Aspect-based sentiment analysis (ABSA) is a fine-grained and diverse task in natural language processing. Existing deep learning models for ABSA face the challenge of balancing the demand for finer granularity in sentiment analysis with the scarcity of training corpora for such granularity. To address this issue, we propose an enhanced BERT-based model for multi-dimensional aspect target semantic learning. Our model leverages BERT's pre-training and fine-tuning mechanisms, enabling it to capture rich semantic feature parameters. In addition, we propose a complex semantic enhancement mechanism for aspect targets to enrich and optimize fine-grained training corpora. Third, we combine the aspect recognition enhancement mechanism with a CRF model to achieve more robust and accurate entity recognition for aspect targets. Furthermore, we propose an adaptive local attention mechanism learning model to focus on sentiment elements around rich aspect target semantics. Finally, to address the varying contributions of each task in the joint training mechanism, we carefully optimize this training approach, allowing for a mutually beneficial training of multiple tasks. Experimental results on four Chinese and five English datasets demonstrate that our proposed mechanisms and methods effectively improve ABSA models, surpassing some of the latest models in multi-task and single-task scenarios.
Citation: Quan Zhu, Xiaoyin Wang, Xuan Liu, Wanru Du, Xingxing Ding. Multi-task learning for aspect level semantic classification combining complex aspect target semantic enhancement and adaptive local focus[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18566-18591. doi: 10.3934/mbe.2023824
[1] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[2] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266 |
[3] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[4] | Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198 |
[5] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[6] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
[7] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[8] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232 |
Aspect-based sentiment analysis (ABSA) is a fine-grained and diverse task in natural language processing. Existing deep learning models for ABSA face the challenge of balancing the demand for finer granularity in sentiment analysis with the scarcity of training corpora for such granularity. To address this issue, we propose an enhanced BERT-based model for multi-dimensional aspect target semantic learning. Our model leverages BERT's pre-training and fine-tuning mechanisms, enabling it to capture rich semantic feature parameters. In addition, we propose a complex semantic enhancement mechanism for aspect targets to enrich and optimize fine-grained training corpora. Third, we combine the aspect recognition enhancement mechanism with a CRF model to achieve more robust and accurate entity recognition for aspect targets. Furthermore, we propose an adaptive local attention mechanism learning model to focus on sentiment elements around rich aspect target semantics. Finally, to address the varying contributions of each task in the joint training mechanism, we carefully optimize this training approach, allowing for a mutually beneficial training of multiple tasks. Experimental results on four Chinese and five English datasets demonstrate that our proposed mechanisms and methods effectively improve ABSA models, surpassing some of the latest models in multi-task and single-task scenarios.
Fractional calculus signifies the identity of the distinguished materials in the modern research field due to its integrated applications in diverse regions such as mathematical physics, fluid dynamics, mathematical biology, etc. Convex function, exponentially convex function [1,2,3,4,5], related inequalities like as trapezium inequality, Ostrowski's inequality and Hermite Hadamard inequality, integrals [6,7,8,9,10] having succeed in mathematical analysis, approximation theory due to immense applications [11,12] have great importance in mathematics theory. Many authors established quadrature rules in numerical analysis for approximate definite integrals. Recently, Pólya-Szegö and Chebyshev inequalities occupied immense space in the field analysis. Chebyshev [13] was introduced the well-known inequality called Chebyshev inequality.
In the literature of convex function, the Jensen inequality has gained much importance which describes a connection between an integral of the convex function and the value of the convex function of an interval [14,15,16]. Pshtiwan and Thabet [17] considered the modified Hermite Hadamard inequality in the context of fractional calculus using the Riemann-Liouville fractional integrals. Arran and Pshtiwan [18] discussed the Hermite Hadamard inequality results with fractional integrals and derivatives using Mittag-Leffler kernel. Pshtiwan and Thabet [19] constructed a connection between the Riemann-Liouville fractional integrals of a function concerning a monotone function with nonsingular kernel and Atangana-Baleanu. Pshtiwan and Brevik [20] obtained an inequality of Hermite Hadamard type for Riemann-Liouville fractional integrals, and proved the application of obtained inequalities on modified Bessel functions and q-digamma function. In [21], Set et al. introduced Grüss type inequalities by employing generalized k-fractional integrals. Recently, Nisar et al. [22] gave some new generalized fractional integral inequalities.
Very recently, the fractional conformable and proportional fractional integral operators were given in [23,24]. Later on, Huang et al. [25] gave Hermite–Hadamard type inequalities by using fractional conformable integrals (FCI). Qi et al. [26] investigated Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain Minkowski's type inequalities are found in [27,28,29]. Nisar et al. [30] have investigated some new inequalities for a class of n (n∈N) positive, continuous, and decreasing functions by employing FCI. Rahman et al. [31] introduced Grüss type inequalities for k-fractional conformable integrals.
Some significant inequalities are given as applications of fractional integrals [32,33,34,35,36,37,38]. Recently, Rahman et al. [39,40] presented fractional integral inequalities involving tempered fractional integrals. Qiang et al. [41] discussed a fractional integral containing the Mittag-Leffler function in inequality theory and contributed Hadamard type inequality, continuity, and boundedness, upper bounds of that integral. Nisar et al. [42] established weighted fractional Pólya-Szegö and Chebyshev type integral inequalities by operating the generalized weighted fractional integral involving kernel function. The dynamical approach of fractional calculus [43,44,45,46,47,48,49] in the field of inequalities.
Grüss inequality [50] established for two integrable function as follows
|T(h,l)|≤(k−K)(s−S)4, | (1.1) |
where the h and l are two integrable functions which are synchronous on [a,b] and satisfy:
s≤h(z)≤K,s≤l(y1)≤S, z,y1∈[a,b] | (1.2) |
for some s,k,S,K∈R.
Pólya and Szegö [51] proved the inequalities
∫bah2(z)dz∫abl2(z)dz(∫abh(z)l(z)dz)2≤14(√KSks+√ksKS)2. | (1.3) |
Dragomir and Diamond [52], proves the inequality by using the Pólya-szegö inequality
|T(h,l)|≤(S−s)(K−k)4(b−a)2√skSK∫bah(z)l(z)dz | (1.4) |
where h and l are two integrable functions which are synchronous on [a,b], and
0<s≤h(z)≤S<∞,0<k≤l(y1)≤K<∞, z,y1∈[a,b] | (1.5) |
for some s,k,S,K∈R.
The aim of this paper is to estimate a new version of Pólya-Szegö inequality, Chebyshev integral inequality, and Hermite Hadamard type integral inequality by a fractional integral operator having a nonsingular function (generalized multi-index Bessel function) as a kernel, and these established results have great contribution in the field of inequalities. The Hermite Hadamard type integral inequality provides the upper and lower estimate to find the average integral for the convex function of any defined interval.
The structure of the paper follows:
In section 2, we present some well-known definitions and mathematical preliminaries. The new generalized fractional integral with nonsingular function as a kernel is defined in section 3. In section 4, we present Hermite Hadamard type Mercer inequality of new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel. some inequalities of (s−m)-preinvex function involving new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel are presented in section 5. Here section 6 and 7, we present Pólya-Szegö and Chebyshev integral inequalities involving generalized fractional integral operator with nonsingular function as a kernel, respectively.
Definition 2.1. The inequality holds for the convex function if a mapping g:K→R exist as
g(δy1+(1−δ)y2)≤δg(y1)+(1−δ)g(y2), | (2.1) |
where ∀y1,y2∈K and δ∈[0,1].
Definition 2.2. The inequality derived by Hermite [53] call as Hermite Hadamard inequality
g(y1+y22)≤1y2−y1∫y2y1g(t)dt≤g(y1)+g(y2)2, | (2.2) |
where y1,y2∈I, with y2≠y1, if g:I⊆R→R is a convex function.
Definition 2.3. Let yj∈K for all j∈In, ωj>0 such that ∑j∈Inωj=1. Then the Jensen inequality holds
g(∑j∈Inωjyj)≤∑j∈Inωjg(yj), | (2.3) |
exist if g:k→R is convex function.
Mercer [54] derived the Mercer inequality by applying the Jensen inequality and properties of convex function.
Definition 2.4. Let yj∈K for all j∈In, ωj>0 such that ∑j∈Inωj=1, m=minj∈In{yj} and n=maxj∈In{yj}. Then the inequality holds for convex function as
g(m+n−∑i∈Inωjyj)≤g(m)+g(n)−∑j∈Inωjg(yj), | (2.4) |
if g:k→R is convex function.
Definition 2.5. [55] The inequality holds for exponentially convex function, if a real valued mapping g:K→R exist as
g(δy1+(1−δ)y2)≤δg(y1)eθy1+(1−δ)g(y2)eθy2, | (2.5) |
where ∀y1,y2∈K and δ∈[0,1] and θ∈R.
Suppose that Ω⊆Rn is a set. Let g:Ω→R continuous function and let ξ:Ω×Ω→Rn be continuous function:
Definition 2.6. [56] With respect to bifunction ξ(.,.) a set Ω is called a invex set, if
y1+δξ(y2,y1), | (2.6) |
where ∀y1,y2∈Ω,δ∈[0,1].
Definition 2.7. [57] A invex set Ω and a mapping g with respect to ξ(.,.) is called a preinvex function, as
g(y1+δξ(y2,y1))≤(1−δ)g(y1)+δg(y2), | (2.7) |
where ∀ y1,y2+ξ(y2,y1)∈Ω,δ∈[0,1].
Definition 2.8. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially preinvex, if the inequality
g(y1+δξ(y2,y1))≤(1−δ)g(y1)eθy1+δg(y2)eθy2, | (2.8) |
where for all y1,y2+ξ(y2,y1)∈Ω,δ∈[0,1] and θ∈R.
Definition 2.9. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially s-preinvex, if
g(y1+δξ(y2,y1))≤(1−δ)sg(y1)eθy1+δsg(y2)eθy2, | (2.9) |
where for all y1,y2+ξ(y2,y1)∈Ω,δ∈[0,1], s∈(0,1] and θ∈R.
Definition 2.10. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called exponentially (s-m)-preinvex, if
g(y1+mδξ(y2,y1))≤(1−δ)sg(y1)eθy1+mδsg(y2)eθy2, | (2.10) |
where for all y1,y2+ξ(y2,y1)∈Ω, δ,m∈[0,1] and θ∈R.
Definition 2.11. [58] Generalized multi-index Bessel function is defined by Choi et al as follows
J(ξj)m,λ(δj)m,σ(z)=∞∑s=0(λ)σs∏mj=1Γ(ξjs+δj+1)(−z)ss!, | (2.11) |
where ξj,δj,λ∈C, (j=1,⋯,m), ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0.
Definition 2.12. [58] Pohhammer symbol is defined for λ∈C as follows
(λ)s={λ(λ+1)⋯(λ+s−1),s∈N1,s=0, | (2.12) |
=Γ(λ+s)Γ(λ),(λ∈C/Z0) | (2.13) |
where Γ being the Gamma function.
This section presents a generalized fractional integral operator with a nonsingular function (multi-index Bessel function) as a kernel.
Definition 3.1. Let ξj,δj,λ,ζ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξj)>max{0:ℜ(σ)−1},σ>0. Let g∈L [y1,y2] and t∈[y1,y2]. Then the corresponding left sided and right sided generalized integral operators having generalized multi-index Bessel function defined as:
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)=∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g(t)dt, | (3.1) |
and
(Œ(ξj,δj)mλ,σ,ζ;y−2g)(z)=∫y2z(t−z)δjJ(ξj)m,λ(δj)m,σ(ζ(t−z)ξj)g(t)dt. | (3.2) |
Remark 3.1. The special cases of generalized fractional integrals with nonsingular kernel are given below:
1. If set j=m=1, σ=0 and limits from [0,z] in Eq (3.1), we get a fractional integral defined by Srivastava and Singh in [59] as
(Œξ1,δ1λ,0,ζ;0+g)(z)=∫z0(z−t)δ1Jξ1δ1(ζ(z−t)ξ1)g(t)dt=f(z). | (3.3) |
2. If set j=m=1, δ1=δ1−1 in Eq (3.1), we have a fractional integral defined by Srivastava and Tomovski in [60] as
(Œξ1,δ1−1λ,σ,ζ;y+1g)(z)=(Eζ;λ,σy+1;ξ−1,δ1g)(z). | (3.4) |
3. If set j=m=1, δ1=δ1−1, ζ=0 in Eq (3.1), we get a Riemann-Liouville fractional integral operator defined in [61] as
(Œξ1,δ1λ,σ,ζ;y+1g)(z)=(Iδ1y+1g)(z). | (3.5) |
4. If set j=m=1, σ=1, δ1=δ1−1, in Eq (3.1) and Eq (3.2), we get the fractional integral operator defined by Prabhakar in [62] as follows
(Œξ1,δ1−1λ,1,ζ;y+1g)(z)=E∗(ξ1,δ1;λ;ζ)g(z)=∘g(z) | (3.6) |
(Œ(ξ1,δ1−1)λ,1,ζ;y−2g)(z)=E∗(ξ1,δ1;λ;ζ)g(z). | (3.7) |
Lemma 3.1. From generalized fractional integral operator, we have
(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)=∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)dt=∫zy1(z−t)δj∞∑s=0(λ)σs(−ζ)s∏mj=1Γ(ξjs+δj+1)(z−t)ξjss!dt=∞∑s=0(λ)σs(−ζ)s∏mj=1Γ(ξjs+δj+1)s!∫zy1(z−t)ξjs+δjdt=(z−y1)δj+1∞∑s=0(λ)σs(−ζ)s∏mj=1Γ(ξjs+δj+1)s!(z−y1)ξjsξjs+δj+1. | (3.8) |
Hence, the Eq (3.8) becomes
(Œ(ξj,δj+1)mλ,σ,ζ;y+11)(z)=(z−y1)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(z−y1)ξj), | (3.9) |
and similarly we have
(Œ(ξj,δj+1)mλ,σ,ζ;y−21)(z)=(y2−z)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(y2−z)ξj). | (3.10) |
In this section, we derive Hermite Hadamard type Mercer inequality of new designed fractional integral operator in a generalized multi-index Bessel function using a kernel.
Theorem 4.1. Let g:[m,n]→(0,∞) is convex function such that g∈χc(m,n), ∀x,y∈[m,n] and the operator defined in Eq (5.2) in the form of left sense operator and Eq (3.2) in the form of right sense operator then we have
g(m+n−x+y2)≤g(m)+g(n)−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)] | (4.1) |
≤g(m)+g(n)−g(x)+g(y)2. | (4.2) |
Proof. Consider the mercer inequality
g(m+n−y1+y22)≤g(m)+g(n)−g(y1)+g(y2)2,∀y1,y2∈[m,n]. | (4.3) |
Let x,y∈[m,n], t∈[z−1,z], y1=(z−t)x+(1−z+t)y and y2=(1−z+t)x+(z−t)y then inequality (4.3) becomes
g(m+n−y1+y22)≤g(m)+g(n)−g((z−t)x+(1−z+t)y)+g(1−z+t)x+(z−t)y)2. | (4.4) |
Multiply both sides of Eq (4.4) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) and integrating with respect to t from [z−1,z], we get
J(ξj)m,λ(δj)m+1,σ(ζ)g(m+n−x+y2)≤J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]−12[∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)×[g((z−t)y1+(1−z+t)y2)+g(1−z+t)x+(z−t)y2]]dt=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]−12[∫yx(y−uy−x)δjJ(ξj)m,λ(δj)m,σ(ζ(y−uy−x)ξj)×g(u)(y−x)du+∫xy(u−xy−x)δjJ(ξj)m,λ(δj)m,σ(ζ(u−xy−x)ξj)g(u)(y−x)du]=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)], |
we get the desired inequality, as
g(m+n−x+y2)≤g(m)+g(n)−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. | (4.5) |
Thus, we get the inequality (4.1). Let t∈[z−1,z]. From the convexity of function g we have
g(x+y2)=g[(z−t)x+(1−z+t)y+(1−z+t)x+(z−t)y]2≤g((z−t)x+(1−z+t)y)+g((1−z+t)x+(z−t)y)2. | (4.6) |
Both sides multiply of Eq (4.6) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) and integrating with respect to t from [z−1,z], we obtain
J(ξj)m,λ(δj)m,σ(ζ)g(x+y2)≤∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)×[g((z−t)x+(1−z+t)y)+g((1−z+t)x+(z−t)y)]dt=12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. |
We get the inequality of negative sign
−g(x+y2)≥−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. | (4.7) |
By adding g(m)+g(n) of both sides of inequality (4.7), we have
g(m)+g(n)−g(x+y2)≥g(m)+g(n)−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. |
Hence, we get the inequality (4.2).
Theorem 4.2. Let g:[m,n]→(0,∞) is convex function such that g∈χc(m,n) then we have the following inequalities:
g(m+n−x+y2)≤[J(ξj)m,λ(δj)m,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;(m+n−y)+g(m+n−x)+Œ(ξj,δj)mλ,σ,ζ;(m+n−x)−g(m+n−y)]. | (4.8) |
≤g(m+n−x)+g(m+n−y)2≤g(m)+g(n)−g(m)+g(n)2. | (4.9) |
Where ∀x,y∈[m,n].
Proof. We see that from the convexity of g as
g(m+n−y1+y22)=g(m+n−y1+m+n−y22)≤12[g(m+n−y1)+g(m+n−y2)],∀y1,y2∈[m,n]. | (4.10) |
Let x,y∈[m,n], t∈[z−1,z], m+n−y1=(z−t)(m+n−x)+(1−z+t)(m+n−y), m+n−y2=(1−z+t)(m+n−x)+(z−t)(m+n−y), then inequality (4.10) gives
g(m+n−y1+y22)≤12g[(z−t)(m+n−x)+(1−z+t)(m+n−y)]+12g[(1−z+t)(m+n−x)+(z−t)(m+n−y)], | (4.11) |
multiply of both sides of inequality (4.11) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) then integrate with respect to t from [z−1,z], we get
J(ξj)m,λ(δj)m,σ(ζ)g(m+n−x+y2)≤12∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g[(z−t)(m+n−x)+(1−z+t)(m+n−y)]dt+12∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g[(1−z+t)(m+n−x)+(z−t)(m+n−y)]dt=12(y−x)[∫m+n−xm+n−y(u−(m+n−y)y−x)δj)J(ξj)m,λ(δj)m,σ(ζ(u−(m+n−y)y−x)ξj)g(u)du+∫m+n−ym+n−x((m+n−y)−uy−x)δj)J(ξj)m,λ(δj)m,σ(ζ((m+n−y)−uy−x)ξj)g(u)du]=12(y−x)[Œ(ξj,δj)mλ,σ,ζ;(m+n−y)+g(m+n−x)+Œ(ξj,δj)mλ,σ,ζ;(m+n−x)−g(m+n−y)]. |
Thus, we get the inequality (4.8)
g(m+n−x+y2)≤[J(ξj)m,λ(δj)m,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;(m+n−y)+g(m+n−x)+Œ(ξj,δj)mλ,σ,ζ;(m+n−x)−g(m+n−y)]. |
From the convexity of g, we obtain
g((z−t)(m+n−x)+(1−z+t)(m+n−y))≤(z−t)g(m+n−x)+(1−z+t)g(m+n−y), | (4.12) |
and
g((1−z+t)(m+n−x)+(z−t)(m+n−y))≤(1−z+t)g(m+n−x)+(z−t)g(m+n−y). | (4.13) |
Adding up the above inequalities and applying Jensen-Mercer inequality, we get
g((z−t)(m+n−x)+(1−z+t)(m+n−y))+g((1−z+t)(m+n−x)+(z−t)(m+n−y))≤g(m+n−x)+g(m+n−y)≤2[g(m)+g(n)]−[g(x)+g(y)]. | (4.14) |
Multiply both sides of inequality (4.14) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) and then integrating with respect to t from [z−1,z] we obtain the two inequalities (4.9).
In this section, we derive some inequalities of (s−m) preinvex function involving new designed fractional integral operator Œ(ξj,δj)mλ,σ,ζg)(z) having generalized multi-index Bessel function as its kernel in the form of theorems.
Theorem 5.1. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]→R be exponentially (s-m) preinvex function, then the following fractional inequality holds:
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)−z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. |
∀ z∈[y1,y1+ξ(y2,y1)], θ1,θ2∈R.
Proof. Let z∈[y1,y1+ξ(y2,y1)], and then for t∈[y1,z) and δj>−1, we have the subsequent inequality
(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)≤(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj). | (5.1) |
For g is exponentially (s-m)-preinvex function, we obtain
g(t)≤(z−tz−y1)sg(y1)eθ1y1+m(t−y1z−y1)sg(z)eθ1z. | (5.2) |
Taking product (5.1) and (5.2), and integrating with respect to t from y1 to z, we get
∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g(t)dt≤∫zy1(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj)×[(z−tz−y1)sg(y1)eθ1y1+m(t−y1z−y1)sg(z)eθ1z]dt, | (5.3) |
apply definition (13) in Eq (5.3), we have
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]. | (5.4) |
Analogously for t∈(z,y1+ξ(y2,y1)] and μj>−1, we have
(t−z)μjJ(ξj)m,λ(μj)m,σ(ζ(t−z)ξj)≤(y1+ξ(y2,y1)−z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)−z)ξj). | (5.5) |
Further, the exponentially (s-m) convexity of g, we get
g(t)≤(t−zy1+ξ(y2,y1)−z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)−ty1+ξ(y2,y1)−z)sg(z)eθ2z. | (5.6) |
Taking product of (5.5) and (5.6) and integrating with respect to t from z to y1+ξ(y2,y1), we have
∫y1+ξ(y2,y1)z(t−z)μjJ(ξj)m,λ(μj)m,σ(ζ(t−z)ξj)g(t)dt≤∫y1+ξ(y2,y1)z(y1+ξ(y2,y1)−z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)−z)ξj)×[(t−zy1+ξ(y2,y1)−z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)−ty1+ξ(y2,y1)−z)sg(z)eθ2z]dt, | (5.7) |
apply the definition (13) in inequality (5.7), we have
(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤(y1+ξ(y2,y1)−z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. | (5.8) |
Now, add the inequalities (5.4) and (5.8), we get the result
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)−z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. |
Corollary 5.1. If g∈L∞[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤||g||∞s+1[(z−y1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+η(y2,y1)−z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+m1eθ2z)]. |
Corollary 5.2. Setting m=1 and g∈L∞[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤||g||∞s+1[(z−y1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)−z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)]. |
Corollary 5.3. Setting m=s=1 and g∈L∞[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤||g||∞2[(z−y1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)−z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)]. |
Corollary 5.4. Setting ξ(y2,y1)=y2−y1 and g∈L∞[y1,y2], then under the assumption of theorem (5.1), we have
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤||g||∞s+1[(z−y1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y2−z)(Œ(ξj,μj)mλ,σ,ζ;y+21)(z)(1eθ2y2+1eθ2z)]. |
Theorem 5.2. Suppose a real value function g:[y1,y1+ξ(y2,y1)]→R is differentiable and |g|′ is exponentially (s-m) preinvex, then the following fractional inequality for (3.1) and (3.2) holds:
|(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj−1)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)−[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)−[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)]g(y1+ξ(y2,y1))|≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+m|g′(z)|eθ1z]+((y1+ξ(y2,y1)−z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)[|g′(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g′(z)|eθ1z]. |
∀ z∈[y1,y1+ξ(y2,y1)], θ1,θ2∈R.
Proof. Let z∈[y1,y1+ξ(y2,y1)], t∈[y1,z), and applying exponentially (s-m) preinvex of |g|′, we get
|g′(t)|≤(z−tz−y1)s|g′(y1)|eθ1y1+m(t−y1z−x1)s|g′(z)|eθ1z. | (5.9) |
Get the inequality (5.9), we have
g′(t)≤(z−tz−y1)s|g′(y1)|eθ1y1+m(t−y1z−y1)s|g′(x)|eθ1z. | (5.10) |
Subsequently inequality as:
(z−t)δjJ(ξj)m,λ(δj)m,k(ζ(z−t)ξj)≤(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj). | (5.11) |
Conducting product of inequality (5.10) and (5.11), we have
(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g′(t)≤(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj)×[(z−tz−y1)s|g′(y1)|eθ1y1+m(t−y1z−y1)s|g′(x)|eθ1z], | (5.12) |
integrating before mention inequality with respect to t from y1 to z, we have
∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g′(t)dt≤∫zy1(z−y1)δjJ(ξj)m,λ(δj)m,k(ζ(z−y1)ξj)[(z−tz−y1)s|g′(y1)|eθ1y1+m(t−y1z−y1)s|g′(z)|eθ1z]dt=(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+m|g′(z)|eθ1z]. | (5.13) |
Now, solving left side of (5.13) by putting z−t=α, then we have
∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g′(t)dt=∫z−y10αδjJ(ξj)m,λ(δj)m,σ(ζ(α)ξj)g′(z−α)dα=−(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj)g(y1)+∫z−y10αδj−1J(ξj)m,λ(δj)m−1,σ(ζ(α)ξj)g(z−α)dα. |
Now, again subsisting z−α=t, we get
∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g′(t)dt=∫zy1(z−t)δj−1J(ξj)m,λ(δj)m−1,σ(ζ(z−t)ξj)g(t)dt−(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj)g(y1)=(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(z)−[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1). |
Therefore, the inequality (5.13) have the following form
(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(x)−[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+m|g′(z)|eθ1z]. | (5.14) |
Also from (5.9), we get
g′(t)≥−(z−tz−y1)s|g′(y1)|eθ1y1−m(t−y1z−y1)s|g′(z)|eθ1z. | (5.15) |
Adopting the same procedure as we have done for (5.10), we obtain
(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(z)−[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)≥−(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+m|g′(z)|eθ1z]. | (5.16) |
From (5.14) and (5.16), we get
|(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(z)−[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)|≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+m|g′(z)|eθ1z]. | (5.17) |
Now, we let z∈[y1,y1+η(y2,y1)] and t∈(z,y1+ξ(y2,y1)], and by exponentially (s-m) preinvex of |g′|, we get
|g′(t)|≤(t−zy1+ξ(y2,y1)−z)s|g′(y1+ξ(y2,y1))|eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)−ty1+ξ(y2,y1)−z)s|g′(z)|eθ2z, | (5.18) |
repeat the same procedure from Eq (5.9) to Eq (5.17), we get
|(Œ(ξj)m,(μj−1)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)−[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)]g(y1+ξ(y2,y1))|≤((y1+ξ(y2,y1)−z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)[|g′(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g′(z)|eθ1z]. | (5.19) |
From inequalities (5.17) and (5.19), we have
|(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj−1)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)−[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)−[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)]g(y1+ξ(y2,y1))|≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+m|g′(z)|eθ1z]+((y1+ξ(y2,y1)−z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)[|g′(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g′(z)|eθ1z]. |
Corollary 5.5. Setting ξ(y2,y1)=y2−y1, then under the assumption of theorem (5.2), we have
|(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj−1)mλ,σ,ζ;y−2g)(z)−[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)−[(Œ(ξj,μj)mλ,σ,ζ;y−21)(z)]g(y2)|≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+m|g′(z)|eθ1z]+(y2−z)s+1(Œ(ξj,μj)mλ,σ,ζ;y−21)(z)[|g′(y2)|eθ1(y2)+m|g′(z)|eθ1z]. |
∀ t∈[y1,y2], θ1,θ2∈R.
Corollary 5.6. Setting ξ(y2,y1)=y2−y1, along with m=s=1 then under the assumption of theorem (5.2), we have
|(Œ(ξj)m,(δj−1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj−1)mλ,σ,ζ;y−2g)(z)−[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)−[(Œ(ξj,μj)mλ,σ,ζ;y−21)(z)]g(y2)|≤(z−y1)2(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g′(y1)|eθ1y1+|g′(z)|eθ1z]+(y2−z)2(Œ(ξj,μj)mλ,σ,ζ;y−21)(z)[|g′(y2)|eθ1(y2)+|g′(z)|eθ1z]. |
∀ t∈[y1,y2], θ1,θ2∈R.
Definition 5.1. Let g:[y1,y1+ξ(y2,y1)]→R is a function, and g is exponentially symmetric about 2y1+ξ(y2,y1)2 if
g(z)eθz=g(2y1+ξ(y2,y1)−z)eθ(2y1+ξ(y2,y1)−z),θ∈R. | (5.20) |
Lemma 5.1. Let g:[y1,y1+ξ(y2,y1)]→R be exponentially symmetric, then
g(2y1+ξ(y2,y1)2)≤(1+m)g(z)2seθz,θ∈R. | (5.21) |
Proof. For g is exponentially (s-m) preinvex, therefore
g(2y1+ξ(y2,y1)2)≤g(y1+δξ(y2,1))2seθ(y1+δξ(y2,y1))+mg(y1+(1−δ)ξ(y2,y1))2seθ(y1+(1−δ)ξ(y2,y1)). | (5.22) |
Let t=y1+δξ(y2,y1), where t∈[y1,y1+ξ(y2,y1)], and then 2y1+ξ(y2,y1)=y1+(1−δ)ξ(y2,y1), we have
g(2y1+ξ(y2,y1)2)≤g(z)2seθz+mg(2y1+ξ(y2,y1)−z)2seθ(2y1+ξ(y2,y1)−z). | (5.23) |
applying that g is exponentially symmetric, we obtain
g(2y1+ξ(y2,y1)2)≤(1+m)g(z)2seθz. | (5.24) |
Theorem 5.3. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]→R is exponentially (s-m) preinvex and symmetric about exponentially 2y1+ξ(y2,y1)2, then the following integral inequality for (3.1) and (3.2) holds:
2s1+mf(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))]≤(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))≤ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(y1+ξ(y2,y1))]. | (5.25) |
Proof. For z∈[y1,y1+ξ(y2,y1)], we have
(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj)≤(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj), | (5.26) |
the real value function g is exponentially (s-m) preinvex, then for z∈[y1,y1+ξ(y2,y1)], we get
g(z)≤(z−y1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)−z)ξ(y2,y1))sg(y1)eθ1y1. | (5.27) |
Conducting product of (5.26) and (5.27), and integrating with respect to z from y1 to y2, we get
∫y2y1(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj)g(z)dz≤∫y2y1(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)×[(z−y1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)−z)ξ(y2,y1))sg(y1)eθ1y1]dz, | (5.28) |
then we have
(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)≤(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]=(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. | (5.29) |
Analogously for z∈[y1,y1+ξ(y2,y1)], we have
(y1+ξ(y2,y1)−z)μjJ(ξj)m,λ(μj)m,σ(ζ(z−y1)ξj)≤(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj). | (5.30) |
Conducting product of (5.27) and (5.30), and integrating with respect to z from y1 to y2, we have
∫y2y1(y1+ξ(y2,y1)−z)μjJ(ξj)m,λ(μj)m,σ(ζ(z−y1)ξj)g(z)dz≤∫y2y1(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)[(z−y1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)−z)ξ(y2,y1))sg(y1)eθ1y1]dz=(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1], |
then
(Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)≤(Œ(ξj,μj)mλ,σ;(y1+ξ(y2,y1))−1)(y1+ξ(y2,y1))ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. | (5.31) |
Summing (5.29) and (5.31), we obtain
(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)+(Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)≤ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(y1+ξ(y2,y1))]. | (5.32) |
Take the product of Eq (5.21) with (z−y1)τjJ(μj)m,λ(τj)m,σ(ζ(z−y1)μj) and integrating with respect to t from y1 to y2, we have
g(2y1+ξ(y2,y1)2)∫y2y1(z−y1)τjJ(μj)m,λ(τj)m,σ(ζ(z−y1)μj)dz≤(1+m)2s∫y2y1(z−y1)τjJ(μj)m,λ(τj)m,σ(ζ(z−y1)μj)g(z)eθzdz | (5.33) |
using definition (13), we have
g(2y1+ξ(y2,y1)2)(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(y1)≤(1+m)2seθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z). | (5.34) |
Taking product (5.21) with (y1+ξ(y2,y1)−z)δjJ(μj)m,λ(δj)m,σ(ζ(y1+ξ(y2,y1)−z)μj) and integrating with respect to variable z from y1 to y2, we have
g(2y1+ξ(y2,y1)2)(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))≤(1+m)2seθ1(y1+ξ(y2,y1))(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). | (5.35) |
Summing up (5.34) and (5.35), we get
2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))]≤(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). | (5.36) |
Now, combining (5.32) and (5.36), we get inequality
2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+η(y2,y1))−1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))]≤(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))−g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))≤ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))−1)(y1+ξ(y2,y1))]. |
Corollary 5.7. Setting ξ(y2,y1)=y2−y1, then under the assumption of theorem (5.3), we have
2s1+mg(y1+y22)[eθy1(Œ(μj,τj)mλ,σ,ζ;y−21)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y2)]≤(Œ(μj,τj)mλ,σ,ζ;y−2g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y2)≤(y2−y1)s+1(g(y2−y1)eθ1(y2−y1)+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;y−21)(z)+(Œ(ξj,μj)mλ,σ,ζ;y−21)(y2)]. | (5.37) |
In this section, we derive some Pólya-Szegö inequalities for four positive integrable functions having fractional operator Œ(ξj,δj)mλ,σ(z) in the form of theorems.
Theorem 6.1. Let h and l are integrable functions on [y1,∞). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,∞) such that:
(R1) 0<θ1(b)≤h(b)≤θ2(b),0<ψ1(b)≤l(b)≤ψ2(b) (b∈[y1,z],z>y1). |
Then, for z>y1,y1≥0, ξj,δj,λ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0 and (z−b)∈Ω, then the following inequalities hold:
Œ(ξj,δj)mλ,σ,ζ;y1+[(ψ1ψ2)h2](z)Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)l2](z)[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1ψ1+θ2ψ2)hl](z)]2≤14. | (6.1) |
Proof. From (R1), for b∈[y1,z], z>y1, we have
h(b)l(b)≤θ2(b)ψ1(b), | (6.2) |
the inequality write as
(θ2(b)ψ1(b)−h(b)l(b))≥0. | (6.3) |
Similarly, we get
θ1(b)ψ2(b)≤h(b)l(b), | (6.4) |
thus
(h(b)l(b−θ1(b)ψ2(b))≥0. | (6.5) |
Multiplying Eq (6.3) and Eq (6.5), it follows
(θ2(b)ψ1(b)−h(b)l(b))(h(b)l(b)−θ1(b)ψ2(b))≥0, | (6.6) |
i.e.
(θ2(b)ψ1(b)+θ1(b)ψ2(b))h(b)l(b)≥h2(b)l2(b)+θ1(b)θ2(b)ψ1(b)ψ2(b). | (6.7) |
The last inequality can be written as
(θ1(b)ψ1(b)+θ2(b)ψ2(b))h(b)l(b)≥ψ1(b)ψ2(b)h2(b)+θ1(b)θ2(b)l2(b). | (6.8) |
Consequently, multiply both sides of (6.8) by (y1−b)δjJ(ξj)m,λ(δj)m,σ(ζ(y1−b)ξj), (z−b)∈Ω and integrating with respect to b from y1 to z, we get
Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](z)≥Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z). | (6.9) |
Besides, by AM-GM (arithmetic mean- geometric mean) inequality, i.e., a1+b1≥2√a1b1 a1,b1∈ℜ+, we get
Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](x)≥2√Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z), | (6.10) |
and it follows straightforward the statement of Eq (6.1).
Corollary 6.1.. Let h and l be two integrable functions on [0,∞) and satisfying the inequality
(R2) 0<s≤h(b)≤S,0<k≤l(b)≤K(b∈[y1,τ],z>y1). | (6.11) |
For z>y1,y1≥0, ξj,δj,λ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0 and (z−b)∈Ω, then the following inequalities hold:
Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)(Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z))2≤14(√SK√sk+√sk√SK)2. | (6.12) |
Theorem 6.2. Let h and l are positive integrable functions on [y1,∞). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,∞) satisfying (R1) on [y1,∞). Then, for z>y1,y1≥0, ξj,δj,λ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0 and (z−b),(τ−z)∈Ω, then the following inequalities hold:
Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2−[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2−[l2](z)[Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2−[ψ1h](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2−[ψ2l](z)]2≤14. | (6.13) |
Proof. By condition (R1), it is clear that
(θ2(b)ψ1(α)−h(b)l(α))≥0, | (6.14) |
and
(h(b)l(α)−θ1(b)ψ2(α))≥0, | (6.15) |
these inequalities implies that
(θ1(b)ψ2(α)+θ2(b)ψ1(α))h(b)l(α)≥h2(b)l2(α)+θ1(b)θ2(b)ψ1(α)ψ2(α). | (6.16) |
The Eq (6.16), multiply by ψ1(α)ψ2(α)l2(α) of both sides, we have
θ1(b)h(b)ψ1(α)l(α)+θ2(b)h(b)ψ2(α)l(α)≥ψ1(α)ψ2(α)h2(b)+θ1(b)θ2(b)l2(α). | (6.17) |
Hence, the Eq (6.17) multiply both sides by
(z−b)δjJ(ξj)m,λ(δj)m,σ(ζ(z−b)ξj),(α−z)δjJ(ξj)m,λ(δj)m,σ(ζ(α−z)ξj). | (6.18) |
And integrating double with respect to b and α from y1 to z and z to y2 respectively, we have
Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2−[ψ1l](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2−[ψ2l](z)≥Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2−[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2−[l2](z). | (6.19) |
At last, we come to Eq (6.13) by using the arithmetic and geometric mean inequality to the upper inequality.
Theorem 6.3. Let h and l are integrable functions on [y1,∞). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,∞) satisfying (R1) on [y1,∞). Then, for z>y1,y1≥0, ξj,δj,λ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0 and (z−b),(α−z)∈Ω, then the following inequalities hold:
Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2−[l2](z)≤Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z)Œ(ξj,δj)mλ,σ,ζ;y2−[(ψ2hl)/θ1]. | (6.20) |
Proof. We have for any (z−b),(α−z)∈Ω, from Eq (6.2), thus
∫zy1(z−b)δjJ(ξj,δj)mλ,σ(ζ(z−b)ξj)h2(b)db≤∫y1z(α−z)ξjJ(ξj,δj)mλ,σ(ζ(α−z)ξj)θ2(α)ψ1(α)h(α)l(α)dα, |
which implies
Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)≤Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z). | (6.21) |
and analogously, by Eq (6.4), we get
Œ(ξj,δj)mλ,σ,ζ;y2−[l2](x)≤Œ(ξj,δj)mλ,σ,ζ;y2−[(ψ2hl)/θ1](z), | (6.22) |
hence, by multiplying Eq (6.21) and Eq (6.22), follow Eq (6.20).
Corollary 6.2. Let h and l be integrable functions on [y1,∞) satisfying (R2). Then, for z>y1,y1≥0, ξj,δj,λ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0 and (z−b),(α−z)∈Ω, we obtain
Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2−[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y2−[hl](z)≤SKsk. | (6.23) |
In this section, Chebyshev type integral inequalities established involving the fractional operator Œ(ξj,δj)mλ,σ(z) and using the Pólya-Szegö fractional integral inequalities of theorem (6.1) in the form of theorem, and then discuss its corollary.
Theorem 7.1. Let h and l be integrable functions on [y1,∞), and suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,∞) satisfying (R1). Then, for z>y1,y1≥0, ξj,δj,λ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0 and (z−b)(α−z)∈Ω the following inequality hold:
|Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2−[1](z)+Œ(νj,μj)mλ,σ,ζ;y2−[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)−Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2−[l](z)−Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2−[h](z)|≤2[Gy1,y2(h,θ1,θ2)Gy1,y2(l,ψ1,ψ2)]12. | (7.1) |
where
Gy1,y2(b,y,x)(z)=18[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(νj,μj)mλ,σ,ζ;y2−[1](z)+18[Œ(νj,μj)mλ,σ,ζ;y2−[(y+x)b](z)]2Œ(μj,νj)mλ,σ,ζ;y2−[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)−Œ(ξj,δj)mλ,σ,ζ;y1+[b](z)Œ(νj,μj)mλ,σ,ζ;y2−[b](z). |
Proof. For (b,α)∈(y1,z) (z>y1), we defined A(b,α)=(h(b)−h(α))(l(b)−l(α)) which is the same
A(b,α)=h(b)l(b)+h(α)l(α)−h(b)l(α)−h(α)l(b). | (7.2) |
Further, the Eq (7.2), multiply both sides by
(z−b)ξjJ(ξj,δj)mλ,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj), | (7.3) |
and integrating double with respect to b and α from y1 to z and z to y2 respectively, we get
∫zy1∫y2z(z−b)ξjJ(ξj,δj)mλ,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)A(b,α)dbdα=∫zy1(z−b)ξjJ(ξj,δj)mλ,σ(ζ(z−b)δj)h(b)l(b)db∫y2z(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)dα+∫zy1(z−b)ξjJ(ξj,δj)mλ,σ(ζ(z−b)δj)db∫y2z(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)h(α)l(α)dα−∫y1z(z−b)ξjJ(ξj,δj)mλ,σ(ζ(z−b)δj)h(b)db∫y2z(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)h(α)dα−∫y1z(z−b)ξjJ(ξj,δj)mλ,σ(ζ(z−b)δj)l(b)db∫y2z(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)h(α)dα=Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2−[1](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2−[hl](z)−Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2−[l](z)−Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2−[h](z). | (7.4) |
Now, applying Cauchy-Schwartz inequality for integrals, we get
|∫zy1∫y2z(z−b)ξjJ(ξj)m,λ(δj)m,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)A(b,α)dbdα|≤(∫zy1∫y2z(z−b)ξjJ(ξj)m,λ(δj)m,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)α[h(b)]2dbdα+∫zy1∫y2z(z−b)ξjJ(ξj)m,λ(δj)m,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)[h(α)]2dbdα−2∫zy1∫y2z(z−b)ξjJ(ξj)m,λ(δj)m,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)h(b)h(α)dbdα)1/2×(∫zy1∫y2z(z−b)ξjJ(ξj)m,λ(δj)m,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)α[l(b)]2dbdα+∫zy1∫y2z(z−b)ξjJ(ξj)m,λ(δj)m,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)[l(α)]2dbdα−2∫zy1∫y2z(z−b)ξjJ(ξj)m,λ(δj)m,σ(ζ(z−b)δj)(α−z)νjJ(μj)m,λ(νj)m,σ(ζ(α−z)μj)l(b)l(α)dbdα)1/2, | (7.5) |
it follow as
\begin{multline} \bigg|\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b, \alpha)dbd\alpha\bigg|\\ \leq2\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\}^{1/2}\times\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\}^{1/2}. \end{multline} | (7.6) |
By applying lemma (6.1) for \psi_{1}(z) = \psi_{2}(z) = l(z) = 1 , we get for any \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z)^{\delta_{j}}\in \Omega
\begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)\leq\frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}, \end{align} | (7.7) |
this implies
\begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\\ & = G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2}). \end{align} | (7.8) |
Analogously, it is clear when \theta_{1}(z) = \theta_{2}(z) = h(z) = 1 , according to Lemma (6.1), we get
\begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](x)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\\ & = G_{y_{1}, y_{2}}(l, \psi_{1}, \psi_{2}). \end{align} | (7.9) |
Thus, by resulting Eqs (7.4), (7.6), (7.8) and (7.9), we get the desired inequality (7.1).
Corollary 7.1. Let h and l be integrable functions on [y_{1}, \infty) , suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega the following inequalities hold:
\begin{align} |Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)|\\ \leq [G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2})G_{y_{1}, y_{1}}(l, \theta_{1}, \theta_{2})]^{\frac{1}{2}}, \end{align} |
where
\begin{align} G_{y_{1}, y_{1}}(b, y, x)(z) = \frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(y+x)b](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[yx](z)}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1]-(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[b](z))^{2}. \end{align} |
This article analyzed the generalized fractional integral operator having nonsingular function (generalized multi-index Bessel function) as kernel and developed a new version of inequalities. We estimate some inequalities (Hermite Hadamard type Mercer inequality, exponentially (s-m) preinvex inequality, Pólya-Szegö type integral inequality and the Chebyshev type inequality) with the generalized fractional integral operator in which nonsingular function as the kernel. Introducing the new version of inequalities of newly constricted operators have strengthened the idea and results.
The authors declare that they have no competing interest.
[1] |
B. Pang, L. Lee, Opinion mining and sentiment analysis, Trends Inf. Retr., 2 (2008), 1–135. https://doi.org/10.1561/1500000011 doi: 10.1561/1500000011
![]() |
[2] |
G. Vinodhini, R. Chandrasekaran, Sentiment analysis and opinion mining: a survey, Int. J., 2 (2012), 282–292. https://doi.org/10.1016/j.nlp.2022.100003 doi: 10.1016/j.nlp.2022.100003
![]() |
[3] | M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, S. Manandhar, SemEval-2014 Task 4: Aspect based sentiment analysis, in Association for Computational Linguistics, (2014), 27–35. https://doi.org/10.3115/v1/S14-2004 |
[4] | M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, I. Androutsopoulos, Semeval-2015 task 12: Aspect based sentiment analysis, in Association for Computational Linguistics, (2015), 486–495. https://doi.org/10.18653/v1/S15-2082 |
[5] | M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M. AL-Smadi, et al. Semeval-2016 task 5: Aspect based sentiment analysis, in Association for Computational Linguistics, (2016), 19–30. https://doi.org/10.18653/v1/S16-1002 |
[6] |
W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, A survey on aspect-based sentiment analysis: Tasks, methods, and challenges, IEEE Trans. Knowl. Data Eng., 2022. https://doi.org/10.1109/TKDE.2022.3230975 doi: 10.1109/TKDE.2022.3230975
![]() |
[7] | D. Tang, B. Qin, X. Feng, T. Liu, Effective LSTMs for target-dependent sentiment classification, preprint, arXiv: 151201100. |
[8] | M. Yang, W. Tu, J. Wang, F. Xu, X. Chen, Attention based LSTM for target dependent sentiment classification, in Proceedings of the AAAI conference on artificial intelligence, 2017. https://doi.org/10.1609/aaai.v31i1.11061 |
[9] | Q. Liu, Y. Huang, Q. Yang, H. Peng, J. Wang, An attention-aware long short-term memory-like spiking neural model for sentiment analysis, Int. J. Neural Syst., (2023), 2350037–2350037. https://doi.org/10.1142/s0129065723500375 |
[10] |
Y. Huang, Q. Liu, H. Peng, J. Wang, Q. Yang, D. Orellana-Martín, Sentiment classification using bidirectional LSTM-SNP model and attention mechanism, Expert Syst. Appl., 221 (2023), 119730. https://doi.org/10.1016/j.eswa.2023.119730 doi: 10.1016/j.eswa.2023.119730
![]() |
[11] |
Y. Huang, H. Peng, Q. Liu, Q. Yang, J. Wang, D. Orellana-Martín, et al., Attention-enabled gated spiking neural P model for aspect-level sentiment classification, Neural Network, 157 (2023), 437–443. https://doi.org/10.1016/j.neunet.2022.11.006 doi: 10.1016/j.neunet.2022.11.006
![]() |
[12] | Y. Kim, Convolutional neural networks for sentence classification, preprint, arXiv: 14085882. |
[13] | D. Tang, B. Qin, T. Liu, Aspect level sentiment classification with deep memory network, preprint, arXiv: 160508900. |
[14] | P. Lin, M. Yang, J. Lai. Deep mask memory network with semantic dependency and context moment for aspect level sentiment classification, in IJCAI, (2019), 5088–5094. https://doi.org/10.24963/ijcai.2019/707 |
[15] | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, in Advances in Neural Information Processing Systems, 30 (2017). https://doi.org/10.48550/arXiv.1706.03762 |
[16] | Z.-Y. Dou, Capturing user and product information for document level sentiment analysis with deep memory network, in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017. https://doi.org/10.18653/v1/D17-1054 |
[17] |
K. Chakraborty, S. Bhattacharyya, R. Bag, A survey of sentiment analysis from social media data, IEEE Trans. Comput. Soc. Syst., 7 (2020), 450–464. https://doi.org/10.1109/TCSS.2019.2956957 doi: 10.1109/TCSS.2019.2956957
![]() |
[18] |
X. Zhu, Y. Zhu, L. Zhang, Y. Chen, A BERT-based multi-semantic learning model with aspect-aware enhancement for aspect polarity classification, Appl. Intell., 53 (2023), 4609–4623. https://doi.org/10.1007/s10489-022-03702-1 doi: 10.1007/s10489-022-03702-1
![]() |
[19] | J. Devlin, M. W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, preprint, arXiv: 181004805. |
[20] | N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks, preprint, arXiv: 190810084. |
[21] |
L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and Regression Trees (CART), Biometrics, 1984 (1984). https://doi.org/10.2307/2530946 doi: 10.2307/2530946
![]() |
[22] |
N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, Am. Stat., 46 (1992), 175–185. https://doi.org/10.1080/00031305.1992.10475879 doi: 10.1080/00031305.1992.10475879
![]() |
[23] | I. Rish, An empirical study of the naive Bayes classifier, in IJCAI 2001 workshop on empirical methods in artificial intelligence, (2001), 41–46. https://doi.org/10.1109/CSCI46756.2018.00065 |
[24] | D. W. Hosmer Jr, S. Lemeshow, R. X. Sturdivant, Applied Logistic Regression, John Wiley & Sons, 2013. https://doi.org/10.1002/9781118548387 |
[25] | C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995), 273–297. |
[26] |
L. Breiman, Random forests, Mach. Learn., 45 (2001), 5–32. https://doi.org/10.1023/A:1022627411411 doi: 10.1023/A:1022627411411
![]() |
[27] | N. S. Joshi, S. A. Itkat, A survey on feature level sentiment analysis, Int. J. Comput. Sci. Inf. Technol., 5 (2014), 5422–5425. |
[28] |
E. Cambria, B. White, Jumping NLP curves: A review of natural language processing research, IEEE Comput. Intell. Mag., 9 (2014), 48–57. https://doi.org/10.1109/MCI.2014.2307227 doi: 10.1109/MCI.2014.2307227
![]() |
[29] |
B. Zhang, X. Fu, C. Luo, Y. Ye, X. Li, L. Jing, Cross-domain aspect-based sentiment classification by exploiting domain-invariant semantic-primary feature, IEEE Trans. Affect. Comput., 2023 (2023), forthcoming. https://doi.org/10.1109/TAFFC.2023.3239540 doi: 10.1109/TAFFC.2023.3239540
![]() |
[30] |
H. Huang, B. Zhang, L. Jing, X. Fu, X. Chen, J. Shi, Logic tensor network with massive learned knowledge for aspect-based sentiment analysis, Knowl. Based Syst., 257 (2022), 109943. https://doi.org/10.1016/j.knosys.2022.109943 doi: 10.1016/j.knosys.2022.109943
![]() |
[31] |
X. Mei, Y. Zhou, C. Zhu, M. Wu, M. Li, S. Pan, A disentangled linguistic graph model for explainable aspect-based sentiment analysis, Knowl. Based Syst, 260 (2023), 110150. https://doi.org/10.1016/j.knosys.2022.110150 doi: 10.1016/j.knosys.2022.110150
![]() |
[32] | B. Zhang, X. Huang, Z. Huang, H. Huang, B. Zhang, X. Fu, et al., Sentiment interpretable logic tensor network for aspect-term sentiment analysis, in Proceedings of the 29th International Conference on Computational Linguistics, (2022), 6705–6714. |
[33] | B. Xu, X. Wang, B. Yang, Z. Kang, Target embedding and position attention with lstm for aspect based sentiment analysis, in Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence, (2020), 93–97. https://doi.org/10.1145/3395260.3395280 |
[34] | Y. Ma, H. Peng, E. Cambria, Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM, in Proceedings of the AAAI conference on artificial intelligence, (2018). https://doi.org/10.1609/aaai.v32i1.12048 |
[35] | L. Bao, P. Lambert, T. Badia, Attention and lexicon regularized LSTM for aspect-based sentiment analysis, in Proceedings of the 57th annual meeting of the association for computational linguistics: student research workshop, (2019), 253–259. https://doi.org/10.18653/v1/P19-2035 |
[36] |
Y. Xing, C. Xiao, Y. Wu, Z. Ding, A convolutional neural network for aspect-level sentiment classification, Int. J. Pattern Recognit. Artif Intell., 33 (2019), 1959046. https://doi.org/10.18653/v1/2021.textgraphs-1.8 doi: 10.18653/v1/2021.textgraphs-1.8
![]() |
[37] |
X. Wang, F. Li, Z. Zhang, G. Xu, J. Zhang, X. Sun, A unified position-aware convolutional neural network for aspect based sentiment analysis, Neurocomputing, 450 (2021), 91–103. https://doi.org/10.1016/j.neucom.2021.03.092 doi: 10.1016/j.neucom.2021.03.092
![]() |
[38] |
C. Gan, L. Wang, Z. Zhang, Z. Wang, Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis, Knowl. Based Syst., 188 (2020), 104827. https://doi.org/10.1016/j.knosys.2019.06.035 doi: 10.1016/j.knosys.2019.06.035
![]() |
[39] |
N. Zhao, H. Gao, X. Wen, H. Li, Combination of convolutional neural network and gated recurrent unit for aspect-based sentiment analysis, IEEE Access, 9 (2021), 15561–15569. https://doi.org/10.1109/ACCESS.2021.3052937 doi: 10.1109/ACCESS.2021.3052937
![]() |
[40] | Y. Tay, L. A. Tuan, S. C. Hui, Dyadic memory networks for aspect-based sentiment analysis, in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, (2017), 107–116. https://doi.org/10.1145/3132847.3132936 |
[41] |
Y. Chen, T. Zhuang, K. Guo, Memory network with hierarchical multi-head attention for aspect-based sentiment analysis, Appl. Intell., 51 (2021), 4287–4304. https://doi.org/10.1007/s10489-020-02069-5 doi: 10.1007/s10489-020-02069-5
![]() |
[42] |
Y. Zhang, B. Xu, T. Zhao, Convolutional multi-head self-attention on memory for aspect sentiment classification, IEEE-CAA J. Automatica Sin., 7 (2020), 1038–1044. https://doi.org/10.1109/JAS.2020.1003243 doi: 10.1109/JAS.2020.1003243
![]() |
[43] | Y. Song, J. Wang, T. Jiang, Z. Liu, Y. Rao, Attentional encoder network for targeted sentiment classification, preprint, arXiv: 190209314. |
[44] |
H. Yang, B. Zeng, J. Yang, Y. Song, R. Xu, A multi-task learning model for chinese-oriented aspect polarity classification and aspect term extraction, Neurocomputing, 419 (2021), 344–356. https://doi.org/10.1016/j.neucom.2020.08.001 doi: 10.1016/j.neucom.2020.08.001
![]() |
[45] | A. Karimi, L. Rossi, A. Prati, Improving bert performance for aspect-based sentiment analysis, preprint, arXiv: 201011731. |
[46] | A. Karimi, L. Rossi, A. Prati, Adversarial training for aspect-based sentiment analysis with bert, in 2020 25th International conference on pattern recognition (ICPR), (2021), 8797–8803. https://doi.org/10.1109/ICPR48806.2021.9412167 |
[47] | H. Peng, Y. Ma, Y. Li, E. Cambria, Learning multi-grained aspect target sequence for Chinese sentiment analysis, Knowl. Based Syst., 148 (2018), 167–176. |
[48] | W. Che, Y. Zhao, H. Guo, Z. Su, T. Liu, Sentence compression for aspect-based sentiment analysis, IEEE-ACM Trans. Audio Speech Lang., 23 (2015), 2111–2124. |
[49] | L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, K. Xu, Adaptive recursive neural network for target-dependent twitter sentiment classification, in Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2: Short papers), (2014), 49–54. |
[50] | B. Wang, W. Lu, Learning latent opinions for aspect-level sentiment classification, in Proceedings of the AAAI Conference on Artificial Intelligence, 2018. |
[51] | H. T. Nguyen, M. Le Nguyen, Effective attention networks for aspect-level sentiment classification, in 2018 10th International Conference on Knowledge and Systems Engineering (KSE), (2018), 25–30. https://doi.org/10.1109/KSE.2018.8573324 |
[52] | D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 14126980. |
[53] | Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for aspect-level sentiment classification, in Proceedings of the 2016 conference on empirical methods in natural language processing, (2016), 606–615. https://doi.org/10.18653/v1/D16-1058 |
[54] | D. Ma, S. Li, X. Zhang, H. Wang, Interactive attention networks for aspect-level sentiment classification, preprint, arXiv: 170900893. |
[55] | H. Peng, L. Xu, L. Bing, F. Huang, W. Lu, L. Si, Knowing what, how and why: A near complete solution for aspect-based sentiment analysis, in Proceedings of the AAAI conference on artificial intelligence, (2020), 8600–8607. https://doi.org/10.1609/aaai.v34i05.6383 |
[56] | W. Song, Z. Wen, Z. Xiao, S. C. Park, Semantics perception and refinement network for aspect-based sentiment analysis, Knowl. Based Syst., 214 (2021), 106755. |
[57] | L. Xu, L. Bing, W. Lu, F. Huang, Aspect sentiment classification with aspect-specific opinion spans, in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), (2020), 3561–3567. https://doi.org/10.18653/v1/2020.emnlp-main.288 |
[58] |
Q. Xu, L. Zhu, T. Dai, C. Yan, Aspect-based sentiment classification with multi-attention network, Neurocomputing, 388 (2020), 135–143. https://doi.org/10.1016/j.neucom.2020.01.024 doi: 10.1016/j.neucom.2020.01.024
![]() |
[59] |
B. Huang, J. Zhang, J. Ju, R. Guo, H. Fujita, J. Liu, CRF-GCN: An effective syntactic dependency model for aspect-level sentiment analysis, Knowl. Based Syst., 260 (2023), 110125. https://doi.org/10.1016/j.knosys.2022.110125 doi: 10.1016/j.knosys.2022.110125
![]() |
[60] |
B. Huang, R. Guo, Y. Zhu, Z. Fang, G. Zeng, J. Liu, et al., Aspect-level sentiment analysis with aspect-specific context position information, Knowl. Based Syst., 243 (2022), 108473. https://doi.org/10.1016/j.knosys.2022.108473 doi: 10.1016/j.knosys.2022.108473
![]() |
1. | Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6 | |
2. | Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia, Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel, 2022, 61, 11100168, 4837, 10.1016/j.aej.2021.10.033 | |
3. | Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3 | |
4. | Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080 | |
5. | Anupam Das, Mohsen Rabbani, Bipan Hazarika, An iterative algorithm to approximate the solution of a weighted fractional integral equation, 2023, 1793-5571, 10.1142/S1793557123502418 | |
6. | Yong Tang, Ghulam Farid, M. Y. Youssif, Zakieldeen Aboabuda, Amna E. Elhag, Kahkashan Mahreen, Çetin Yildiz, Refinements of Various Types of Fractional Inequalities via Generalized Convexity, 2024, 2024, 2314-4629, 10.1155/2024/4082683 | |
7. | Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3 |