of thin-film equation, Nonlinear Anal., 147 (2016), 96–109. https://doi.org/10.1016/j.na.2016.08.021 doi: 10.1016/j.na.2016.08.021
|
| [30] |
J. D. Barrow, P. Parson, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576–5587. https://doi.org/10.1103/PhysRevD.52.5576 doi: 10.1103/PhysRevD.52.5576
|
| [31] |
S. D. Martino, M. Falanga, C. Godano, G. Lauro, Logarithmic Schrodinger-like equation as a model for magma transport, Europhys, Lett., 63 (2003), 472–475. https://doi.org/10.1209/epl/i2003-00547-6 doi: 10.1209/epl/i2003-00547-6
|
| [32] |
D. A. Brown, H. C. Berg, Temporal stimulation of chemotaxis in escherichia coli, Proc. Natl. Acad. Sci., 71 (1974), 1388–1392. https://doi.org/10.1073/pnas.71.4.1388 doi: 10.1073/pnas.71.4.1388
|
| [33] |
Y. V. Kalinin, L. Jiang, Y. Tu, M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439–2448. https://doi.org/10.1016/j.bpj.2008.10.027 doi: 10.1016/j.bpj.2008.10.027
|
| [34] |
Z. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601–641. https://doi.org/10.3934/dcdsb.2013.18.601 doi: 10.3934/dcdsb.2013.18.601
|
| [35] |
F. Gazzola, T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integral Equ., 18 (2005), 961–990. https://doi.org/10.57262/die/1356060117 doi: 10.57262/die/1356060117
|
| [36] |
H. Chen, P. Luo, G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84–98. https://doi.org/10.1016/j.jmaa.2014.08.030 doi: 10.1016/j.jmaa.2014.08.030
|
| [37] |
Y. Han, Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 474 (2019), 513–517. https://doi.org/10.1016/j.jmaa.2019.01.059 doi: 10.1016/j.jmaa.2019.01.059
|
| [38] |
Y. Han, W. Gao, X. Shi, A class of thin-film equations with logarithmic nonlinearity (in Chinese), Sci. Sin. Math., 49 (2019), 1765–1778. https://doi.org/10.1360/N012018-00024 doi: 10.1360/N012018-00024
|
| [39] |
J. Zhou, Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth, Nonlinear Anal. Real World Appl., 48 (2019), 54–70. https://doi.org/10.1016/j.nonrwa.2019.01.001 doi: 10.1016/j.nonrwa.2019.01.001
|
| [40] |
M. Liao, Q. Li, A class of fourth-order parabolic equations with logarithmic nonlinearity, Taiwanese J. Math., 24 (2020), 975–1003. https://doi.org/10.11650/tjm/190801 doi: 10.11650/tjm/190801
|
| [41] |
J. Zhou, Behavior of solutions to a fourth-order nonlinear parabolic equation with logarithmic nonlinearity, Appl. Math. Optim., 84 (2021), 191–225. https://doi.org/10.1007/s00245-019-09642-6 doi: 10.1007/s00245-019-09642-6
|
| [42] |
C. Liu, Y. Ma, H. Tang, Lower bound of blow-up time to a fourth order parabolic equation modeling epitaxial thin film growth, Appl. Math. Lett., 111 (2021), 106609. https://doi.org/10.1016/j.aml.2020.106609 doi: 10.1016/j.aml.2020.106609
|
| [43] |
H. Ding, J. Zhou, Infinite time blow-up of solutions to a fourth-order nonlinear parabolic equation with logarithmic nonlinearity modeling epitaxial growth, Mediterr. J. Math., 18 (2021), 240. https://doi.org/10.1007/s00009-021-01880-9 doi: 10.1007/s00009-021-01880-9
|
| [44] |
B. Liu, K. Li, F. Li, Asymptotic estimate of weak solutions in a fourth-order parabolic equation with logarithm, J. Math. Phys., 64 (2023), 011513. https://doi.org/10.1063/5.0088490 doi: 10.1063/5.0088490
|
| [45] |
R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x
|
| [46] |
L. E. Payne, D. H. Sattinger. Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math., 22 (1975), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595
|
| [47] |
D. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148–172. https://doi.org/10.1007/BF00250942 doi: 10.1007/BF00250942
|
| [48] |
J. Han, K. Wang, R. Xu, C. Yang, Global quantitative stability of wave equations with strong and weak dampings, J. Differ. Equations., 390 (2024), 228–344. https://doi.org/10.1016/j.jde.2024.01.033 doi: 10.1016/j.jde.2024.01.033
|
| [49] |
Y. Luo, R. Xu, C. Yang, Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities, Calc. Var Partial. Dif., 61 (2022), 210. https://doi.org/10.1007/s00526-022-02316-2 doi: 10.1007/s00526-022-02316-2
|
| [50] |
W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear. Anal., 9 (2019), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
|
| [51] |
C. Yang, V. D. Radulescu, R. Xu, M. Zhang, Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models, Adv. Nonlinear. Stud., 22 (2022), 436–468. https://doi.org/10.1515/ans-2022-0024 doi: 10.1515/ans-2022-0024
|
| [52] |
X. Wang, R. Xu. Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear. Anal., 10 (2020), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141
|
| [53] |
W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations., 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047
|
| [54] |
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1976), 1061–1083. https://doi.org/10.2307/2373688 doi: 10.2307/2373688
|
| [55] | E. Lieb, M. Loss, Analysis: Second Edition, Graduate Studies in Mathematics, AMS, 2001. https://doi.org/10.1090/gsm/014 |
| [56] |
M. D. Pino, J. Dolbeault, Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian, C. R. Math. Acad. Sci. Paris, 334 (2002), 365–370. https://doi.org/10.1016/S1631-073X(02)02225-2 doi: 10.1016/S1631-073X(02)02225-2
|
| [57] |
C. N. Le, X. T. Le, Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Acta. Appl. Math., 151 (2017), 149–169. https://doi.org/10.1007/s10440-017-0106-5 doi: 10.1007/s10440-017-0106-5
|
| [58] |
P. Drabek, S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect., 127 (1997), 703–726. https://doi.org/10.1017/S0308210500023787 doi: 10.1017/S0308210500023787
|
| [59] |
J. Simon, Compact sets in the space ${L^p}\left({0, T;B} \right)$, Ann. Mat. Pur. Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
|