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Abstract: Aspect-based sentiment analysis (ABSA) is a fine-grained and diverse task in natural 
language processing. Existing deep learning models for ABSA face the challenge of balancing the 
demand for finer granularity in sentiment analysis with the scarcity of training corpora for such 
granularity. To address this issue, we propose an enhanced BERT-based model for multi-dimensional 
aspect target semantic learning. Our model leverages BERT’s pre-training and fine-tuning mechanisms, 
enabling it to capture rich semantic feature parameters. In addition, we propose a complex semantic 
enhancement mechanism for aspect targets to enrich and optimize fine-grained training corpora. Third, 
we combine the aspect recognition enhancement mechanism with a CRF model to achieve more robust 
and accurate entity recognition for aspect targets. Furthermore, we propose an adaptive local attention 
mechanism learning model to focus on sentiment elements around rich aspect target semantics. Finally, 
to address the varying contributions of each task in the joint training mechanism, we carefully optimize 
this training approach, allowing for a mutually beneficial training of multiple tasks. Experimental 
results on four Chinese and five English datasets demonstrate that our proposed mechanisms and 
methods effectively improve ABSA models, surpassing some of the latest models in multi-task and 
single-task scenarios.  

Keywords: aspect-based sentiment classification; BERT language model; adaptive local attention 
mechanism; multiple-task learning 
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1. Introduction 

Aspect-based sentiment analysis (ABSA) [1–5] is a task that aims to uncover the most fine-
grained aspects of sentiment information in the text. The main goal of this task is to identify the existing 
aspect targets in the corpus and their corresponding sentiment polarity. 

According to existing models and composite sentiment element extraction methods, ABSA can 
be further divided into aspect-opinion pair extraction (AOPE), aspect category sentiment analysis 
(ACSA) and aspect target sentiment classification (ATSC) [6]. AOPE extracts aspect and opinion terms 
in pairs to clearly describe the aspect target and the corresponding opinion expression. ACSA jointly 
detects the category to which the discussed aspect belongs and its corresponding sentiment polarity. 
ATSC includes two subtasks, aspect term extraction (ATE) and aspect sentiment classification (ASC), 
which extract sentiment information pairs (aspect target, polarity) from the text. This paper mainly 
focuses on the deep learning-based ATSC task. 

In recent years, ATSC has received increasing attention due to its widespread application in sentiment 
analysis. Neural networks in NLP, such as long short-term memory networks (LSTM) [7–11], 
convolutional neural networks (CNN) [12] and memory networks (MemNet) [13,14] have been widely 
used in sentiment classification tasks, while the emergence of Transformer [15] has successfully 
achieved end-to-end training. However, compared to document-level and sentence-level sentiment 
analysis tasks [16,17], ATSC tasks require distinguishing the sentiment of different aspect targets, 
which requires more subtle semantic features for model analysis [18]. Therefore, there are still some 
challenges and many unresolved issues: 1) Fully supervised tasks require a large amount of text data 
manually labeled by humans, and commonly used corpora are small, making it difficult for models to 
learn and identify complex sentences containing different aspect targets of sentiment elements. 2) 
Sentences of different lengths, due to the different positions of aspect entities in the sentences, will 
produce varying degrees of noise information that can reduce the model’s accuracy in recognizing 
sentiment information. 3) Training for ATE and ASC tasks alone does not consider the need for entirely 
accurate sentiment information pairs (aspect target, polarity), and the design of single tasks can reduce 
the model’s efficiency during task completion. 

In this paper, we aim to address the issues mentioned above by improving and combining existing 
semantic understanding models, leading to the proposal of an adaptive sentiment semantic model that 
targets the complex semantic enhancement of aspect targets. The model can expand different aspect 
targets information in multiple corpora, which enriches the training sample set and expands the 
semantic understanding scope of the model. Second, to highlight the importance of the aspect target’s 
semantic features to the model’s learning, we propose the aspect recognition enhancement mechanism. 
Then, we hope to automatically adjust the semantic understanding scope of the text centered on the 
aspect target according to the expanded different corpus so that the model can recognize more specific 
emotional polarity views corresponding to the aspect target. Finally, the improvement enables the 
model to achieve a stable multi-task joint learning approach by considering ATE task and ASC task 
simultaneously, which facilitates the accurate recognition of sentiment information pairs (aspect target, 
polarity). Our model rigorously ensures that the augmented dataset remains from the same domain, 
accomplishing the ability to flexibly adjust the semantic embeddings of aspect targets within the same 
sentence based on the aspect target to be evaluated. This adjustment makes the embeddings more 
inclined to represent the sentiment elements associated with the aspect target, thereby achieving a finer-
grained level of sentiment analysis. 

The contributions of this paper can be summarized as follows: 
We propose a complex semantic enhancement model based on BERT [19] (BERT-CSE), which 
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improves upon SBERT [20] and enables it to adapt perfectly to sentiment semantic understanding in 
ABSA. The model highlights the aspect target as the center of attention in the attention mechanism for 
semantic enhancement, enriching the small-scale sentiment corpus. 

1) We propose an aspect recognition enhancement mechanism to semantically fuse global 
contextual semantic features and local contextual semantic features with the aspect target semantic 
features, which enriches the overall semantic features. 

2) We propose an adaptive global-local attention mechanism sentiment recognition model based 
on BERT (BERT-ASD), which can limit the effective local text length range for different texts, thus 
reducing the negative impact of noisy sentiment elements brought to the model by redundant text data. 

3) To achieve the ATSC task more efficiently, we implement and improve the joint learning 
mechanism so that the model can learn more stably and effectively on the ATE task and the ASC task 
simultaneously. 

The subsequent structure of the paper is as follows: Section 2 provides a summary and detailed 
introduction of related work. In Section 3, we first define the ATSC task and then describe the 
mechanisms and models proposed in our work. Section 4 describes the datasets and experimental 
settings used for evaluation, presents the experimental results and discusses the overall experimental 
results. Finally, Section 5 summarizes our work. 

2. Related works 

2.1. Machine learning-based methods 

In general, for traditional classification tasks, machine learning methods include decision trees [21], 
KNN [22], Naive Bayes [23], logistic regression [24], support vector machines (SVM) [25], random 
forests [26] and so on. These methods can also be used for other subtasks, each with unique advantages. 
The most suitable machine learning algorithm for sentiment classification tasks can be selected based 
on the data distribution. Although SVM performs best in document-level sentiment classification 
tasks [27], its performance still needs to be improved for ABSA. Additionally, traditional machine 
learning methods rely heavily on a large number of well-designed manual feature engineering to a 
certain extent and feature engineering is already a tedious task that increases its manual and time costs 
in the era of big data. 

2.2. Deep learning-based methods 

Deep learning methods use neural networks with complex parameter structures. Compared to 
machine learning methods, they save a lot of feature engineering work and have better results in 
aggregating data information. At the initial stage, neural networks had limited data samples and were 
restricted by hardware limitations, but with the advent of the big data era and the improvement of 
industrial technology, deep learning methods have flourished and have been applied to many other 
tasks in NLP, such as text generation, machine translation, question-answering systems, entity 
relationship extraction, etc. [28]. Due to the many variants of neural networks, they can flexibly handle 
various forms of data and aggregate rich semantic and emotional information for ABSA tasks [29–32]. 
In the following, we will discuss several commonly used neural network models for sentiment analysis. 
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2.2.1. Methods based on recurrent neural network 

Xu et al. [33] utilized the position attention mechanism for weighting the output of LSTM, 
enhancing the feature representation ability of the model and expanding the knowledge base 
information. Ma et al. [34] combined a commonsense knowledge embedding layer with an attention 
mechanism. The commonsense knowledge embedding layer incorporated domain-specific 
commonsense understanding into the model, while the LSTM with attention mechanism further 
enhanced the model’s generalization ability. To address the problem of word normalization, Bao et 
al. [35] employed lexical normalization techniques and used two LSTM layers, one for learning 
sentence-level sentiment features and the other for learning aspect-level sentiment features. 

2.2.2. Methods based on convolutional neural network 

Xing et al. [36] was the first study to apply CNN to aspect-level sentiment classification, 
demonstrating its effectiveness in this task. Wang et al. [37] proposed a novel PCNN model that divides 
the text into multiple positions, enabling the integration of positional information with the 
convolutional neural network and better helping the model to understand the importance of different 
positions in the text. Gan et al. [38] proposed SA-SDCNN, which combines sparse attention 
mechanism, separable convolution and dilated convolution to improve the performance of targeted 
sentiment analysis without using pre-trained word embeddings. Zhao et al. [39] proposed CR-CNN, 
which extracts features of each word in the text using CNN and learns the dependencies between the 
features using the GRU model. They also introduced a gated mechanism to help the model better 
understand the complex relationship between aspect and sentiment words. 

2.2.3. Methods based on memory network 

Yi et al. [40] proposed a model based on dyadic memory networks. They used a convolutional 
neural network-based bidirectional encoder to encode the input sentence and a dyadic memory network 
based on LSTM to capture the relationships between aspect words. Chen et al. [41] proposed HMAN, 
which includes a multi-head self-attention layer and a multi-head interaction layer for encoding and 
interacting with the text sequence and aspect target. Zhang et al. [42] proposed a memory-based 
convolutional multi-head self-attention model that uses a memory network to encode previous 
information for retrieval of important information during classification. The relationship between 
aspect target, sentiment and context can be well captured. 

2.2.4. Methods based on transformer 

 Song et al. [43] proposed AEN, a model consisting of a target word extractor and a sentiment 
classifier. The target word extractor uses a gating mechanism to extract the target word from the 
sentence and employs a convolutional neural network for feature extraction. The sentiment classifier 
is composed of an LSTM network based on an attention mechanism. Yang et al. [44] proposed a local 
attention mechanism model to implement a multi-task learning mechanism with good performance on 
Chinese datasets. Akbar et al. [45] introduced a hierarchical summarization mechanism and sentiment 
lexicon information to expand the original unidirectional summarization mechanism into a 
bidirectional one, which is used for adjusting the output of the BERT model. Akbar et al. [46] proposed 
an adversarial training method based on BERT (ABSA-AT), consisting of adversarial samples and 
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training. Adversarial sample generation creates a set of adversarial samples by making small 
perturbations to the original input text. Adversarial training uses these adversarial samples along with 
the original samples for model training. 

3. Methods 

3.1. Task definition 

The purpose of aspect-based sentiment classification (ATSC) is to extract the sentiment polarity 
of the comment information corresponding to an aspect target as the center from a sentence, forming 
the correct sentence sentiment information pair (𝑎𝑠𝑝𝑒𝑐𝑡 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦). This task can be further 
divided into named entity recognition (NER) and classification tasks. Given a corpus set 
S={ 𝑠 , 𝑠 , 𝑠 , … , 𝑠  } and its corresponding aspect target set E={ 𝑒 , 𝑒 , 𝑒 , … , 𝑒  }, the sentiment 
polarity of the sentence is extracted with respect to the aspect target, forming a correct sentiment aspect 
pair (aspect target, polarity), which can be divided into NER and classification tasks. The sentiment 
classification set is 𝐶 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 , and the label set for entities is 𝐿 =

𝐵, 𝐼, 𝑂, [𝐶𝐿𝑆], [𝑆𝐸𝑃], 0. The proposed aspect target complex semantic-enhanced model based on BERT 
is denoted as 𝑀 (•) , and the proposed adaptive global-local attention mechanism sentiment 
recognition model based on BERT is denoted as 𝑀 (•). According to the two different tasks, they can 
be defined as follows: 

 𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
∈( , )

𝑃(𝑐 |𝑀 (𝑀 (𝑠 ) , 𝑒 )) (1) 

 𝑙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
∈( , )

𝑃(𝑙 |𝑀 (𝑀 (𝑠 ) , 𝑒 )) (2) 

where 𝑃(•) denotes the predicted probability distribution, 𝑐∗  denotes the set of true sentiments 
corresponding to 𝑒   in sentence 𝑠   and 𝑙∗  denotes the true labels corresponding to each 𝑒   in 
sentence 𝑠 . 

3.2. BERT-based aspect target complex semantic enhancement model 

In response to the problem of short texts and limited aspect targets in small sentiment analysis 
corpora, which are insufficient to support the identification of more complex and fine-grained 
emotional information, we propose a data augmentation model centered on aspect targets. This model 
is based on SBERT and uses triplet networks to build its framework, as shown in the model structure 
diagram. The construction of the model mainly depends on the training data format we want to enhance. 
We plan to combine the corpus sentences according to the model’s learning pattern to expand the 
training sample set with complex emotional semantics. Figure 1 shows the overall structure of our 
model. 

3.2.1. Self-supervised processing of complex semantics 

Since the data format of the corpus does not match the input format of the pre-trained model 
BERT, data pre-processing is required before feeding it to the model. The corpus contains many 
utterances, and manual labeling reduces the overall efficiency of the task solution. Therefore, we 
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propose a data augmentation model that focuses on the aspect target in the sentence. We randomly 
sample the corpus 𝑆  to collect m data pairs (𝑠 , 𝑒 , 𝑠 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) with 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {0, 1}, where 
𝑠  and 𝑠  are two random sentences, and 𝑒  corresponds to the aspect target of 𝑠 . We first iterate 
through each sentence 𝑠   in 𝑆  , select another sentence 𝑠   in 𝑆   by random sampling, and 
determine the value of the category based on the word similarity 𝑆𝑖𝑚  of 𝑒  corresponding to 𝑠  
and 𝑒  corresponding to 𝑠 . Finally, we add the extracted (𝑠 , 𝑒 , 𝑠 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) pairs to the set 𝑅𝐸𝑆. 
The specific operational process is shown in Table 1. 

 

Figure 1. The framework structure of our BERT-ATSE model. 
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Table 1. RES construction process. 

Collection Process 
Input：corpus 𝑆 = {𝑠 , 𝑠 , 𝑠 , … , 𝑠 }，aspect target 𝐸 = {𝑒 , 𝑒 , 𝑒 , … , 𝑒 } 
Output：Data pairs RES= {(𝑠 , 𝑒 , 𝑠 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦)|𝑖 ≤ 𝑚, 𝑗 ≤ 𝑚, 𝑗 ≠ 𝑖, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {0,1}} 

RES← ∅ 
for each 𝑠 ∈ 𝑆 do 

 𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡(𝑆) 
 category← 0 
while 𝑠 == 𝑠  do 

    𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡(𝑆) 
 end while 
if 𝑆𝑖𝑚 > 0.5 do 

category← 1 
end if 
RES←(𝑠 , 𝑒 , 𝑠 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) 

end for 

3.2.2. Embedded learning of semantic blocks 

The processed data pairs 𝑅𝐸𝑆(𝑠 , 𝑒 , 𝑠 , 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦) are obtained, where 𝑠  serves as the positive 
sample, 𝑒  as the anchor sample, 𝑠  as the negative sample and category is used to indicate whether 
the aspect target in the positive and negative samples is similar or dissimilar, with values of 0 and 1, 
respectively. The sentences 𝑠  and 𝑠  are concatenated as “[CLS] + Context+ [SEP] + aspect target 
+ [SEP]” and 𝑒  is attached as “[CLS] + aspect target + [SEP]”. They are then converted into token 
sequences and indexed according to the BERT vocabulary, along with additional information such as 
position end segment embeddings. These token indices are input into BERT to obtain the context 
embedding sequences ℎ = {ℎ , ℎ , … , ℎ } for the positive sample’s context, ℎ = {ℎ , ℎ , … , ℎ } 
for the aspect target’s context and ℎ = {ℎ , ℎ , … , ℎ } for the negative sample’s context. 

 𝑆 = 𝐵𝐸𝑅𝑇(𝑆) (3) 

3.2.3. Self-attentive semantic enhancement of aspect target 

To focus more on the text information containing aspect targets for both positive and negative 
samples and reduce the negative impact caused by long-distance contextual dependencies on aspect 
target understanding, we input the context embeddings generated by the semantic understanding layer 
into a multi-head self-attention layer (MHSA). Assuming that S = 𝑠 , 𝑠 , … , 𝑠   is the context 
embedding sequence input, 𝑊 , 𝑊  and 𝑊  are three weight parameter matrices used to perform 
element-wise multiplication with S, mapping to three matrices 𝑄, 𝐾 and 𝑉, respectively. The multi-
head self-attention layer (MHSA) is applied using the resulting matrices, and a new sequence 𝑆∗ =

{𝑠∗, 𝑠∗, … , 𝑠∗} of the same length as the original sequence is obtained. The specific calculation process 
is shown as follows: 

 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑆) = SA(𝑆, 𝑆) (4) 
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 𝑆𝐴(𝑆, 𝑆) = 𝑉 · 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
·

√
), (5) 

 
𝑄 = 𝑊 · 𝑆

𝐾 = 𝑊 · 𝑆
𝑉 = 𝑊 · 𝑆

 (6) 

where 𝑊 ∈ ℝ ×  ,  𝑊 ∈ ℝ ×  ,  𝑊 ∈ ℝ ×  , 𝑆 ∈ ℝ ×  , 𝑄 ∈ ℝ ×  ,  𝐾 ∈ ℝ ×   and 

𝑉 ∈ ℝ × . Here, 𝑆𝐴(∙) denotes the use of the self-attention mechanism, and 𝑑 = 𝑑 = 𝑑 . 
The above is the operation for only one head, while in MHSA, the output matrix needs to be 

transformed by the weight matrix 𝑊 ∈ ℝ × ·  , and the final result is output through the tanh 
activation function. 

 𝑀𝐻𝑆𝐴(𝑆) = 𝑡𝑎𝑛ℎ(𝑊 · {ℎ ; ℎ ; … ; ℎ }) (7) 

where “;” denotes the vertical concatenation of vectors, 𝑚 denotes the number of heads, 𝑀𝐻𝑆𝐴(∙) 
denotes the use of multi-head self-attention mechanism and 𝑊  of the above equations are all 
parameters that need to be learned by the above equations. 

 𝑆 = MHSA(𝑆 ) (8) 

 𝑆 = 𝑃𝑂𝑂𝐿𝐼𝑁𝐺(𝑆 ) (9) 

In the POOLING layer, three methods were selected during the experiment to learn sentence 
embeddings ℎ , ℎ  and ℎ  that are more capable of distinguishing between sentence semantics: 
using the vector of the [CLS] token to represent the overall context embedding (𝐶𝐿𝑆𝑃𝑜𝑜𝑙𝑖𝑛𝑔 ); 
calculating the average value of the vectors of each token in the sentence to represent the overall 
context embedding (𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔); finding the maximum value vector by taking the maximum value 
of the word vectors in the sentence to represent the overall context embedding (𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔). 

Finally, the dimensionality of the vectors is transformed by a fine-tuned linear layer to transfer 
them to a dimension more suitable for sentence representation, and all fine-tuned sentence vectors are 
cached as set 𝐻  and their corresponding sentences are cached as set 𝑆  to enable the model to learn 
the semantic variability between sentences. 

 𝐻 = 𝑊 · 𝑆 + 𝑏  (10) 

where 𝑊 ∈ ℝ ×  is the weight representation and 𝑏 ∈ ℝ ×  is the bias representation. 

3.2.4. Model learning 

We employ triplet loss to train our model, in which each sentence has an opportunity to be a 
positive sample 𝑠 , the corresponding anchor sample 𝑒  is an aspect target in the positive sample and 
the negative sample comes from other sentences 𝑠   in the random sample. We aim to use self-
supervised data construction to facilitate the model in distinguishing subtle differences in sentence 
semantics. This is achieved by minimizing the following loss function: 

 𝐿𝑜𝑠𝑠 = 𝑚𝑎𝑥 (||𝑒 , 𝑠 || − ||𝑒 , 𝑠 || + 𝜑, 0) (11) 
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Triplet loss is available in three cases: 

a) Easy triplets, where ||𝑒 , 𝑠 || + 𝜑 <  ||𝑒 , 𝑠 ||  , 𝐿𝑜𝑠𝑠 = 0  and the corresponding data 

cannot make any suggestions for improving the parameters of the model. 

b) Semi-hard triplets, where ||𝑒 , 𝑠 || < ||𝑒 , 𝑠 || < ||𝑒 , 𝑠 || +  𝜑, 0 < 𝐿𝑜𝑠𝑠 <  𝜑. At this 

point, the model can slightly understand the positive and negative samples in the data pairs but cannot 
make a clear distinction. 

c) Hard triplets, where ||𝑒 , 𝑠 || > ||𝑒 , 𝑠 || ，𝐿𝑜𝑠𝑠 >  𝜑. The model incorrectly distinguishes 

between positive and negative samples in the data pairs and is able to improve the transfer parameters 
of the model the fastest. 

3.2.5. Unsupervised construction of complex semantic samples 

Affected by the short text of the corpus, it may not be possible for downstream sentiment 
recognition models to accurately identify every aspect target and its corresponding sentiment polarity 
in long texts. Therefore, we need to use this model to improve and enhance the data initially. We aim 
to concatenate the two sentences 𝑠  and 𝑠  with the smallest semantic difference as a training data 
point (𝑠 ; 𝑠  ). If the downstream model can make accurate judgments on the (𝑎𝑠𝑝𝑒𝑐𝑡, 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦) 
information presented in the low semantic difference between the sentences 𝑆𝑖𝑚(𝑠 ; 𝑠 ) , then we 
assume that it can also make correct decisions for sentences 𝑆𝑖𝑚(𝑠 ; 𝑠 )   with high semantic 
differences.  

To better represent the similarity between two sentences, we use Manhattan distance to calculate 
𝑆𝑖𝑚(𝑠 ; 𝑠 ) , where 𝑥  and 𝑦  represent the sentence vectors corresponding to 𝑠   and 𝑠  , 
respectively. The symbol | ∙ | denotes the absolute value, and 𝑥  and 𝑦  represent the 𝑖-th element 
in the vectors: 

 𝑆𝑖𝑚 𝑠 ; 𝑠 = |𝑥 − 𝑦 | + |𝑥 − 𝑦 | + ⋯ + |𝑥 − 𝑦 | (12) 

We randomly select a sentence 𝑠  from the cached 𝑆  set for each sentence 𝑠 , with a similarity 
score greater than the similarity threshold 𝑠𝑠ℎ. We then combine the sentences 𝑠  and 𝑠  to create a 
new complex semantic sample dataset, denoted as 𝑆 . 

3.3. Adaptive global-local attention mechanism for sentiment analysis based on BERT 

This section proposes a BERT-based adaptive global-local attention mechanism for joint learning 
of aspect targets and their corresponding sentiment polarities. Here is the architecture of our model, 
which employs the following mechanisms: 

1) BERT-based semantic understanding learning: the model includes 2 BERT models. One 
BERT is used to learn the semantic features of aspect target words and global sentence features, while 
the other BERT is used to understand the local sentence semantic features. 

2) Semantic enhancement with aspect target as the core: We perform average pooling on the 
semantic features of aspect entities in the sentence and concatenate them with global and local semantic 
features. Then, through a linear layer and an MHSA layer, we input them into the adaptive local 
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semantic hidden layer and global semantic hidden layer, enhancing the core semantic features of the 
aspect target. 

3) Adaptive local semantic understanding: In our proposed BERT-CSE, the lengths of sentences 
in the updated text corpus vary. The adaptive local semantic understanding enables the model to focus 
on the most effective sentiment information near the aspect target, eliminating redundant sentiment 
information and ensuring that the model is not affected by the length of the text data. 

4) Adopting synchronous joint learning mechanism: We bind the ATE and ASC tasks and 
improve the backpropagation of the overall loss to achieve effective and stable joint learning of 
multiple tasks. 

3.3.1. Embedded learning of semantics 

We employ BERT as the basic semantic learning architecture and learn the global semantic feature 
by constructing the sequence of “[CLS] + context + [SEP]”, which is then fed into the BERT model. 
Let the hidden layer dimension of each token in the BERT model be 𝑑 , and the number of tokens in 
each sentence be 𝑚 . 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝐸𝑅𝑇(∙) denotes the use of the hidden layer parameters of the BERT 
model for learning global semantics. For the new dataset 𝑆 = {𝑠 , 𝑠 , … , 𝑠 }  we constructed, the 
global sequence is constructed, and the dimension of the input sample after being fed into the BERT 

model is 𝑆 , with each 𝑠 , 

 𝑆 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝐸𝑅𝑇(𝑆 ) = {𝑠 , 𝑠 , … , 𝑠 } (13) 

where 𝑆 ∈ ℝ × ×  and 𝑠 ∈ ℝ × . 

For the learning of local semantic features, we aim to focus on the aspect target and deepen the 
model’s understanding of it. Here, we use the BERT-SPC input mode and concatenate the sentence as 
“[CLS] + context + [SEP] + aspect target + [SEP]”, which is input to the BERT model in the same way. 
𝐿𝑜𝑐𝑎𝑙𝐵𝐸𝑅𝑇(∙) denotes the hidden layer parameters of the learned local semantic BERT model. The 
sequence obtained by entering the input into BERT is 𝑆 , with each 𝑠 . 

 𝑆 = 𝐿𝑜𝑐𝑎𝑙𝐵𝐸𝑅𝑇(𝑆 ) = {𝑠 , 𝑠 , … , 𝑠 } (14) 

where 𝑆 ∈ ℝ × ×  and 𝑠 ∈ ℝ × . 
The semantic representation of each 𝑒  in the new set 𝐸 = {𝑒 , 𝑒 , … , 𝑒 } of aspect targets is 

learned by 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝐸𝑅𝑇(∙), and 𝑚  denotes the number of tokens of each sentence aspect target, 
where 𝐴𝑠𝑝𝑒𝑐𝑡𝐵𝐸𝑅𝑇(∙) denotes the hidden layer parameters of the semantic BERT model using the 
learned aspect target, and the sequence 𝐸  obtained by entering BERT. 

 𝐸 = 𝐴𝑠𝑝𝑒𝑐𝑡𝐵𝐸𝑅𝑇(𝐸 ) = {𝑒 , 𝑒 , … , 𝑒 } ￼(15) 

 𝐸 = 𝐴𝑉𝐺𝑃𝑂𝑂𝐿𝐼𝑁𝐺(𝐸 ) ￼(16) 

We apply an average pooling layer to construct the average semantic vector set 𝐸  for the aspect 
targets. 𝐴𝑉𝐺𝑃𝑂𝑂𝐿𝐼𝑁𝐺(∙) represents the hidden layer parameters of the average pooling layer. Where 
𝐸 ∈ ℝ × ×  and 𝐸 ∈ ℝ × × . 
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3.3.2. Aspect recognition enhancement mechanism 

The subsequent work of identifying the sentiment polarity is valuable only by accurately 
identifying the aspect target in the sentence. To further emphasize the importance of aspect targets in 
learning the interaction of text sentiment elements, we perform semantic feature interaction learning 
between aspect targets, global semantics and local semantics.  

First, 𝐸  is concatenated with 𝑆  and 𝑆  in the second dimension, respectively. Then, their 
information is compressed and fused using the linear layer. The compressed and enhanced information 
is then aggregated through a multi-head self-attention layer. As an example of global semantic feature 
interaction learning, the semantic enhancement process with the aspect target as the core is calculated 
as follows, resulting in the semantic enhancement effect of the aspect target: 

 𝑆 = [𝑆 ; 𝐸 ] = {𝑠 ; 𝑒 , 𝑠 ; 𝑒 , … , 𝑠 ; 𝑒 } (17) 

 𝑆 = 𝑆 ∙ 𝑊 + 𝑏  (18) 

 𝑆 = 𝑀𝐻𝑆𝐴(𝑆 ),  (19) 

where 𝑊 ∈ ℝ ∙ × , 𝑏 ∈ ℝ ×  are the parameters of the linear layer, the 𝑆 ∈ ℝ × × ∙  

is obtained after concatenation and 𝑆 , 𝑆 ∈ ℝ × × . 

3.3.3. Extraction of aspect targets 

We define a label set 𝐿 for aspect-based sentiment analysis, where 𝐵 represents the initial token 
of the aspect target,  𝐼 represents the internal and tail tokens of the aspect target, 𝑂 indicates other 
tokens in the sentence except for the aspect target and [𝐶𝐿𝑆]  and [𝑆𝐸𝑃]  are respectively the 
beginning and separation representations in the BERT input mode. 0 denotes the padding part of the 
sentence. We aim to use the vector 𝑆 , which is obtained through global semantic comprehension, 
to complete the ATE task. First, the dimensions are transformed into six dimensions of the set 𝐿 by 
linear parameters 𝑊 ∈ ℝ × , 𝑏 ∈ ℝ × : 

 𝑆 = 𝑆 ∙ 𝑊 + 𝑏 . (20) 

Given a subsequence of sentences 𝑥 = {𝑤 , 𝑤 , … , 𝑤 } and a sequence of predicted labels 𝑦 =

{𝑦 , 𝑦 , … , 𝑦 }, the scores of each label of the predicted sequence are obtained when passing through 
the CRF model: 

 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) = ∑ (𝑝 , + 𝑡 , ), (21) 

where 𝑝 ,   denotes the probability score of the 𝑖 -th token labeled 𝑦   and 𝑡 ,   denotes the 

probability score of the label 𝑦  transferred to 𝑦 , and then the sequence is normalized to obtain 
the prediction sequence. 

 𝑃(𝑦|𝑥) =
( , )

∑ ,
∈

 (22) 
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where 𝑦  denotes the true label value and 𝑦  denotes the set of all possible labels. The final dynamic 
programming algorithm of the Viterbi algorithm is used to solve the optimal entity recognition 
sequence with probability scores 𝑦 ∈ ℝ × : 

 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥
∈

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) (23) 

3.3.4. Adaptive local semantic comprehension 

Adaptive local semantic understanding refers to mechanisms that can adaptively focus on 
understanding local sentiment semantics depending on the text of different lengths. Semantic relative 
distance (SRD) [44] has been proven to be effectively utilized for focusing on local contextual 
semantics, and SRD is calculated as follows: 

 𝑆𝑅𝐷 = |𝑖 − 𝑝 | −  (24) 

where 𝑆𝑅𝐷  denotes the SRD value of the ith token in the sentence, 𝑖 denotes the index of the token’s 
position in the sentence, 𝑝   denotes the index of the center position of the aspect target and 𝑚 
denotes the length of the aspect target. 

We aim to focus our attention on the vicinity of the aspect target. Based on data analysis, we have 
designed an adaptive local range function to determine the focus range of the model so that each 
sentence has its appropriate semantic threshold. 𝑙  represents the number of words in the aspect target, 
𝑙  represents the number of words in the sentence and 𝑖  represents the index position of the center 
word in the aspect target within the sentence. 

 𝛼 = log 𝑙 + log 𝑖 −  (25) 

Next, we incorporate this function into the adaptive context dynamic mask (ACDM) and the 
adaptive context dynamic weighted (ACDW). ACDM is used to better reduce the interference of noisy 
semantics for data with a longer threshold range. On the other hand, ACDW is utilized to balance the 
elimination of redundant semantics and the preservation of the integrity of the main semantics for data 
with a shorter threshold range. 

ACDM sets an initial matrix 𝑇  with values of 0 to represent the mask of a sentence. Each 𝑡  
is computed by taking the dot product of a vector O consisting of all 0 and a vector 𝐼 consisting of 
all 1, as shown in the equation below. The resulting matrix is denoted as 𝑆 . 

 𝑡 =
𝑂, 𝑆𝑅𝐷 > 𝛼
𝐼, 𝑆𝑅𝐷 ≤ 𝛼

 (26) 

 𝑇 = 𝑡 , 𝑡 , … , 𝑡  (27) 

 𝑆 = 𝑆 ⋅ 𝑇  (28) 

where matrix 𝑇 ∈ ℝ ×   with each 𝑡 , O, 𝐼 ∈ ℝ ×  and 𝑆 ∈ ℝ × ×  is the result. 
ACDW adopts a scheme that decreases the weights according to SRD in a hierarchical manner. 

We set a vector matrix 𝑇  to represent each 𝑡 , which needs to be calculated using the formula, 
where ⋅ denotes element-wise multiplication. The resulting matrix is denoted as 𝑆 . 
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 𝑡 =
1 − ⋅ 𝐼, 𝑆𝑅𝐷 > 𝛼

𝐼, 𝑆𝑅𝐷 ≤ 𝛼
 (29) 

 𝑇 = 𝑡 , 𝑡 , … , 𝑡  (30) 

 𝑆 = 𝑆 ⋅ 𝑇  (31) 

where matrix 𝑇 ∈ ℝ ×   with each 𝑡 ∈ ℝ ×  , and 𝑆 ∈ ℝ × ×  . These two masking 
approaches help to alleviate the interference of noisy sentiment information of varying lengths on the 
model after we construct the new data set 𝑆 . 

3.3.5. Global-local semantic feature interaction learning 

To enrich the semantic feature information required by the model, it continues to fuse the features 
of global-local semantics by concatenating 𝑆   with 𝑆   and 𝑆   to obtain 𝑆  . The 

hidden layer parameters 𝑊  and 𝑏  are used to obtain 𝑆 , and then the global-local semantics 

are aggregated by MHSA to obtain 𝑆 . 

 𝑆 = 𝑆 ; 𝑆 ; 𝑆  (32) 

 𝑆 = 𝑆 ⋅ 𝑊 + 𝑏  (33) 

 𝑆 = 𝑀𝐻𝑆𝐴 𝑆  (34) 

where 𝑆 , 𝑆 ,  𝑆 ∈ ℝ × ×  , 𝑆 ∈ ℝ × × ⋅   and 𝑊 , 𝑏 ∈ ℝ ⋅ ×  , 

𝑆 ∈ ℝ × ×  and 𝑆 ∈ ℝ × ×  are the results. 

3.3.6. Classification of aspect polarity 

The average pooling layer is used to obtain average vectors of the sequence vectors, and then the 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is used to activate 𝑆 , 𝑆  is a set of vectors containing information about 

all sentiment polarities, and 𝑝 𝑦 𝑆   denotes the predicted probability of obtaining a sentiment 

polarity given a sentiment representation 𝑆 . 

 𝑆 = 𝐴𝑉𝐺𝑃𝑂𝑂𝐿(𝑆 ),  (35) 

 𝑆 = 𝑆 ⋅ 𝑊 + 𝑏  (36) 

 𝑝 𝑦 𝑆 =
 ( )

∑  ( )
 (37) 
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where 𝑆 ∈ ℝ ×  , 𝑊  , 𝑏 ∈ ℝ ×  , 𝑆 ∈ ℝ ×   and 𝑑   is the number of categories of 

sentiment polarity. 

3.3.7. Model learning 

1) ATE task loss processing 
The training process of the ATE task is determined by the loss of the CRF model: 

 𝑙𝑜𝑠𝑠 = ln 𝑃(𝑦|𝑥) =  𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) − ln (∑ 𝑒 ,
∈ ).  (38) 

2) ASC task loss processing 
In the ASC task, we adopt a cross-entropy loss function, where 𝑦  is the predicted value, 𝑦  is 

the true value, 𝐶 denotes the number of types of sentiment polarity, 𝜆 is a hyperparameter of 𝐿  
regularization and Θ denotes all parameters used in the sentiment polarity classification task: 

 𝑙𝑜𝑠𝑠 = ∑ 𝑦 log 𝑦 + 𝜆 ∑ 𝜃∈  (39) 

3) Overall model loss processing 
The model is designed to handle multiple tasks, but balancing the learning speed and parameter 

magnitude of these two tasks is difficult. To balance the contribution of the loss values of the two tasks 
during training, we dynamically calculate the average loss value of the two tasks for each batch and 
then use a learnable parameter 𝛼  for dynamic weighted averaging. 𝛼  needs to be mapped to the 
range of 0 to 1 through the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function in each batch. 

 𝑙𝑜𝑠𝑠(𝜃 , 𝜃 ) = 𝛼 ∗ 𝑙𝑜𝑠𝑠 + (1 − 𝛼) ∗ 𝑙𝑜𝑠𝑠  (40) 

During prediction, the correct sentiment information pairs (𝑎𝑠𝑝𝑒𝑐𝑡, 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦)  are what we 
expect to obtain as results. The following represents the overall task studied in this paper, where 𝑙∗ is 
the predicted entity recognition sequence and 𝑐∗  is the predicted sentiment polarity classification 
sequence: 

 (𝑙∗, 𝑐∗) = 𝑎𝑟𝑔𝑚𝑎𝑥
∈( , )

𝑃((𝑙 , 𝑐 )|𝑀 (𝑀 (𝑠 ) , 𝑒 ). (41) 

4. Experiments 

4.1. Datasets 

To comprehensively evaluate the performance of our proposed model, we used nine widely-used 
benchmark datasets. Four concise and diverse Chinese datasets from the COAE-2008 corpus were 
used for the model evaluation. Following previous works [47,48], we performed cleaning and 
rearranging on the original datasets, which have a sentiment distribution of positive and negative for 
each aspect target. Similarly, we used 4 SemEval datasets: SemEval-2014 task 4 [3], SemEval-2015 
task 12 [4], SemEval-2016 task 5 [5] and Twitter for the ACL14 task [49]. The sentiment polarity of 
these datasets is negative, neutral and positive. Following previous works [50,51], we removed several 
data points with conflicting sentiment classification and aspect term extraction annotations. Almost all 
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of these datasets exhibit imbalanced sentiment distributions: Table 2 shows that most samples in the 4 
Chinese datasets are positive, with negative samples accounting for only about half of the positive ones. 
Among them, Twitter has the most samples, with more subtle emotional elements and a higher 
proportion of neutral emotions, which poses a challenge to the model’s sentiment recognition and 
reflects the practicality of our model. 

4.2. Experimental settings 

To train the Chinese and English datasets separately, we use bert-base-Chinese and bert-base-
uncased applied to the model, which both have 12 transformer layers, 768 hidden layer units, 110M 
counts of parameters and a dropout rate of 0.1. In the training process of our model, Adam optimizer [52] 
is used for training with learning rate of 2 × 10−5, batch size of 16, default training epochs of 10, the 
semantic similarity threshold 𝑠𝑠ℎ of 0.6 and the initial value for dynamic weighting 𝛼 of the loss 
function is set to 0.5.  

We employ a normal distribution to generate random numbers for initializing the weights and 
biases of the neural network. The generated random numbers are assigned to the respective parameter 
variables, serving as the initial parameters of the network. The hyperparameter settings of the model 
follow previous parameter setting experience [43,44]. As for the thresholds used in the model, they are 
initially randomly initialized within reasonable ranges. Subsequently, through continuous training 
experiments, the optimal threshold settings are determined by comparing the experimental results. All 
the training hyperparameters and thresholds are set as shown in Table 3. 

During the training process on different datasets, we conducted controlled experiments to adjust 
hyperparameters for optimal results. Therefore, there may be some changes in hyperparameters, which 
will be discussed in detail in Section 4.7. 

We report the Macro-average F1 (M-F1) for aspect target extraction task and the accuracy (Acc) 
and M-F1 values for the sentiment polarity classification task on these nine datasets. Tables 3 and 4, 
respectively, show the performance of various baseline models and advanced models on Chinese and 
English datasets for aspect target extraction and sentiment polarity classification tasks, demonstrating 
the potential of our model in multilingual tasks. Table 5 shows the overall performance of our model 
and other models on the ASC task in 5 English datasets. Table 6 shows the results of our model’s 
ablation experiments in the BERT-BASE environment. 

Table 2. Nine English and Chinese datasets used for evaluation. 

Datasets 
Negative Neural Positive Total 
Train Test Train Test Train Test Train Test 

Car 213 66 − − 707 164 920 230 
Camera 541 112 − − 1197 322 1738 434 
Notebook 168 35 − − 328 88 496 123 
Phone 667 156 − − 1316 341 1983 497 
14Lap 870 128 463 169 994 339 2327 636 
14Res 807 196 631 196 2164 727 3602 1119 
15Res 279 204 36 37 956 349 1271 590 
16Res 485 132 72 31 1308 479 1865 642 
Twitter 1560 173 3126 345 1561 173 6247 691 
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Table 3. Hyper-parameter settings in the model. 

Parameters Setting 
BERT hidden dimension 768 
Dropout rate in BERT 0.1 
Learning rate 2e-5 
Batch size 16 
Training epochs 10 
Dropout rate in our model 0.5 
Max padding length 80 
Optimizer Adam 
Regularization parameter  1 × 10  

𝜑 3 

𝑠𝑠ℎ 0.6 

𝛼 0.5 

4.3. Compared methods 

To provide a comprehensive analysis and evaluation of our model, we compared it with several 
baseline and state-of-the-art models on the ATE and ASC tasks and conducted several ablation 
experiments for our overall model. 

4.3.1. Baseline models 

 ATAE-LSTM [53] is a neural network model based on attention mechanism and LSTM. By 
focusing on the aspect target word information from all aspects, it improves the classification effect of 
fine-grained sentiment analysis tasks. 
 ATSM-S [47] combines the target-specific memory network with the attention mechanism, using a 
set of memory units to store the information of the target word and update it based on other words in 
the context.  
 Sent-Comp [48] solves the problem of data sparsity by compressing sentences, allowing the model 
to automatically learn the pragmatic and representative parts of the input data. 
 MenNet [13] uses multiple memory networks to store the contribution of each word in the context 
of sentiment polarity classification, combining attention mechanism and word positioning. 
 IAN [54] uses two LSTMs to introduce an interactive attention mechanism, which can better 
identify words related to a specific aspect target in the context of a sentence. 
 ASCNN [55] designs a special CNN structure to capture the contribution of each fragment in the 
sentence to each aspect target. The input is a sentence, and the output is the sentiment score of each 
aspect target in the sentence. 

4.3.2. State-of-the-art Models 

 BERT-BASE [19] is a basic version of the pre-trained BERT model released by Google AI 
Language, which can support the execution of many tasks. 
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 BERT-SPC [43] is a pre-trained BERT model applied to the sentence pair classification task. It 
differs from BERT-BASE in that the input data format becomes: “[CLS] + sentence + [SEP] + aspect 
target + [SEP]”. 
 SPRN [56] first obtains the global contextual information and aspect target information of the 
sentence through the attention mechanism and proposes dual gated multichannel convolution 
(DGMCC) and dual refinement gate (DRG) to enhance the interaction of sentiment elements between 
the contexts. 
 MCRF-SA [57] presents the opinion span of a specific aspect target, which is modeled using 
multiple CRFs based on that span in combination with a positional decay function. 
 MAN-BERT [58] uses BERT to replace the transformer encoder in the MAN model. 
 LCF-ATEPC [44] uses a location mask mechanism to focus sentiment elements on a local context 
and fuse that local context features with the global context features. 

4.3.3. Ablations 

 w/o CSE ablates the BERT-based aspect target complex semantic enhancement model part in our 
model. 
 w/o ARE ablated the aspect recognition enhancement mechanism part in our model, which is 
equivalent to having only BERT-BASE [19] and BERT-SPC [43] models. 
 w/o ASD ablates the adaptive semantic distance component in our model. 

4.4. Overall performance analysis 

For fine-grained sentiment analysis, it is essential to consider not only the APC subtask but also 
the ATE subtask to ensure the completeness of the process [59,60]. Therefore, the design of a multi-
task model is crucial. From an experimental perspective, models based on pre-trained BERT models 
such as SPRN [56], MCRF-SA [57], MAN-BERT [58], LCF-ATEPC [44], etc. that aggregate aspect 
target semantic information from different angles have better performance compared to LSTM-based 
or memory network-based models such as MenNet [13] and IAN [54]. 

From the results in Table 4, we can draw three conclusions. First, LCF-ATEPC [44], which 
integrates subtle global and local sentiment information, performs better than BERT-BASE [19] in 
both tasks, demonstrating the effectiveness of our BERT-ATSE model in multi-level sentiment 
information fusion. Second, our BERT-ATSE model shows a noticeable improvement in the ATE task 
after incorporating the complex aspect target semantic enhancement mechanism. Finally, in order to 
analyze the underwhelming performance on the Camera and Phone datasets, we carefully examined 
the characteristics of the four Chinese datasets. In comparison to the Car and Notebook datasets, it is 
undeniable that the Camera and Phone datasets have a larger volume of data. However, the sentences 
in these datasets are relatively short and have a simpler sentence structure. Additionally, there is a 
repeated occurrence of the same aspect targets in the corpus. This leads to the model learning relatively 
monotonous semantics. Since our model primarily serves for sentiment analysis of complex semantics, 
the experimental improvement on these datasets may be insignificant. 

From the results in Table 5, we can draw three conclusions. First, the model LCF-ATEPC [44] 
with the BERT-SPC [43] input format can significantly improve the identification performance of fine-
grained sentiment polarity. Second, our proposed model BERT-ATSE outperforms LCF-ATEPC [44] 
in Acc and M-F1 values on both tasks in these three datasets, indicating that enhancing the complexity 
of the corpus and identifying important local semantics in different sentences are essential. Finally, 
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observing the two tasks in Tables 4 and 5, the BERT-ATSE model performs well in identifying aspect 
targets and correctly analyzing and judging their sentiment polarities on Chinese and English datasets. 

Table 4. Experimental model results (%) on the four Chinese datasets. “-” indicates that 
this one result is not available. 𝑀𝐹  indicates the Macro-average F1 value of the aspect 
target recognition task and 𝐴𝑐𝑐   and 𝑀𝐹   indicate the Acc and M-F1 value of 
sentiment polarity classification, respectively. 

Model 
Car Camera Notebook Phone 

𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  

Sent-

Comp 
− 74.38 64.85 − 79.06 67.6 − 83.21 73.72 − 79.65 70.91 

ATAE-

LSTM 
− 81.90 76.88 − 85.54 84.09 − 83.47 82.14 − 85.77 83.87 

ATSM-

S 
− 82.94 64.18 − 82.88 72.50 − 75.59 60.09 − 84.86 75.35 

BERT-

BASE 
86.90 98.26 97.84 86.13 97.47 96.72 84.62 94.31 93.38 92.10 97.18 96.73 

LCF-

ATEP

C 

86.64 97.39 96.72 87.9 96.78 95.86 89.16 94.31 93.29 92.55 97.38 96.96 

BERT-

ATSE 
87.24 98.27 97.86 88.32 96.63 95.79 90.12 95.12 93.51 92.32 97.51 96.96 

Table 5. Experimental results of the two tasks on the three English datasets. 

Model 
14Laptop 14Restaurant Twitter 

𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  

BERT-BASE 82.57 79.40 75.24 88.60 82.66 74.13 76.27 73.02 71.43 

LCF-ATEPC 82.06 80.03 76.60 88.49 86.06 80.22 95.45 74.23 73.06 

BERT-ATSE 83.50 81.23 78.57 89.51 86.79 81.41 96.73 75.87 75.02 

BERT-

ATSE-

MEAN 

83.31 80.90 78.23 89.08 86.39 80.98 96.57 75.44 74.73 

BERT-

ATSE-STD 
0.18 0.21 0.32 0.21 0.34 0.27 0.19 0.24 0.31 

Our experimental data consists of the best results obtained from 10 different tests. The average 
values and standard deviations of the 10 test results are presented in Table 5, using the 14Laptop, 
14Restaurant and Twitter datasets as examples. The table shows that although the average values are 
slightly lower than the best results, their standard deviations are small. This indicates that our model 
exhibits strong stability and consistency. 
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4.5. Performance analysis of ASC tasks 

From the results in Table 6, we can draw several conclusions. First, models with more interaction 
attention mechanisms, such as MAN-BERT [58], MCRF-SA [57] and BERT-BASE [19], perform 
similarly on classification tasks. This is mainly because BERT already includes multiple attention 
heads, making excessive interaction attention redundant. Second, methods that integrate other complex 
neural network models with BERT, including SPRN [56], perform better than previous methods, 
demonstrating the effectiveness of this combination approach. Third, when comparing the single-task 
training of model BERT-ATSE on the APC task to its previous multi-task joint training, we observe a 
slight decrease in Acc and M-F1 scores. This proves the complementary nature of multi-task joint 
training, where training for the ATE task and the APC task can promote the learning of model 
parameters for both tasks. Finally, even in single-task training, the BERT-ATSE model shows slightly 
lower Acc on the 14Restaurant and 15Restaurant datasets compared to other models. This can be 
attributed to the presence of a large number of informal and short expressions, as well as the prevalence 
of ironic sentence patterns in the Restaurant dataset. As a result, the improvement of our model on this 
dataset is limited. However, other datasets’ Acc and M-F1 scores still demonstrate excellent 
performance, indicating the model’s adaptability and robustness. 

4.6. Ablation experiments analysis 

After conducting ablation experiments on our model, Table 7 provides several conclusions. First, 
our model BERT-ATSE outperforms other ablated models in terms of Acc and M-F1 values across 
multiple tasks, demonstrating the reliability of our complex aspect target semantic enhancement. 
Second, the w/o ARE model performs better in the APC task than the w/o CSE model and the w/o ASD 
model, indicating that our complex semantic enhancement mechanism and adaptive semantic distance 
mechanism can have a more significant impact on the model’s ability to understand and judge complex 
sentiment. Third, the w/o ASD model performs better in the ATE task than the w/o CSE model and the 
w/o ARE model, demonstrating the importance of our complex corpus augmentation mechanism and 
aspect recognition enhancement mechanism for improving aspect target recognition. Fourth, the w/o 
CSE model performs better in the APC task in terms of Acc and M-F1 values than the w/o ASD model, 
highlighting the significant contribution of our adaptive semantic distance mechanism to global and 
local sentiment semantic understanding and judgment. 

4.7. Analysis of the threshold 

We tested the sensitivity of the semantic similarity threshold on the camera and 14Laptop datasets 
and still used BERT-BASE [19] as the underlying structure. Figure 2 shows the training results on 
these two datasets. 
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Table 6. Experimental model results (%) for ASC task trained individually on 5 English 
datasets. 

Model 
14Laptop 14Restaurant 15Restaurant 16Restaurant Twitter 

𝐴𝑐𝑐  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  

MenNet 70.64 65.71 79.61 69.64 77.31 58.28 85.44 65.99 69.65 67.68 

IAN 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21 71.82 69.11 

ASCNN 72.62 66.72 81.73 73.10 78.48 58.90 87.39 64.56 − − 

SPRN 79.31 76.61 85.03 76.97 85.30 − 89.40 − 75.70 73.50 

BERT-

BASE 
79.4 75.24 82.66 74.13 84.54 65.24 88.24 71.18 73.02 71.43 

BERT-

SPC 
78.99 75.03 84.46 76.98 85.91 67.85 89.94 78.23 73.12 71.57 

MCRF-

SA 
77.64 74.23 82.86 73.78 80.82 61.59 89.51 75.92 − − 

MAN-

BERT 
78.68 75.03 82.05 69.78 85.04 64.98 88.61 74.26 73.99 71.99 

LCF-APC 80.50 77.77 86.15 80.76 86.28 67.66 89.70 78.11 74.24 73.06 

BERT-

ATSE 
80.87 78.04 86.13 80.77 86.23 68.52 90.00 78.37 74.63 74.45 

Table 7. Experimental results of the network structure after ablation. 

Model 
14Laptop 14Restaurant Twitter 
𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  𝑀𝐹  𝐴𝑐𝑐  𝑀𝐹  

BERT-

ATSE 
83.50 81.23 78.57 89.51 86.79 81.41 96.73 75.87 75.02 

w/o 

CSE 
82.89 80.57 77.86 88.56 85.95 80.69 95.89 74.58 74.01 

w/o 

ARE 
82.54 81.03 78.28 87.95 86.24 81.07 95.34 75.11 74.76 

w/o 

ASD 
83.13 80.36 76.84 88.56 84.95 80.19 96.21 74.14 73.83 

The results presented in Figure 2(a) show that the BERT-ATSE model performs well in terms of 
Acc and M-F1 score for the APC task on the Camera dataset when the semantic similarity threshold 
(𝑠𝑠ℎ) is between 0.7 and 0.9. For the ATE task, the best results are obtained when 𝑠𝑠ℎ is between 0.7 
and 0.8. As ssh increases, the model tends to concatenate sentences with similar semantics to enrich 
the corpus, and this threshold is more sensitive for the ATE task in this dataset. 

The results presented in Figure 2(b) demonstrate that for the APC task of the Laptop dataset, the 
optimal 𝑠𝑠ℎ threshold to achieve the highest Acc and M-F1 score is between 0.5 and 0.6, while for 
the ATE task, it is at 0.7. Notably, both tasks in this dataset are highly sensitive to changes in the 𝑠𝑠ℎ 
threshold, with the ATE task showing a greater increase in the M-F1 score as 𝑠𝑠ℎ increases. 
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(a) (b) 

Figure 2. The performance of different semantic similarity thresholds on the Camera and 
14Laptop datasets, respectively. 

 

Figure 3. The left sentence illustrates the situation where a sentence contains a single 
aspect target word, while the right one depicts the scenario where a sentence contains 
multiple aspect target words. “meal”, “lunch”, “worth” are the aspect targets, and the 
dashed box indicates the defined range of concentration of attention in the model. 

4.8. Case study 

Figure 3 illustrates the attention scores of the best BERT-ATSE model. For the given two input 
sentences, regarding the first sentence that contains a single aspect target word, BERT-ATSE assigns 
the aspect term “meal” with the correct negative polarity. It can be observed that the corresponding 
sentiment terms “terribly” and “thirsty” receive significantly high attention score weights, indicating 
that they are given greater emphasis in terms of semantic attention. As for the second sentence that 
contains multiple aspect target words, the two aspect targets, “lunch” and “wait”, along with their 
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corresponding sentiment terms “few times” and “worth”, demonstrate that our model, after 
incorporating ASD, effectively identifies the specific words that each aspect target should pay more 
attention to, assigning them higher weight values. This results in the correct allocation of neutral 
polarity and positive polarity to the aspect targets. It can be observed that the length of the sentence 
does not significantly affect the accurate identification of sentiment terms related to the aspect target. 
This is because the ASD mechanism intelligently determines the range of redundant information 
suppression based on the current sentence and aspect target word lengths, playing a crucial role in 
the model. 

5. Conclusions 

In this paper, we address the contradiction between the need for more fine-grained sentiment 
analysis in the ATSC task and the lack of rich aspect target semantics in the available corpora. To tackle 
this issue, we propose a BERT-based multi-sense learning model that enhances aspect target semantics 
for both aspect-level sentiment analysis (ATE) and aspect polarity classification (APC) tasks. We use 
a BERT-based aspect target complex semantic enhancement model to enrich multiple existing training 
datasets, enabling the model to achieve a higher level of granularity in sentiment analysis. To enhance 
the robustness of aspect target recognition in ATE tasks, we propose an aspect recognition 
enhancement mechanism combined with a CRF model to improve the perception of aspect target 
recognition. Furthermore, we use an adaptive global-local context mechanism to obtain sentiment 
semantics with substantial overall performance on different datasets after aspect target complex 
semantic enhancement. Experiments and analysis demonstrate that our model BERT-ATSE can quickly 
adapt to ATSC tasks and has effectiveness and stability. 
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