The coronavirus infectious disease (or COVID-19) is a severe respiratory illness. Although the infection incidence decreased significantly, still it remains a major panic for human health and the global economy. The spatial movement of the population from one region to another remains one of the major causes of the spread of the infection. In the literature, most of the COVID-19 models have been constructed with only temporal effects. In this paper, a vaccinated spatio-temporal COVID-19 mathematical model is developed to study the impact of vaccines and other interventions on the disease dynamics in a spatially heterogeneous environment. Initially, some of the basic mathematical properties including existence, uniqueness, positivity, and boundedness of the diffusive vaccinated models are analyzed. The model equilibria and the basic reproductive number are presented. Further, based upon the uniform and non-uniform initial conditions, the spatio-temporal COVID-19 mathematical model is solved numerically using finite difference operator-splitting scheme. Furthermore, detailed simulation results are presented in order to visualize the impact of vaccination and other model key parameters with and without diffusion on the pandemic incidence. The obtained results reveal that the suggested intervention with diffusion has a significant impact on the disease dynamics and its control.
Citation: Ahmed Alshehri, Saif Ullah. A numerical study of COVID-19 epidemic model with vaccination and diffusion[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4643-4672. doi: 10.3934/mbe.2023215
[1] | Wanda M. Snow, Brenda M. Stoesz, Judy E. Anderson . The Cerebellum in Emotional Processing: Evidence from Human and Non-Human Animals. AIMS Neuroscience, 2014, 1(1): 96-119. doi: 10.3934/Neuroscience.2014.1.96 |
[2] | Mani Pavuluri, Amber May . I Feel, Therefore, I am: The Insula and Its Role in Human Emotion, Cognition and the Sensory-Motor System. AIMS Neuroscience, 2015, 2(1): 18-27. doi: 10.3934/Neuroscience.2015.1.18 |
[3] | Tevzadze Gigi, Zhuravliova Elene, Barbakadze Tamar, Shanshiashvili Lali, Dzneladze Davit, Nanobashvili Zaqaria, Lordkipanidze Tamar, Mikeladze David . Gut neurotoxin p-cresol induces differential expression of GLUN2B and GLUN2A subunits of the NMDA receptor in the hippocampus and nucleus accumbens in healthy and audiogenic seizure-prone rats. AIMS Neuroscience, 2020, 7(1): 30-42. doi: 10.3934/Neuroscience.2020003 |
[4] | Aini Ismafairus Abd Hamid, Nurfaten Hamzah, Siti Mariam Roslan, Nur Alia Amalin Suhardi, Muhammad Riddha Abdul Rahman, Faiz Mustafar, Hazim Omar, Asma Hayati Ahmad, Elza Azri Othman, Ahmad Nazlim Yusoff . Distinct neural mechanisms of alpha binaural beats and white noise for cognitive enhancement in young adults. AIMS Neuroscience, 2025, 12(2): 147-179. doi: 10.3934/Neuroscience.2025010 |
[5] | Graziella Orrù, Marina Baroni, Ciro Conversano, Angelo Gemignani . Exploring the therapeutic potential of tDCS, TMS and DBS in overcoming tobacco use disorder: an umbrella review. AIMS Neuroscience, 2024, 11(4): 449-467. doi: 10.3934/Neuroscience.2024027 |
[6] | Andrea J. Rapkin, Steven M. Berman, Edythe D. London . The Cerebellum and Premenstrual Dysphoric Disorder. AIMS Neuroscience, 2014, 1(2): 120-141. doi: 10.3934/Neuroscience.2014.2.120 |
[7] | Marie Vandekerckhove, Yu-lin Wang . Emotion, emotion regulation and sleep: An intimate relationship. AIMS Neuroscience, 2018, 5(1): 1-17. doi: 10.3934/Neuroscience.2018.1.1 |
[8] | Gianna Sepede, Francesco Gambi, Massimo Di Giannantonio . Insular Dysfunction in People at Risk for Psychotic Disorders. AIMS Neuroscience, 2015, 2(2): 66-70. doi: 10.3934/Neuroscience.2015.2.66 |
[9] | Galina V. Portnova, Michael S. Atanov . Nonlinear EEG parameters of emotional perception in patients with moderate traumatic brain injury, coma, stroke and schizophrenia. AIMS Neuroscience, 2018, 5(4): 221-235. doi: 10.3934/Neuroscience.2018.4.221 |
[10] | Masao Ito, Naoko Nisimaru . Cerebellar Control of Defense Reactions under Orexin-mediated Neuromodulation as a Model of Cerebellohypothalamic Interaction. AIMS Neuroscience, 2014, 1(1): 89-95. doi: 10.3934/Neuroscience.2014.1.89 |
The coronavirus infectious disease (or COVID-19) is a severe respiratory illness. Although the infection incidence decreased significantly, still it remains a major panic for human health and the global economy. The spatial movement of the population from one region to another remains one of the major causes of the spread of the infection. In the literature, most of the COVID-19 models have been constructed with only temporal effects. In this paper, a vaccinated spatio-temporal COVID-19 mathematical model is developed to study the impact of vaccines and other interventions on the disease dynamics in a spatially heterogeneous environment. Initially, some of the basic mathematical properties including existence, uniqueness, positivity, and boundedness of the diffusive vaccinated models are analyzed. The model equilibria and the basic reproductive number are presented. Further, based upon the uniform and non-uniform initial conditions, the spatio-temporal COVID-19 mathematical model is solved numerically using finite difference operator-splitting scheme. Furthermore, detailed simulation results are presented in order to visualize the impact of vaccination and other model key parameters with and without diffusion on the pandemic incidence. The obtained results reveal that the suggested intervention with diffusion has a significant impact on the disease dynamics and its control.
Let
Oε={x=(x∗,xn+1)|x∗=(x1,…,xn)∈Qand0<xn+1<εg(x∗)}, |
where
γ1≤g(x∗)≤γ2,∀x∗∈¯Q. | (1) |
Denote
{dˆuε−Δˆuεdt=(H(t,x,ˆuε(t))+G(t,x))dt+m∑j=1cjˆuε∘dwj,x∈Oε,t>τ,∂ˆuε∂νε=0,x∈∂Oε, | (2) |
with the initial condition
ˆuε(τ,x)=ˆϕε(x),x∈Oε, | (3) |
where
As
{du0−1gn∑i=1(gu0yi)yidt=(H(t,(y∗,0),u0(t))+G(t,(y∗,0)))dt+m∑j=1cju0∘dwj,y∗=(y1,…,yn)∈Q,t>τ,∂u0∂ν0=0,y∗∈∂Q, | (4) |
with the initial condition
u0(τ,y∗)=ϕ0(y∗),y∗∈Q, | (5) |
where
Random attractors have been investigated in [2,5,10,19,9] in the autonomous stochastic case, and in [3,21,22,23] in the non-autonomous stochastic case. Recently, the limiting dynamical behavior of stochastic partial differential equations on thin domain was studied in [16,20,13,14,11,12,17,4]. However, in [17,13], we only investigated the limiting behavior of random attractors in
Let
We organize the paper as follows. In the next section, we establish the existence of a continuous cocycle in
Here we show that there is a continuous cocycle generated by the reaction-diffusion equation defined on
{dˆuε−Δˆuεdt=(H(t,x,ˆuε(t))+G(t,x))dt+m∑j=1cjˆuε∘dwj,x=(x∗,xn+1)∈Oε,t>τ,∂ˆuε∂νε=0,x∈∂Oε, | (6) |
with the initial condition
ˆuετ(x)=ˆϕε(x),x∈Oε, | (7) |
where
H(t,x,s)s≤−λ1|s|p+φ1(t,x), | (8) |
|H(t,x,s)|≤λ2|s|p−1+φ2(t,x), | (9) |
∂H(t,x,s)∂s≤λ3, | (10) |
|∂H(t,x,s)∂x|≤ψ3(t,x), | (11) |
where
Throughout this paper, we fix a positive number
h(t,x,s)=H(t,x,s)+λs | (12) |
for all
h(t,x,s)s≤−α1|s|p+ψ1(t,x), | (13) |
|h(t,x,s)|≤α2|s|p−1+ψ2(t,x), | (14) |
∂h(t,x,s)∂s≤β, | (15) |
|∂h(t,x,s)∂x|≤ψ3(t,x), | (16) |
where
Substituting (12) into (6) we get for
{dˆuε−(Δˆuε−λˆuε)dt=(h(t,x,ˆuε(t))+G(t,x))dt+m∑j=1cjˆuε∘dwj,x=(x∗,xn+1)∈Oε,∂ˆuε∂νε=0,x∈∂Oε, | (17) |
with the initial condition
ˆuετ(x)=ˆϕε(x),x∈Oε. | (18) |
We now transfer problem (17)-(18) into an initial boundary value problem on the fixed domain
x∗=y∗,xn+1=εg(y∗)yn+1. |
It follows from [18] that the Laplace operator in the original variable
Δxˆu(x)=|J|divy(|J|−1JJ∗∇yu(y))=1gdivy(Pεu(y)), |
where we denote by
Pεu(y)=(guy1−gy1yn+1uyn+1⋮guyn−gynyn+1uyn+1−n∑i=1yn+1gyiuyi+1ε2g(1+n∑i=1(εyn+1gyi)2)uyn+1). |
In the sequel, we abuse the notation a little bit by writing
Fε(t,y∗,yn+1,s)=F(t,y∗,εg(y∗)yn+1,s),F0(t,y∗,s)=F(t,y∗,0,s), |
where
{duε−(1gdivy(Pεuε)−λuε)dt=(hε(t,y,uε(t))+Gε(t,y))dt+m∑j=1cjuε∘dwj,y=(y∗,yn+1)∈O,Pεuε⋅ν=0,y∈∂O, | (19) |
with the initial condition
uετ(y)=ϕε(y)=ˆϕε∘T−1ε(y),y∈O, | (20) |
where
Given
θ1,t(τ)=τ+t,for allτ∈R. | (21) |
Then
Ω={ω∈C(R,R):ω(0)=0}. |
Let
θtω(⋅)=ω(⋅+t)−ω(t),ω∈Ω,t∈R. | (22) |
Then
dz+αzdt=dw(t), | (23) |
for
Lemma 2.1. There exists a
limt→±∞|ω(t)|t=0for allω∈Ω′, |
and, for such
z∗(ω)=−α∫0−∞eαsω(s)ds |
is well defined. Moreover, for
(t,ω)→z∗(θtω)=−α∫0−∞eαsθtω(s)ds=−α∫0−∞eαsω(t+s)ds+ω(t) |
is a stationary solution of (23) with continuous trajectories. In addition, for
limt→±∞|z∗(θtω)|t=0,limt→±∞1t∫t0z∗(θsω)ds=0, | (24) |
limt→±∞1t∫t0|z∗(θsω)|ds=E|z∗|<∞. | (25) |
Denote by
˜Ω=Ω′1×⋯×Ω′mand F=m⊗j=1Fj, |
Then
Denote by
SCj(t)u=ecjtu,foru∈L2(O), |
and
T(ω):=SC1(z∗1(ω))∘⋯∘SCm(z∗m(ω))=em∑j=1cjz∗j(ω)IdL2(O),ω∈Ω′. |
Then for every
T−1(ω):=SCm(−z∗m(ω))∘⋯∘SC1(−z∗1(ω))=e−m∑j=1cjz∗j(ω)IdL2(O). |
It follows that
On the other hand, since
limt→±∞1t∫t0‖T(θτω)‖2dτ=E‖T‖2=m∏j=1E(e2cjz∗j)<∞, |
and
limt→±∞1t∫t0‖T−1(θτω)‖2dτ=E‖T−1‖2=m∏j=1E(e−2cjz∗j)<∞. |
Remark 1. We now consider
Next, we define a continuous cocycle for system (19)-(20) in
{dvεdt−1gdivy(Pεvε)=(−λ+δ(θtω))vε+T−1(θtω)hε(t,y,T(θtω)vε(t))+T−1(θtω)Gε(t,y),y∈O,t>τ,Pεvε⋅ν=0,y∈∂O, | (26) |
with the initial conditions
vετ(y)=ψε(y),y∈O, | (27) |
where
Since (26) is a deterministic equation, by the Galerkin method, one can show that if
Φε(t,τ,ω,ϕε)=uε(t+τ,τ,θ−τω,ϕε)=T(θt+τω)vε(t+τ,τ,θ−τω,ψε),for all(t,τ,ω,ϕε)∈R+×R×Ω×N. | (28) |
By the properties of
Let
(Rεˆϕε)(y)=ˆϕε(T−1εy),∀ˆϕε∈L2(Oε). |
Given
ˆΦε(t,τ,ω,ˆϕε)=R−1εΦε(t,τ,ω,Rεˆϕε). |
The same change of unknown variable
{dv0dt−n∑i=11g(gv0yi)yi=(−λ+δ(θtω))v0+T−1(θtω)h0(t,y∗,T(θtω)v0(t))+T−1(θtω)G0(t,y∗),y∗∈Q,t>τ,∂v0∂ν0=0,y∗∈∂Q, | (29) |
with the initial conditions
v0τ(y∗)=ψ0(y∗),y∗∈Q, | (30) |
where
The same argument as above allows us to prove that problem (4) and (5) generates a continuous cocycle
Now we want to write equation (26)-(27) as an abstract evolutionary equation. We introduce the inner product
(u,v)Hg(O)=∫Oguvdy,for allu,v∈N |
and denote by
For
aε(u,v)=(J∗∇yu,J∗∇yv)Hg(O), | (31) |
where
J∗∇yu=(uy1−gy1gyn+1uyn+1,…,uyn−gyngyn+1uyn+1,1εguyn+1). |
By introducing on
‖u‖H1ε(O)=(∫O(|∇y∗u|2+|u|2+1ε2u2yn+1)dy)12, | (32) |
we see that there exist positive constants
η1∫O(|∇y∗u|2+1ε2u2yn+1)dy≤aε(u,u)≤η2∫O(∇y∗u|2+1ε2u2yn+1)dy | (33) |
and
η1‖u‖2H1ε(O)≤aε(u,u)+‖u‖2L2(O)≤η2‖u‖2H1ε(O). | (34) |
Denote by
D(Aε)={v∈H2(O),Pεv⋅ν=0on∂O} |
as defined by
Aεv=−1gdivPεv,v∈D(Aε). |
Then we have
aε(u,v)=(Aεu,v)Hg(O),∀u∈D(Aε),∀v∈H1(O). | (35) |
Using
{dvεdt+Aεvε=(−λ+δ(θtω))vε+T−1(θtω)hε(t,y,T(θtω)vε(t))+T−1(θtω)Gε(t,y),y∈O,t>τ,vετ=ψε. | (36) |
To reformulate system (29)-(30), we introduce the inner product
(u,v)Hg(Q)=∫Qguvdy∗,for allu,v∈M, |
and denote by
a0(u,v)=∫Qg▽y∗u⋅▽y∗vdy∗. |
Denote by
D(A0)={v∈H2(Q),∂v∂ν0=0on∂Q} |
as defined by
A0v=−1gn∑i=1(gvyi)yiv∈D(A0). |
Then we have
a0(u,v)=(A0u,v)Hg(Q),∀u∈D(A0),∀v∈H1(Q). |
Using
{dv0dt+A0v0=(−λ+δ(θtω))v0+T−1(θtω)h0(t,y∗,T(θtω)v0(t))+T−1(θtω)G0(t,y∗),y∗∈Q,t>τ,v0τ(s)=ψ0(s),s∈[−ρ,0]. | (37) |
Hereafter, we set
limt→−∞ect‖Bi(τ+t,θtω)‖Xi=0, |
where
Di={Bi={Bi(τ,ω):τ∈R,ω∈Ω}:Bi is tempered in Xi}. |
Our main purpose of the paper is to prove that the cocycle
limε→0supuε∈ˆAεinfu0∈A0ε−1‖uε−u0‖2H1(Oε)=0. | (38) |
To prove (38), we only need to show that the cocycle
limε→0distH(Aε(τ,ω),A0(τ,ω))=0, |
which will be established in the last section of the paper.
Furthermore, we suppose that there exists
¯γΔ=λ0−2E(|δ(ω)|)>0. | (39) |
Let us consider the mapping
γ(ω)=λ0−2|δ(ω)|. | (40) |
By the ergodic theory and (39) we have
limt→±∞1t∫t0γ(θlω)dl=Eγ=¯γ>0. | (41) |
The following condition will be needed when deriving uniform estimates of solutions:
∫τ−∞e12¯γs(‖G(s,⋅)‖2L∞(˜O)+‖φ1(s,⋅)‖2L∞(˜O)+‖ψ3(s,⋅)‖2L∞(˜O))ds<∞,∀τ∈R. | (42) |
When constructing tempered pullback attractors, we will assume
limr→−∞eσr∫0−∞e12¯γs(‖G(s+r,⋅)‖2L∞(˜O)+‖φ1(s+r,⋅)‖2L∞(˜O)+‖ψ3(s+r,⋅)‖2L∞(˜O))ds=0,∀σ>0. | (43) |
Since
∫τ−∞e12¯γs(‖G(s,⋅)‖2L∞(˜O)+‖ψ1(s,⋅)‖L∞(˜O)+‖ψ3(s,⋅)‖2L∞(˜O))ds<∞,∀τ∈R | (44) |
and
limr→−∞eσr∫0−∞e12¯γs(‖G(s+r,⋅)‖2L∞(˜O)+‖ψ1(s+r,⋅)‖2L∞(˜O)+‖ψ3(s+r,⋅)‖2L∞(˜O))ds=0, | (45) |
for any
In this section, we recall and generalize some results in [17] and derive some new uniform estimates of solutions of problem (36) or (19)-(20) which are needed for proving the existence of
Lemma 3.1. Assume that (8)-(11), (39) and (42) hold. Then for every
sup−1≤s≤0‖vε(τ+s,τ−t,θ−τω,ψε)‖2H1ε(O)≤R2(τ,ω), | (46) |
where
R2(τ,ω)=r1(ω)R1(τ,ω)+c∫0−∞e¯γr‖T−1(θrω)‖2(‖G(r+τ,⋅)‖2L∞(˜O)+‖ψ3(r+τ,⋅)‖2L∞(˜O))dr, | (47) |
where
R1(τ,ω)=c∫0−∞e∫r0γ(θlω)dl‖T−1(θrω)‖2‖G(r+τ,⋅)‖2L∞(˜O)dr+c∫0−∞e∫r0γ(θlω)dl‖T−1(θrω)‖2‖ψ1(r+τ,⋅)‖2L∞(˜O)dr, | (48) |
and
Proof. The proof is similar as that of Lemma 3.4 in [17], so we only sketch the proof here. Taking the inner product of (36) with
12ddt‖vε‖2Hg(O)≤−aε(vε,vε)+(−λ0+δ(θtω))‖vε‖2Hg(O)+(T−1(θtω)hε(t,y,T(θtω)vε(t)),vε)Hg(O)+(T−1(θtω)Gε(t,y),vε)Hg(O). | (49) |
By (13), we have
ddt‖vε‖2Hg(O)+2aε(vε,vε)+λ02‖vε‖2Hg(O)+2α1γ1‖T−1(θtω)‖2‖uε‖pLp(O)≤(−λ0+2δ(θtω))‖vε‖2Hg(O)+2λ0γ2|˜O|‖T−1(θtω)‖2‖G(t,⋅)‖2L∞(˜O)+2γ2|˜O|‖T−1(θtω)‖2‖ψ1(t,⋅)‖L∞(˜O). | (50) |
Then, we have for any
e∫στγ(θlω)dl‖vε(σ)‖2Hg(O)+2∫στe∫rτγ(θlω)dlaε(vε(r),vε(r))dr+λ02∫στe∫rτγ(θlω)dl‖vε(r)‖2Hg(O)dr+2α1γ1∫στ‖T−1(θrω)‖2e∫rτγ(θlω)dl‖uε(r)‖pLp(O)dr≤‖vε(τ)‖2Hg(O)+2λ0γ2|˜O|∫στe∫rτγ(θlω)dl‖T−1(θrω)‖2‖G(r,⋅)‖2L∞(˜O)dr+2γ2|˜O|∫στe∫rτγ(θlω)dl‖T−1(θrω)‖2‖ψ1(r,⋅)‖2L∞(˜O)dr, | (51) |
where
Thus by the similar arguments as Lemma 3.1 in [17] we get for every
‖vετ(⋅,τ−t,θ−τω,ψ)‖2L2(O)≤c∫0−∞e∫r0γ(θlω)dl‖ψ1(r+τ,⋅)‖2L∞(˜O)dr+c∫0−∞e∫r0γ(θlω)dl‖T−1(θrω)‖2‖G(r+τ,⋅)‖2L∞(˜O)dr+c∫0−∞e∫r0γ(θlω)dl‖T−1(θrω)‖2‖ψ1(r+τ,⋅)‖2L∞(˜O)dr. | (52) |
Moreover, taking the inner product of (36) with
12ddtaε(vε,vε)+‖Aεvε‖2Hg(O)≤(−λ0+δ(θtω))aε(vε,vε)+(T−1(θtω)hε(t,y,T(θtω)vε(t)),Aεvε)Hg(O)+(T−1(θtω)Gε(t,y),Aεvε)Hg(O). | (53) |
By (15)-(16) we have
ddtaε(vε,vε)+‖Aεvε‖2Hg(O)≤(c+2δ(θtω))aε(vε,vε)+c‖T−1(θtω)‖2(‖G(t,⋅)‖2L∞(˜O)+‖ψ3(t,⋅)‖2L∞(˜O)), | (54) |
The left proof is similar of that Lemma 3.4 in [17], so we omit it here.
We are now in a position to establish the uniform estimates for the solution
Lemma 3.2. Assume that (8)-(11), (39) and (42) hold. Then for every
sup−1≤s≤0‖uε(τ+s,τ−t,θ−τω,ϕε)‖2H1ε(O)≤r2(ω)R2(τ,ω), | (55) |
where
Lemma 3.3. Assume that (8)-(11), (39) and (42) hold. Then for every
sup−1≤s≤0‖vε(τ+s,τ−t,θ−τω,ψε)‖pLp(O)+∫ττ−ρ‖vε(r,τ−t,θ−τω,ψε)‖2p−2L2p−2(O)dr≤R3(τ,ω), | (56) |
where
Proof. The proof is similar as that of Lemma 3.6 in [14], so we omit it here.
Lemma 3.4. Assume that (8)-(11), (39) and (42) hold. Then for every
∫0−1eγMp−2s∫{y∈O: vε(s+τ,τ−t,θ−τω,ψε)≥2M}|vε(s+τ,τ−t,θ−τω,ψε)|2p−2dyds≤η, | (57) |
∫0−1eγMp−2s∫{y∈O: vε(s+τ,τ−t,θ−τω,ψε)≤−2M}|vε(s+τ,τ−t,θ−τω,ψε)|2p−2dyds≤η. | (58) |
Proof. Let
1pddt‖(vε−M)+‖pLp(O)+(p−1)∫vε≥M(vε−M)p−2aε(vε,vε)dx≤(δ(θtω)vε,(vε−M)p−1+)+(T−1(θtω)hε(t,y,T(θtω)vε),(vε−M)p−1+)+(T−1(θtω)Gε(t,y),(vε−M)p−1+). | (59) |
For the first term on the right side of (59) we have
|(δ(θtω)vε,(vε−M)p−1+)|≤1p|δ(θrω)|p∫O|vε|pdx+p−1p∫O(vε−M)p+dx. | (60) |
For the second term on the right-hand side of (59), by (8), we obtain, for
hε(t,y,T(θtω)vε) (vε−M)p−1+≤−α1‖T(θtω)‖p−1(vε)p−1(v−M)p−1+ |
+‖T(θtω)‖−1ψ1(t,y∗,εg(y∗)yn+1)(vε)−1(vε−M)p−1+ |
≤−12α1Mp−2‖T(θtω)‖p−1(vε−M)p+−12α1‖T(θtω)‖p−1(vε−M)2p−2+ |
+‖T−1(θtω)‖−1|ψ1(t,y∗,εg(y∗)yn+1)|(vε−M)p−2+ |
which implies
(T−1(θtω)hε(t,y,T(θtω)vε), (vε−M)p−1+) |
≤−12α1Mp−2‖T(θtω)‖p−2∫O(vε−M)p+dx−12α1‖T−1(θtω)‖p−2∫O(vε−M)2p−2+dx |
+‖T(θtω)‖−2∫O|ψ1(t,y∗,εg(y∗)yn+1)|(vε−M)p−2+dx |
≤−12α1Mp−2‖T(θtω)‖p−2∫O(vε−M)p+dx−12α1‖T(θtω)‖p−2∫O(vε−M)2p−2+dx |
+p−2p∫O(vε−M)p+dx+2p‖T(θtω)‖−p∫O|ψ1(t,y∗,εg(y∗)yn+1)|p2dy. | (61) |
The last term in (59) is bounded by
(T−1(θtω)Gε(t,y),(vε−M)p−1+)≤18α1‖T(θtω)‖p−2∫O(vε−M)2p−2+dx+2α1‖T(θtω)‖−p∫vε≥M|Gε(t,y)|2dy. | (62) |
All above estimates yield
ddt‖(vε−M)+‖pLp(O)−(2p−3−12pα1Mp−2‖T(θtω)‖p−2)∫O(vε−M)p+dx+14pα1‖T(θtω)‖p−2∫O(vε−M)2p−2+dx≤|δ(θrω)|p∫O|vε|pdx+2‖T(θtω)‖−p∫O|ψ1(t,y∗,εg(y∗)yn+1)|p2dy+2pα1‖T(θtω)‖−p∫O|Gε(t,y)|2dy. | (63) |
Multiplying (63) by
‖(vε(τ,τ−t,ω,ψε)−M)+‖pLp(O) |
+14pα1∫ττ−1‖T(θζω)‖p−2e−∫ζτ(2p−3−12pα1Mp−2‖T(θrω)‖p−2)dr |
×∫O(vε(ζ,τ−t,ω,ψε)−M)2p−2+dxdζ |
≤e−∫τ−1τ(2p−3−12pα1Mp−2‖T(θrω)‖p−2)dr‖(vε(τ−1,τ−t,ω,ψε)−M)+‖pLp(O) |
+∫ττ−1|δ(θζω)|pe−∫ζτ(2p−3−12pα1Mp−2‖T(θrω)‖p−2)dr‖vε(ζ,τ−t,ω,ψε)‖pLp(O)dζ |
+2|O|∫ττ−1‖T(θζω)‖−pe−∫ζτ+ξ(2p−3−12pα1Mp−2‖T(θrω)‖p−2)dr‖ψ1(ζ,⋅)‖p2L∞(˜O)dζ. |
+2p|O|α1∫ττ−1‖T(θζω)‖−pe−∫ζτ+ξ(2p−3−12pα1Mp−2‖T(θrω)‖p−2)dr‖G(ζ,⋅)‖2L∞(˜O)dζ, | (64) |
where
14pα1∫0−1‖T(θζω)‖p−2e−∫ζ0(2p−3−12pα1Mp−2‖T(θrω)‖p−2)dr |
\times\int_{\mathcal O} ( v^\varepsilon(\zeta+\tau, \tau-t,\theta_{-\tau} \omega, \psi^\varepsilon) -M) _+^{2p-2} dx d\zeta |
\le e^{-\int_0^{ -1} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2})dr } \| \left ( v^\varepsilon(\tau-1, \tau-t,\theta_{-\tau} \omega, \psi^\varepsilon) -M \right )_+\|^p_{L^p(\mathcal O)} |
+ \int_{ -1}^0 | \delta (\theta_{\zeta+\xi} \omega)|^p e^{-\int_0^{\zeta} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2}) dr } \|v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon)\|^p_{L^p(\mathcal O)} d\zeta |
+2|\mathcal O| \int_{ -1}^0 \|{\mathcal T} \left( {\theta _{\zeta}\omega } \right)\|^{-p} e^{-\int_0^{\zeta} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2}) dr } \| \psi_1(\zeta+\tau,\cdot) \|_{L^\infty(\widetilde {\mathcal O})}^ {\frac p2} d\zeta. |
\begin{equation} +\frac{2p|\mathcal O|}{\alpha_1} \int_{ -1}^0 \|{\mathcal T} \left( {\theta _{\zeta}\omega } \right)\|^{-p} e^{-\int_0^{\zeta} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2}) dr } \| G(\zeta+\tau,\cdot) \|^2_{L^\infty(\widetilde {\mathcal O})} d\zeta. \end{equation} | (65) |
Since
\begin{equation} c_1 \le {\frac 12} p \alpha_1 \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2} \le c_2 \quad \text{ for all } \ r\in [-\rho-1,0]. \end{equation} | (66) |
By (66) we obtain
\begin{equation} e^{c_2 M^{p-2} \zeta } \le e^{\int_\xi^{\zeta+\xi} {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2} dr } \le e^{c_1M^{p-2} \zeta } \quad \text{ for all } \ \zeta \in [-1,0]\,\,\text{and}\,\,\xi\in [-\rho,0]. \end{equation} | (67) |
For the left-hand side of (65), by (67) we find that there exists
{\frac 14} p \alpha_1 \int_{-1}^0 \|{\mathcal T} \left( {\theta _{\zeta}\omega } \right)\|^{p-2} e^{-\int_0^{\zeta} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2}) dr } |
\int_{\mathcal O} ( v^\varepsilon(\zeta+\tau, \tau-t,\theta_{-\tau} \omega, \psi^\varepsilon) -M) _+^{2p-2} dx d\zeta |
\begin{equation} \ge c_3 \int_{ -1}^0 e^{c_2 M^{p-2} \zeta } \int_{\mathcal O} ( v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon) -M) _+^{2p-2} dx d\zeta. \end{equation} | (68) |
For the first term on the right-hand side of (65), by (67) we obtain
e^{-\int_0^{ -1} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2})dr } \| \left ( v^\varepsilon(\tau-1, \tau-t,\theta_{-\tau} \omega, \psi^\varepsilon) -M \right )_+\|^p_{L^p(\mathcal O)} |
\le e^{2p-3} e^{-c_1M^{p-2} } \| \left ( v^\varepsilon(\tau-1, \tau-t,\theta_{-\tau} \omega, \psi^\varepsilon) -M \right )_+\|^p_{L^p(\mathcal O)} |
\begin{equation} \le e^{2p-3} e^{-c_1M^{p-2} } \| v^\varepsilon(\tau-1, \tau-t,\theta_{-\tau} \omega, \psi^\varepsilon)\|^p_{L^p(\mathcal O)}. \end{equation} | (69) |
Similarly, for the second terms on the right-hand side of (65), we have from (67) there exists
\int_{ -1}^0 | \delta (\theta_{\zeta} \omega)|^p e^{-\int_0^{\zeta} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2}) dr } \|v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon)\|^p_{L^p(\mathcal O)} d\zeta |
\begin{equation} \leq c_4 \int_{-1}^0 e^{ c_1M^{p-2} \zeta } \|v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon)\|^p_{L^p(\mathcal O)} d\zeta \end{equation} | (70) |
Since
2|\mathcal O| \int_{ -1}^0 \|{\mathcal T} \left( {\theta _{\zeta}\omega } \right)\|^{-p} e^{-\int_0^{\zeta} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2}) dr } \| \psi_1(\zeta+\tau,\cdot) \|_{L^\infty(\widetilde {\mathcal O})}^ {\frac p2} d\zeta. |
+\frac{2p|\mathcal O|}{\alpha_1} \int_{ -1}^0 \|{\mathcal T} \left( {\theta _{\zeta}\omega } \right)\|^{-p} e^{-\int_0^{\zeta} ( 2p-3 - {\frac 12} p \alpha_1 M^{p-2} \|{\mathcal T} \left( {\theta _{r}\omega } \right)\|^{p-2}) dr } \| G(\zeta+\tau,\cdot) \|^2_{L^\infty(\widetilde {\mathcal O})} d\zeta |
\begin{equation} \le c_5 \int_{-1}^0 e^{ c_1M^{p-2} \zeta } d\zeta \le c_1^{-1}c_5 M^{2-p}. \end{equation} | (71) |
By (68)-(71) we get from (65) that
c_3 \int_{ -1}^0 e^{c_2 M^{p-2} \zeta } \int_{\mathcal O} ( v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon) -M) _+^{2p-2} dy d\zeta |
\le e^{2p-3} e^{-c_1M^{p-2} } \|v^\varepsilon({\tau -1}, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon) \|^p_{L^p(\mathcal O)} |
+ c_4 \int_{-1}^0 e^{ c_1M^{p-2} \zeta } \|v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon)\|^p_{L^p(\mathcal O)} d\zeta + c_1^{-1}c_5 M^{2-p}, |
which together with Lemma 3.2 and Lemma 3.3 implies that there exist
c_3 \int_{ -1}^0 e^{c_2 M^{p-2} \zeta } \int_{\mathcal O} ( v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon) -M) _+^{2p-2} dx d\zeta |
\begin{equation} \le c_6 e^{-c_1M^{p-2} } + c_6 \int_{-1}^0 e^{ c_1M^{p-2} \zeta } d\zeta + c_1^{-1}c_5M^{2-p} \le c_6 e^{-c_1M^{p-2} } + c_1^{-1}(c_5+c_6) M^{2-p}. \end{equation} | (72) |
Since
\begin{equation} \int_{ -1}^0 e^{c_2 M^{p-2} \zeta } \int_{\mathcal O} ( v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon) -M) _+^{2p-2} dy d\zeta \le \eta. \end{equation} | (73) |
Note that
\int_{ -1}^0 e^{c_2 M^{p-2} \zeta } \int_{ \{ y\in \mathcal O: \ v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon ) \ge 2M\} } | v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon )|^{2p-2} dy d\zeta\\\le 2^{2p-2} \int_{ -1}^0 e^{c_2 M^{p-2} \zeta } \int_{\mathcal O} ( v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon) -M) _+^{2p-2} dx d\zeta \le 2^{2p-2} \eta. | (74) |
Similarly, one can verify that there exist
\begin{equation} \int_{ -1}^0 e^{c_2 M^{p-2} \zeta } \int_{ \{ y\in \mathcal O: \ v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon ) \le - 2M \} } | v^\varepsilon(\zeta+\tau, \tau-t, \theta_{-\tau}\omega, \psi^\varepsilon )|^{2p-2} dy d\zeta \le 2^{2p-2} \eta. \end{equation} | (75) |
Then Lemma 3.4 follows from (3) and (75) immediately.
Note that
\begin{equation*} 0\leq \lambda_1^\varepsilon \leq\lambda_2^\varepsilon\leq\ldots\leq\lambda_n^\varepsilon\leq\cdots \to +\infty, \end{equation*} |
and their associated eigenfunctions
It follows from Corollary 9.7 in [8] that the eigenvalues and the eigenfunctions of
Next, we introduce the spectral projections. We use
\begin{equation*} P^\varepsilon_n (u) = \sum\limits_{i = 1}^m(u,\varpi_i^\varepsilon)_{Y_\varepsilon}\varpi_i^\varepsilon \quad\text{for}\; u\in Y_\varepsilon. \end{equation*} |
We use
\begin{equation} a_\varepsilon \left( {u,u} \right) = \left( {A_\varepsilon u,u} \right)_{H_g \left(\mathcal O \right)} \le \lambda ^\varepsilon _n \left( {u,u} \right)_{H_g \left( \mathcal O \right)}, \quad \forall u \in P_n^\varepsilon D\left( {A_\varepsilon ^{1/2} } \right). \end{equation} | (76) |
and
\begin{equation} a_\varepsilon \left( {u,u} \right) = \left( {A_\varepsilon u,u} \right)_{H_g \left(\mathcal O \right)} \ge \lambda _{m + 1}^\varepsilon \left( {u,u} \right)_{H_g \left(\mathcal O \right)} ,\quad u \in Q_m^\varepsilon D\left( {A_\varepsilon ^{1/2} } \right). \end{equation} | (77) |
Let
Lemma 3.5. Assume that (8)-(11), (39) and (42) hold. Then for every
\left\| { u^\varepsilon_2\left( {\tau,\tau-t,\theta _{ - \tau} \omega , \phi^\varepsilon} \right)} \right\|_{H^1(\mathcal O)} \le \eta. |
Proof. Taking the inner product (36) with
\begin{align} & \frac{1}{2}\frac{d}{{dt}}a_\varepsilon(v_2^\varepsilon,v_2^\varepsilon) + \left\| {A_\varepsilon v_2^\varepsilon } \right\|^2 \leq \left( {\delta \left( {\theta _{t } \omega } \right)v_2^\varepsilon , A_\varepsilon v_2^\varepsilon } \right) \\ &\quad + \left( {Q_n^\varepsilon{\mathcal T}^{ - 1} \left( {\theta _{t } \omega } \right)h_\varepsilon\left(t, {y,{\mathcal T}\left( {\theta _{t } \omega } \right)v^\varepsilon} \right), A_\varepsilon v_2^\varepsilon } \right) \\ &\quad+\left(Q_n^\varepsilon {{\mathcal T}^{ - 1} \left( {\theta _{t } \omega } \right)G_\varepsilon\left( {t,y} \right), A_\varepsilon v_2^\varepsilon } \right). \end{align} | (78) |
For the first term on the right-hand side of (78), we have
\begin{equation} \left( {\delta \left( {\theta _{t } \omega } \right)v_2^\varepsilon ,A_\varepsilon v_2^\varepsilon } \right) \le \frac{1}{8}\left\| {A_\varepsilon v_2^\varepsilon } \right\|^2 + 2| {\delta \left( {\theta _{t } \omega } \right)} |^2 \left\| {v_2^\varepsilon } \right\|^2. \end{equation} | (79) |
For the superlinear term, we have from (9) that
\begin{align} &\left( {Q_n^\varepsilon{\mathcal T}^{ - 1} \left( {\theta _{t } \omega } \right) h_\varepsilon\left(t, {y,{\mathcal T}\left( {\theta _{t } \omega } \right)v^\varepsilon} \right), A_\varepsilon v_2^\varepsilon } \right) \\ & \le \frac{1}{8}\left\| {A_\varepsilon v_2^\varepsilon } \right\|^2 + 2\left\| {{\mathcal T}^{ - 1} \left( {\theta _{t } \omega } \right)} \right\|^2 \int_{\mathcal O} {\left| {h_\varepsilon\left(t, {y,{\mathcal T}\left( {\theta _{t} \omega } \right)v^\varepsilon} \right)} \right|} ^2 dy \\ &\le \frac{1}{8}\left\| {A_\varepsilon v_2^\varepsilon } \right\|^2 + 2\alpha_2\left\| {{\mathcal T}^{ - 1} \left( {\theta _{t } \omega } \right)} \right\|^2 \int_{\mathcal O} {\left( {\left| {{\mathcal T}\left( {\theta _{t } \omega } \right)v^\varepsilon} \right|^{p - 1} + \psi _2 \left( t,y^{*},\varepsilon g(y^{*})y_{n+1} \right)} \right)} ^2 dy \\ &\le \frac{1}{8}\left\| {A_\varepsilon v_2^\varepsilon } \right\|^2 + 4\alpha_2\left\| {{\mathcal T}\left( {\theta _{t } \omega } \right)} \right\|^{2p - 4} \left\| v \right\|_{2p - 2}^{2p - 2} + 4\alpha_2|\mathcal O|\left\| {{\mathcal T}^{ - 1} \left( {\theta _{t } \omega } \right)} \right\|^2\| \psi_2(t,\cdot) \|^2_{L^\infty(\widetilde {\mathcal O})} . \end{align} | (80) |
For the last term on the right-hand side of (78), we have
\begin{align} \left( {Q_n^\varepsilon T^{ - 1} \left( {\theta _t \omega } \right) G_\varepsilon \left( {t,y} \right),A_\varepsilon v_2^\varepsilon } \right) \le \frac{1}{8}\left\| {A_\varepsilon v_2^\varepsilon } \right\|^2 + 2|\mathcal O|\left\| {T^{ - 1} \left( {\theta _t \omega } \right)} \right\|^2 \left\| {G\left( {t, \cdot } \right)} \right\|_{L^\infty \left( \widetilde {\mathcal O} \right)}^2 \end{align} | (81) |
Noting that
\begin{align} & \frac{d}{{dt}}a_\varepsilon(v_2^\varepsilon,v_2^\varepsilon) + \lambda _{n + 1}^\varepsilon a_\varepsilon(v_2^\varepsilon,v_2^\varepsilon) \le 4 {\delta^2 \left( {\theta _{t } \omega } \right)} \left\| {v_2^\varepsilon } \right\|^2 \\ &\quad + 8\alpha_2\left\| {{\mathcal T}\left( {\theta _{t } \omega } \right)} \right\|^{2p - 4} \left\| v^\varepsilon \right\|_{2p - 2}^{2p - 2} \\ &\quad + c\left\| {{\mathcal T}^{ - 1} \left( {\theta _{t } \omega } \right)} \right\|^2(\| \psi_2(t,\cdot) \|^2_{L^\infty(\widetilde {\mathcal O})} +\left\| {G\left( {t,\cdot} \right)} \right\|^2_{L^\infty(\widetilde {\mathcal O})}). \end{align} | (82) |
Taking
\begin{align} & a_\varepsilon( v_2^\varepsilon \left( \tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v_2^\varepsilon \left( \tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)) \\ &\le\int_{\tau - 1 }^{\tau} {e^{\lambda _{n + 1}^\varepsilon \left( {r - \tau } \right)} } a_\varepsilon( v_2^\varepsilon \left( r,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v_2^\varepsilon \left( r,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)) dr\\ & + 4\delta^2\int_{{\tau} - 1}^{\tau} {e^{\lambda _{n + 1}^\varepsilon \left( {r - \tau } \right)} \delta ^2 \left( {\theta _{r - \tau } \omega } \right)} a_\varepsilon( v_2^\varepsilon \left( r,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v_2^\varepsilon \left( r,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)) dr \\ & + 8\alpha_2\int_{{\tau} - 1 }^{\tau} {e^{\lambda _{n + 1}^\varepsilon \left( {r - \tau } \right)} \left\| {{\mathcal T}\left( {\theta _{r - \tau } \omega } \right)} \right\|^{2p - 4} \left\| {v^\varepsilon\left( r,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)} \right\|_{2p - 2}^{2p - 2} } dr \\ &+c\int_{{\tau} - 1 }^{\tau}e^{\lambda _{n + 1}^\varepsilon \left( {r - \tau } \right)} \left\| {{\mathcal T}^{ - 1} \left( {\theta _{r - \tau } \omega } \right)} \right\|^2 (\| \psi_2(r,\cdot) \|^2_{L^\infty(\widetilde {\mathcal O})}) dr \\ & + c\int_{{\tau} - 1 }^{\tau} {e^{\lambda _{n + 1}^\varepsilon \left( {r - \tau } \right)} \left\| {{\mathcal T}^{ - 1} \left( {\theta _{r - \tau } \omega } \right)} \right\|^2 \left\| {G\left( {r,\cdot} \right)} \right\|^2_{L^\infty(\widetilde {\mathcal O})} } dr. \end{align} | (83) |
Since
\begin{align} &a_\varepsilon( v_2^\varepsilon \left( \tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v_2^\varepsilon \left( \tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right))\\ & \le c\int_{ - 1 }^0 {e^{\lambda _{n + 1}^\varepsilon r} \left\| {v^\varepsilon\left( r+\tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)} \right\|_{2p - 2}^{2p - 2} } dr \\ &\quad + c\int_{ - 1 }^{0} {e^{\lambda _{n + 1}^\varepsilon r} } a_\varepsilon( v^\varepsilon \left(r+ \tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v^\varepsilon \left( r+\tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)) dr \end{align} |
\begin{align} &\quad + c\int_{ - 1 }^{0} {e^{\lambda _{n + 1}^\varepsilon r} } dr\\ & \le c\int_{ - 1 }^0 {e^{(\lambda _{n + 1}^0-1) r} \left\| {v^\varepsilon\left( r+\tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)} \right\|_{2p - 2}^{2p - 2} } dr \\ &\quad + c\int_{ - 1 }^{0} {e^{(\lambda _{n + 1}^0-1) r} } a_\varepsilon( v^\varepsilon \left( r+\tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v^\varepsilon \left( r+\tau+s,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)) dr\\ &\quad + c\int_{ - 1 }^0 {e^{(\lambda _{n + 1}^0-1) r} \left\| {v^\varepsilon\left( {r+\tau - \rho_0(r+\tau+s),\tau-t, \theta_{-\tau}\omega,\psi^\varepsilon } \right)} \right\|^2 } dr\\ &\quad + c\int_{ - 1 }^{0} {e^{(\lambda _{n + 1}^0-1) r} } dr. \end{align} | (84) |
Given
\begin{align} & c\int_{ - 1 }^0 {e^{(\lambda _{n + 1}^0-1) r} \left\| {v^\varepsilon\left( r+\tau,\tau-t,\theta_{-\tau}\omega, \psi^\varepsilon \right)} \right\|_{2p - 2}^{2p - 2} } dr \\ &\leq c\int_{ - 1 }^0 {e^{(\lambda _{n + 1}^0-1) r} \int_{\{y\in \mathcal O:|v^\varepsilon|\geq 2M\}}| {v^\varepsilon\left( r+\tau, \tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)} |^{2p - 2}dy } dr \\ &\quad+ c\int_{ - 1 }^0 {e^{(\lambda _{n + 1}^0-1) r} \int_{\{y\in \mathcal O:|v^\varepsilon| < 2M\}} | {v^\varepsilon\left( r+\tau,\tau-t, \theta_{-\tau}\omega,\psi^\varepsilon \right)} |^{2p - 2}dy } dr \\ &\leq c\int_{ - 1 }^0 {e^{\gamma M^{p-2} r} \int_{\{y\in \mathcal O:|v^\varepsilon|\geq 2M\}}| {v^\varepsilon\left( r+\tau, \tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)} |^{2p - 2}dy } dr \\ &\quad+ c\int_{ - 1 }^0 {e^{(\lambda _{n + 1}^0-1) r} \int_{\{y\in \mathcal O:|v^\varepsilon| < 2M\}} | {v^\varepsilon\left( r+\tau,\tau-t, \theta_{-\tau}\omega,\psi^\varepsilon \right)} |^{2p - 2}dy } dr \\ &\leq \eta+c2^{2p-2} M^{2p-2}|\mathcal O| \int_{ - 1 }^0 {e^{(\lambda _{n + 1}^0-1) r} } dr \leq \eta+c2^{2p-2} M^{2p-2}|\mathcal O| \frac{1}{\lambda _{n + 1}^0-1} . \end{align} | (85) |
For the last three terms on the right-hand side of (84), by Lemma 3.1, we find that there exist
\begin{align} & c\int_{ - 1 }^{0} {e^{(\lambda _{n + 1}^0-1) r} } a_\varepsilon( v^\varepsilon \left( r+\tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v^\varepsilon \left( r+\tau,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)) dr\\ &\quad+ c\int_{ - 1 }^{0} {e^{(\lambda _{n + 1}^0-1) r} } dr \leq c_1 \int_{ - 1 }^{0} {e^{(\lambda _{n + 1}^0-1) r} } dr \leq c_1 \frac{1}{\lambda _{n + 1}^0-1} . \end{align} | (86) |
Since
a_\varepsilon( v_2^\varepsilon \left( \tau+s,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right),v_2^\varepsilon \left( \tau+s,\tau-t,\theta_{-\tau}\omega,\psi^\varepsilon \right)) \le 2\eta, |
which together
In this subsection, we establish the existence of
Lemma 4.1. Suppose (8)-(11), (39) and (43) hold. Then the cocycle
Proof. We first notice that, by Lemma 3.2,
\begin{equation} K \left( {\tau ,\omega } \right) = \left\{ {u \in H^1(\mathcal O) :\left\| u \right\|_{H^1(\mathcal O) }^2 \le L\left( {\tau ,\omega } \right)} \right\}, \end{equation} | (87) |
where
\Phi_\varepsilon \left( {t,\tau - t,\theta _{ - t} \omega ,D \left( {\tau - t,\theta _{ - t} \omega } \right)} \right) \subseteq K\left( {\tau ,\omega } \right). |
Thus we find that
Lemma 4.2. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle
Proof. We will show that for every
\begin{equation} \left\| { u^\varepsilon_2\left( {\tau,\tau-t_n,\theta _{ - \tau} \omega , \phi^\varepsilon} \right)} \right\|_{H^1(\mathcal O)} = \left\| { Q_{m_0}u^\varepsilon\left( {\tau,\tau-t_n,\theta _{ - \tau} \omega , \phi^\varepsilon} \right)} \right\|_{H^1(\mathcal O)} < {\frac {\eta}{4}}. \end{equation} | (88) |
On the other hand, by Lemma 3.2 we find that the sequence
Theorem 4.3. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle
Proof. First, we know from Lemma 4.1 that
Analogous results also hold for the solution of (4)-(5). In particular, we have:
Theorem 4.4. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle
The following estimates are needed when we derive the convergence of pullback attractors. By the similar proof of that of Theorem 5.1 in [14], we get the following lemma.
Lemma 5.1. Assume that (8)-(11) and (39) hold. Then for every
\begin{eqnarray} &&\int_{\tau}^{t} {{\left\| {v^\varepsilon \left( {r,\tau , \omega ,\psi^\varepsilon } \right)} \right\|_{H_\varepsilon ^1(\mathcal O) }^2 }} dr \le c \left\| \psi^\varepsilon \right\|_{\mathcal N}^2 \\ &&\mathit{\mbox{}} +c\int_{ \tau }^{\tau+T} \left( {\left\| {G\left( { r,\cdot} \right)} \right\|_{L^\infty( { {\widetilde {\mathcal O}} } )}^2 + \left\| {\psi_1 \left( { r,\cdot } \right)} \right\|_{L^\infty( { {\widetilde {\mathcal O}} } )}^2 } \right)dr, \end{eqnarray} |
where
Similarly, one can prove
Lemma 5.2. Assume that (8)-(11) and (39) hold. Then for every
\begin{eqnarray} &&\int_{\tau}^{t} {{\left\| {v^0 \left( {r,\tau , \omega ,\psi^0 } \right)} \right\|_{H ^1(\mathcal Q) }^2 }} dr \\ &\le& c \left\| \psi^0 \right\|_{\mathcal M}^2+c \int_{ \tau }^{\tau+T} \left( {\left\| {G\left( { r,\cdot} \right)} \right\|_{L^\infty( { {\widetilde {\mathcal O}} } )}^2 + \left\| {\psi_1 \left( { r,\cdot } \right)} \right\|_{L^\infty( { {\widetilde {\mathcal O}} } )}^2 } \right)dr, \end{eqnarray} |
where
In the sequel, we further assume the functions
\begin{equation} \left\| {G_\varepsilon(t,\cdot) - G_0(t,\cdot) } \right\|_{L^2 \left( \mathcal O \right)} \le \kappa_1(t)\varepsilon \end{equation} | (89) |
and
\begin{equation} \left\| {H_\varepsilon(t,\cdot,s) - H_0(t,\cdot,s) } \right\|_{L^2 \left( \mathcal O \right)} \le \kappa_2(t)\varepsilon , \end{equation} | (90) |
where
By (12) and (90) we have, for all
\begin{equation} \left\| {h_\varepsilon(t,\cdot,s) - h_0(t,\cdot,s) } \right\|_{L^2 \left( \mathcal O \right)} \le \kappa_2(t)\varepsilon. \end{equation} | (91) |
Since
Theorem 5.3. Suppose (8)-(11), (39), and (89)-(90) hold. Given
\mathop {\lim }\limits_{n \to \infty} \left\| {\Phi _{\varepsilon_n} \left( {t,\tau,\omega ,\phi^{\varepsilon_n} } \right) - \Phi _{0 } \left( {t,\tau,\omega ,\phi^0} \right)} \right\|_{\mathcal N} = 0. |
Proof. Since
\begin{eqnarray} && \left\| {v^{\varepsilon_n} \left( t \right)}-{v^0 \left( t \right)} \right\|_{\mathcal N}^2 \le c \left\| \phi^{\varepsilon_n}-\phi^0 \right\|_{{\mathcal N}}^2 +c\mathop {\max }\limits_{\nu \in \left[ {\tau ,t} \right]} \xi \left( {\theta _\nu \omega } \right) \int_\tau ^t { \left\| {{v^{\varepsilon_n} \left( s \right)}- {v^0 \left( s \right)}} \right\|_{{\mathcal N}}^2 } ds \end{eqnarray} |
\begin{eqnarray} &&\mbox{} + c{\varepsilon_n} \mathop {\max }\limits_{\nu \in \left[ {\tau ,t} \right]} \left\| {{\mathcal T}^{ - 1} \left( {\theta _{\nu} \omega } \right)} \right\| \int_\tau ^t {\left( \left\| {v^{\varepsilon_n}(s) } \right\|_{H_{\varepsilon_n} ^1 \left( {\mathcal O} \right)}^2 + \left\| v^0(s) \right\|_{H ^1 \left( {\mathcal Q} \right)}^2 \right)} ds \\ &&\mbox{} + c{\varepsilon_n} \mathop {\max }\limits_{\nu \in \left[ {\tau ,t} \right]} \left\| {{\mathcal T}^{ - 1} \left( {\theta _{\nu} \omega } \right)} \right\| \int_\tau ^t {\left(\kappa^2_1(s)+\kappa^2_2(s) \right)} ds \\ &&\mbox{}+ c{\varepsilon_n} \int_\tau ^t {\left( {\left\| {v^{\varepsilon_n}(s) } \right\|_{H_{\varepsilon_n} ^1 \left( \mathcal O \right)}^2 + \left\| {v^0(s) } \right\|_{H^1 \left( \mathcal Q \right)}^2 } \right)} ds, \end{eqnarray} | (92) |
where
\begin{eqnarray} \left\| {{v^{\varepsilon_n} \left( t \right)}-{v^0 \left( t \right)}} \right\|_{\mathcal N }^2 & \le& e^{c(1+ \mathop {\max }\limits_{\nu \in \left[ {\tau ,\tau+T} \right]} \xi \left( {\theta _\nu \omega } \right)) T} \left\|\phi^{\varepsilon_n}-\phi^0 \right\|_{\mathcal N }^2 \\ &&\mbox{} +\varrho{\varepsilon_n} e^{c(1+ \mathop {\max }\limits_{\nu \in \left[ {\tau ,\tau+T} \right]} \xi \left( {\theta _\nu \omega } \right)) T} [ \| {\psi ^0 } \|_{\mathcal M}^2+\| {\psi ^{\varepsilon_n} } \|_{\mathcal N}^2 \\ &&\mbox{}+\int_\tau ^{\tau+T} {\left(\kappa^2_1(s)+\kappa^2_2(s) \right)} ds \\ &&\mbox{}+ {\int_{ \tau }^{\tau+T} {( {\| {G( { s,\cdot} )} \|_{L^\infty ( {\widetilde{\mathcal O}} )}^2 + \| {\psi_1 ( { s,\cdot} )} \|_{L^\infty ( {\widetilde{\mathcal O} } )}^2 } ) }ds} ]. \end{eqnarray} | (93) |
Notice that, for all
\begin{eqnarray} &&\| {u^{\varepsilon_n} ( {t,\tau,\omega ,\phi^\varepsilon } ) - u^0( {t,\tau,\omega ,\phi^0 } )} \|_{\mathcal N}^2 \\ &\leq& \mathop {\max }\limits_{\nu \in [ {\tau ,\tau + T} ]} \| {{\mathcal T}( {\theta _\nu \omega } )} \|^2 \| {v^{\varepsilon_n} ( {t,\tau,\omega ,{ {\mathcal T}}^{ - 1} ( {\theta _\tau \omega } )\phi^\varepsilon } ) - v^0( {t,\tau,\omega ,{ {\mathcal T}}^{ - 1} ( {\theta _\tau \omega } )\phi^0 } }\|_{\mathcal N }^2, \end{eqnarray} |
which together with (93) implies the desired results.
The next result is concerned with uniform compactness of attractors with respect to
Lemma 5.4. Assume that (8)-(11), (39) and (43) hold. If
\mathop {\lim }\limits_{n \to \infty } \left\| {u^{\varepsilon_n} - u} \right\|_{H^1(\mathcal O)} = 0. |
Proof. Take a sequence
\begin{equation} u^{\varepsilon_n} = \Phi _{\varepsilon _n } \left( {t_n ,\tau - t_n ,\theta _{ - t_n } \omega ,\phi^{\varepsilon_n} } \right). \end{equation} | (94) |
By Lemma 4.1, we have
\begin{equation} \left\| { {Q_{N_1}^{\varepsilon_n} } u^{\varepsilon_n}\left( {\tau,\tau-t_n,\theta _{ - \tau} \omega , \phi^{\varepsilon_n}} \right)} \right\|_{H^1(\mathcal O)} \le \eta. \end{equation} | (95) |
By Lemma 3.2, we have
\begin{equation} \|{ {P_{N_1}^{\varepsilon_n} } u^{\varepsilon_n}\left( {\tau,\tau-t_n,\theta _{ - \tau} \omega , \phi^{\varepsilon_n}} \right)}\|_{H^1(\mathcal O)} < M. \end{equation} | (96) |
It follows from (95) and (96) that
\begin{equation} \mathop {\lim }\limits_{n \to \infty } \left\| {u^{\varepsilon_n} - u } \right\|_{H^1(\mathcal O)} = 0. \end{equation} | (97) |
This completes the proof.
Now we are in a position to prove the main result of this paper.
Theorem 5.5. Assume that (8)-(11), (39), (43), and (89)-(90) hold. The attractors
\mathop {\lim }\limits_{\varepsilon \to 0} \mathit{\text{dist}}_{H^1(\mathcal O)} \left( {\mathcal{A}_\varepsilon \left(\tau, \omega \right),\mathcal{A}_0 \left(\tau, \omega \right)} \right) = 0. |
Proof. Given
\begin{equation} \| u\|^2_{H^1_\varepsilon ( {\mathcal{O}})} \le L(\tau, \omega) \quad \mbox{for all } \ 0 < \varepsilon < \varepsilon_0 \ \ \mbox{and} \ u \in \mathcal{A}_\varepsilon (\tau, \omega), \end{equation} | (98) |
where
\begin{equation} \text{dist}_{H^1(\mathcal O)} \left( {z_n ,\mathcal{A}_0 \left(\tau, \omega \right)} \right) \ge \delta\quad \text{for all}\quad n\in \mathbb{N}. \end{equation} | (99) |
By Lemma 5.4 there exists
\begin{equation} \mathop {\lim }\limits_{n \to \infty } \left\| {z_n - z_ * } \right\|_{H^1(\mathcal O)} = 0. \end{equation} | (100) |
By the invariance property of the attractor
\begin{equation} z_n = \Phi _{\varepsilon _n } \left( {t,\tau-t,\theta _{- t} \omega ,y_n^t } \right). \end{equation} | (101) |
By Lemma 5.4 again there exists
\begin{equation} \mathop {\lim }\limits_{n \to \infty } \left\| {y_n^t - y_*^t } \right\|_{H^1(\mathcal O)} = 0. \end{equation} | (102) |
It follows from Theorem 5.3 that for every
\begin{eqnarray} \mathop {\lim }\limits_{n \to \infty } \Phi _{\varepsilon _n } \left( {t,\tau-t,\theta _{- t} \omega ,y_n^t } \right) = \Phi _0 \left( {t,\tau-t,\theta _{ - t} \omega ,y_ * ^t } \right)\quad \text{in}\quad \mathcal N. \end{eqnarray} | (103) |
By (100), (101), (103) and uniqueness of limits we obtain
\begin{equation} z_ * = \Phi _0 \left( {t,\tau-t,\theta _{ - t} \omega ,y_ * ^t } \right)\quad \text{in}\quad H^1(\mathcal O). \end{equation} | (104) |
Notice that
\begin{equation} \mathop {\lim \sup }\limits_{n \to \infty } \left\| {y_n^t } \right\|_{H^1(\mathcal O)} \le \left\| {K\left( {\tau - t,\theta _{- t} \omega } \right)} \right\|_{H^1(\mathcal O)} \le L\left( {\tau - t,\theta _{ - t} \omega } \right). \end{equation} | (105) |
By (102) and (105) we get, for every
\begin{equation} \left\| {y_ * ^t } \right\|_{H^1(\mathcal Q)} \le L\left( {\tau - t,\theta _{- t} \omega } \right). \end{equation} | (106) |
By
\begin{eqnarray} && \text{dist}_{H^1(\mathcal Q)} \left( {z_ * ,\mathcal A_0 \left( {\tau ,\omega } \right)} \right) \\ & = & \text{dist}_{H^1(\mathcal Q)} \left( {\Phi _0 \left( {t,\tau - t,\theta _{ - t} \omega ,y_ * ^t } \right),\mathcal A_0 \left( {\tau ,\omega } \right)} \right) \\ &\le& \text{dist}_{H^1(\mathcal Q)} \left( {\Phi _0 \left( {t,\tau - t, \theta _{ - t} \omega ,K_0 \left( {\tau - t,\theta _{ - t} \omega } \right)} \right),\mathcal A_0 \left( {\tau ,\omega } \right)} \right)\\ && \to 0,\quad \text{as}\,\,t \to \infty . \end{eqnarray} | (107) |
This implies that
\text{dist}_{H^1(\mathcal O)} \left( {z_n ,\mathcal{A}_0 \left( \tau,\omega \right)} \right) \le \text{dist}_{H^1(\mathcal O)} \left( {z_n ,z_ * } \right) \to 0, |
a contradiction with (99). This completes the proof.
The authors would like to thank the anonymous referee for the useful suggestions and comments.
[1] | Coronavirus disease (COVID-19) pandemic. Available from: https://www.who.int/europe/emergencies/situations/covid-19. |
[2] | Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html. |
[3] |
J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. Oduro, A. Abidemi, E. O. Gyasi, Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana, Chaos, Solitons Fractals, 140 (2020), 110103. 10.1016/j.chaos.2020.110103 doi: 10.1016/j.chaos.2020.110103
![]() |
[4] |
M. Khan, S. W. Shah, S. Ullah, J. Gómez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal.: Real World Appl., 50 (2019), 144–170. https://doi.org/10.1016/j.nonrwa.2019.04.006 doi: 10.1016/j.nonrwa.2019.04.006
![]() |
[5] |
A. Din, Y. Li, F. M. Khan, Z. U. Khan, P. Liu, On analysis of fractional order mathematical model of hepatitis b using atangana–baleanu caputo (abc) derivative, Fractals, 30 (2021), 2240017. https://doi.org/10.1142/S0218348X22400175 doi: 10.1142/S0218348X22400175
![]() |
[6] |
A. Atangana, S. İ. Araz, Nonlinear equations with global differential and integral operators: existence, uniqueness with application to epidemiology, Results Phys., 20 (2021), 103593. https://doi.org/10.1016/j.rinp.2020.103593 doi: 10.1016/j.rinp.2020.103593
![]() |
[7] |
A. A. Khan, S. Ullah, R. Amin, Optimal control analysis of COVID-19 vaccine epidemic model: a case study, Eur. Phys. J. Plus, 137 (2022), 1–25. https://doi.org/10.1140/epjp/s13360-022-02365-8 doi: 10.1140/epjp/s13360-022-02365-8
![]() |
[8] |
M. Imran, M. Ben-Romdhane, A. R. Ansari, H. Temimi, Numerical study of an influenza epidemic dynamical model with diffusion, Discrete Contin. Dyn. Syst. -S, 13 (2020), 2761–2878. https://doi.org/10.3934/dcdss.2020168 doi: 10.3934/dcdss.2020168
![]() |
[9] |
M. Samsuzzoha, M. Singh, D. Lucy, Numerical study of a diffusive epidemic model of influenza with variable transmission coefficient, Appl. Math. Modell., 35 (2011), 5507–5523. https://doi.org/10.1016/j.apm.2011.04.029 doi: 10.1016/j.apm.2011.04.029
![]() |
[10] |
M. Jawaz, M. A. ur Rehman, N. Ahmed, D. Baleanu, M. Rafiq, Numerical and bifurcation analysis of spatio-temporal delay epidemic model, Results Phys., 22 (2021), 103851. https://doi.org/10.1016/j.rinp.2021.103851 doi: 10.1016/j.rinp.2021.103851
![]() |
[11] |
N. Ahmed, M. Ali, M. Rafiq, I. Khan, K. S. Nisar, M. Rehman, et al., A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: applications in bio-medical engineering, Comput. Methods Programs Biomed., 190 (2020), 105350. https://doi.org/10.1016/j.cmpb.2020.105350 doi: 10.1016/j.cmpb.2020.105350
![]() |
[12] |
N. Haider, Numerical solutions of sveirs model by meshless and finite difference methods, VFAST Trans. Math., 2 (2013), 13–18. https://doi.org/10.21015/vtm.v2i2.128 doi: 10.21015/vtm.v2i2.128
![]() |
[13] |
M. Asif, Z. A. Khan, N. Haider, Q. Al-Mdallal, Numerical simulation for solution of seir models by meshless and finite difference methods, Chaos, Solitons Fractals, 141 (2020), 110340. https://doi.org/10.1016/j.chaos.2020.110340 doi: 10.1016/j.chaos.2020.110340
![]() |
[14] |
M. Asif, S. U. Jan, N. Haider, Q. Al-Mdallal, T. Abdeljawad, Numerical modeling of npz and sir models with and without diffusion, Results Phys., 19 (2020), 103512. https://doi.org/10.1016/j.rinp.2020.103512 doi: 10.1016/j.rinp.2020.103512
![]() |
[15] |
N. Ahmed, M. Fatima, D. Baleanu, K. S. Nisar, I. Khan, M. Rafiq, et al., Numerical analysis of the susceptible exposed infected quarantined and vaccinated (seiqv) reaction-diffusion epidemic model, Front. Phys., 7 (2020), 220. https://doi.org/10.3389/fphy.2019.00220 doi: 10.3389/fphy.2019.00220
![]() |
[16] |
V. Sokolovsky, G. Furman, D. Polyanskaya, E. Furman, Spatio-temporal modeling of COVID-19 epidemic, Health Risk Anal., 2021 (2021), 23–37. https://doi.org/10.21668/HEALTH.RISK/2021.1.03.ENG doi: 10.21668/HEALTH.RISK/2021.1.03.ENG
![]() |
[17] |
N. Ahmed, A. Elsonbaty, A. Raza, M. Rafiq, W. Adel, Numerical simulation and stability analysis of a novel reaction–diffusion COVID-19 model, Nonlinear Dyn., 106 (2021), 1293–1310. https://doi.org/10.1007/s11071-021-06623-9 doi: 10.1007/s11071-021-06623-9
![]() |
[18] |
P. G. Kevrekidis, J. Cuevas-Maraver, Y. Drossinos, Z. Rapti, G. A. Kevrekidis, Reaction-diffusion spatial modeling of COVID-19: Greece and andalusia as case examples, Phys. Rev. E, 104 (2021), 024412. https://doi.org/10.1103/PhysRevE.104.024412 doi: 10.1103/PhysRevE.104.024412
![]() |
[19] |
L. Zhang, S. Ullah, B. Al Alwan, A. Alshehri, W. Sumelka, Mathematical assessment of constant and time-dependent control measures on the dynamics of the novel coronavirus: an application of optimal control theory, Results Phys., 31 (2021), 104971. https://doi.org/10.1016/j.rinp.2021.104971 doi: 10.1016/j.rinp.2021.104971
![]() |
[20] |
G. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150–161. https://doi.org/10.1016/0022-247X(81)90156-6 doi: 10.1016/0022-247X(81)90156-6
![]() |
[21] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 840 (2006). https://doi.org/10.1007/BFb0089647 |
[22] |
E. Avila-Vales, G. E. Garcia-Almeida, A. G. Perez, Qualitative analysis of a diffusive sir epidemic model with saturated incidence rate in a heterogeneous environment, J. Math. Anal. Appl., 503 (2021), 125295. https://doi.org/10.1016/j.jmaa.2021.125295 doi: 10.1016/j.jmaa.2021.125295
![]() |
[23] |
S. Chinviriyasit, W. Chinviriyasit, Numerical modelling of an sir epidemic model with diffusion, Appl. Math. Comput., 216 (2010), 395–409. https://doi.org/10.1016/j.amc.2010.01.028 doi: 10.1016/j.amc.2010.01.028
![]() |
[24] |
T. Kuniya, J. Wang, Lyapunov functions and global stability for a spatially diffusive sir epidemic model, Appl. Anal., 96 (2017), 1935–1960. https://doi.org/10.1080/00036811.2016.1199796 doi: 10.1080/00036811.2016.1199796
![]() |
[25] | J. LaSalle, Stability theory for difference equations, Tech. Rep., Brown UNIV Providence RI DIV of Applied Mathematics, 1975. |
[26] |
Y. Nawaz, M. S. Arif, K. Abodayeh, W. Shatanawi, An explicit unconditionally stable scheme: application to diffusive COVID-19 epidemic model, Adv. Differ. Equations, 2021 (2021), 1–24. https://doi.org/10.1186/s13662-021-03513-7 doi: 10.1186/s13662-021-03513-7
![]() |
1. | Hyo Sun Roh, Bo Ra Park, Eun Young Jang, Jin Sook Kim, Young S. Gwak, Acupuncture on the Stress-Related Drug Relapse to Seeking, 2018, 2018, 1741-427X, 1, 10.1155/2018/5367864 | |
2. | Céline Charroud, Gaëtan Poulen, Emily Sanrey, Nicolas Menjot de Champfleur, Jérémy Deverdun, Philippe Coubes, Emmanuelle Le Bars, Task- and Rest-based Functional Brain Connectivity in Food-related Reward Processes among Healthy Adolescents, 2021, 457, 03064522, 196, 10.1016/j.neuroscience.2021.01.016 | |
3. | Ashok Singh, 2021, 9780128196809, 1, 10.1016/B978-0-12-819680-9.00001-9 | |
4. | Godfrey S. Bbosa, 2019, Chapter 12, 978-3-030-13592-8, 193, 10.1007/978-3-030-13593-5_12 | |
5. | Lucia Gallego Villarejo, Lisa Bachmann, David Marks, Maite Brachthäuser, Alexander Geidies, Thorsten Müller, Role of Intracellular Amyloid β as Pathway Modulator, Biomarker, and Therapy Target, 2022, 23, 1422-0067, 4656, 10.3390/ijms23094656 | |
6. | Shole Jamali, Mohsen Parto Dezfouli, AmirAli Kalbasi, Mohammad Reza Daliri, Abbas Haghparast, Selective Modulation of Hippocampal Theta Oscillations in Response to Morphine versus Natural Reward, 2023, 13, 2076-3425, 322, 10.3390/brainsci13020322 | |
7. | Romina Miranda-Olivos, Isabel Baenas, Trevor Steward, Roser Granero, Antoni Pastor, Isabel Sánchez, Asier Juaneda-Seguí, Amparo del Pino-Gutiérrez, José A. Fernández-Formoso, Nuria Vilarrasa, Fernando Guerrero-Pérez, Nuria Virgili, Rafael López-Urdiales, Susana Jiménez-Murcia, Rafael de la Torre, Carles Soriano-Mas, Fernando Fernández-Aranda, Exploring the influence of circulating endocannabinoids and nucleus accumbens functional connectivity on anorexia nervosa severity, 2023, 1359-4184, 10.1038/s41380-023-02253-2 | |
8. | Marsilla Gray, Kevin R. Nash, Yao Yao, Adenylyl cyclase 2 expression and function in neurological diseases, 2024, 30, 1755-5930, 10.1111/cns.14880 | |
9. | Amber C. May, Sally M. Weinstein, Julie Carbray, Mani N. Pavuluri, 2019, 1-61537-920-7, 147, 10.1176/appi.books.9781615379200.lg06 | |
10. | Jafar Zamani, Amirali Vahid, Bárbara Avelar‐Pereira, Elveda Gozdas, S. M. Hadi Hosseini, Mapping amyloid beta predictors of entorhinal tau in preclinical Alzheimer's disease, 2025, 1552-5260, 10.1002/alz.14499 | |
11. | Ibrahim Abbas Atiyah, Seree Niyomdecha, Dania Cheaha, Neural oscillations in the nucleus accumbens–dorsal hippocampal circuits and behavioral effects of acute fluoxetine administration during the Tail suspension test in mice, 2025, 243, 0014-4819, 10.1007/s00221-025-07115-7 |