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Abstract: The coronavirus infectious disease (or COVID-19) is a severe respiratory illness. Although
the infection incidence decreased significantly, still it remains a major panic for human health and the
global economy. The spatial movement of the population from one region to another remains one of the
major causes of the spread of the infection. In the literature, most of the COVID-19 models have been
constructed with only temporal effects. In this paper, a vaccinated spatio-temporal COVID-19 math-
ematical model is developed to study the impact of vaccines and other interventions on the disease
dynamics in a spatially heterogeneous environment. Initially, some of the basic mathematical proper-
ties including existence, uniqueness, positivity, and boundedness of the diffusive vaccinated models are
analyzed. The model equilibria and the basic reproductive number are presented. Further, based upon
the uniform and non-uniform initial conditions, the spatio-temporal COVID-19 mathematical model is
solved numerically using finite difference operator-splitting scheme. Furthermore, detailed simulation
results are presented in order to visualize the impact of vaccination and other model key parameters
with and without diffusion on the pandemic incidence. The obtained results reveal that the suggested
intervention with diffusion has a significant impact on the disease dynamics and its control.

Keywords: space-time COVID-19 transmission model; finite difference operator-splitting scheme;
existence and uniqueness; numerical simulation

1. Introduction

The COVID-19 pandemic is a global outbreak, caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1]. This infection is highly contagious and is transmittable from person
to person via respiratory droplets, produce as a consequence of coughing and sneezing of an infectious
person. Although the severity and mortality rate of this novel infection is notably reduced, still it is
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a huge panic for human health as well as economy around the globe. This infection is still the main
cause of restricting lives of humans in many regions. Despite huge research on this novel disease,
scientists are focusing to explore its different aspects. According to recent statistics, more than 621.8
million infected cases are reported globally. Out of the total reported infected cases about 6.5 million
death cases and about 601.9 million recovered cases are recorded [1]. Many pharmaceutical and non-
pharmaceutical preventing strategies were suggested and implemented to overcome the infection. For
instance, taking vaccines, staying at home, usage of facemasks specifically in public areas, avoiding
crowded places, etc [1, 2].

One of the main causes of the infection spread is the spatial movement of population from one
region to another. The assessment of geographical spreading patterns as well as the impact of those
factors causing the transmission and eradication of infection can be carried out using mathematical
models [3–7]. In existing literature, most of COVID-19 epidemic models have been constructed via
ordinary differential equations (ODEs). In contrast to ODEs models, the mathematical models based
on PDEs, particularly the reaction-diffusion is more appropriate and have promising results describing
the dynamics of an infectious disease. Numerous mathematical spatio-temporal epidemic models have
been developed to explore the transmission patrons of various infectious diseases including COVID-19.
These problems were solved numerically using different numerical techniques to analyze the dynamics
of different infectious and viral diseases. Such as, in [8] the authors formulated a reaction-diffusion
deterministic model to analyze the spatio-temporal dynamics of influenza. They further utilized the
finite-difference scheme in order to visualize the disease dynamics. In [9], the authors developed a dif-
fusive vaccine epidemic model with variable transmission coefficient addressing the spatio-temporal
dynamical aspects of influenza disease. Moreover, in [9] the authors presented a detailed analysis of the
model. A compartmental spatio-temporal epidemic model is considered by Jawaz et al. [10], for inves-
tigating the complex dynamics of HIV/AIDS and proposed the non-standard finite difference numerical
technique for the solution due to its positivity preserving property. Ahmed et al. [11], discussed the nu-
merical solution of the whooping cough epidemic model by using an operator-splitting finite difference
scheme. The numerical techniques, operator-splitting based finite difference and meshless prodedures
have been used for solving the spatio-temporal epidemic models in Refs. [12, 13]. Asif et al. [14]
discussed the approximate solution of two spatio-temporal biological models by using meshless and fi-
nite difference procedures based on operator splitting techniques. A structure-preserving non-standard
finite difference operator-splitting procedure has been implemented by Ahmed et al. [15], to obtain
the numerical solution of the reaction-diffusion epidemic model. Sokolovsky et al. [16] examined an-
alytic and numerical solution of spatio-temporal epidemiological models and analyze different stages
of the epidemic. A novel reaction-diffusion model describing the dynamics of COVID-19 is devel-
oped in [17]. A reaction-diffusive spatial model addressing the dynamics of pandemic in Greece and
Andalusia as a case study is presented in [18].

In this paper, we present a spatio-temporal vaccine mathematical model to address the dynamics
of COVID-19 in a spatially heterogeneous environment. The model is actually the spatial extension
of [19]. Initially, we present some basic and necessary mathematical properties of the proposed spatio-
temporal model. The model is then solved numerically using an efficient numerical scheme to present
the simulation results. The paper outlines are categorized as: Section 2 describes the formulation
of spatio-temporal model. A basic mathematical analysis of the problem is presented in Section 3.
Numerical solution of the model and detailed simulation with and with diffusion is investigated in
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Section 4. Finally, the concluding remarks are summarized in Section 5.

2. Spatio-temporal COVID-19 model description

In this section, a compartmental epidemic reaction-diffusion model is formulated in order to ana-
lyze temporal and spatial dynamics of COVID-19 outbreak. The total population at time t ≥ 0 and
spatial point x ∈ [−2, 2] is denoted by N(x, t) and assumed to be constant i.e., in the population birth
and deaths rates are equal. The population N(x, t) is further categorized into sub-classes denoted by
S (x, t), E(x, t), IS (x, t), IA(x, t),V(x, t) and R(x, t) describing the susceptible, latent, symptomatically,
asymptomatically, vaccinated and recovered population groups respectively. The spatial distribution of
total available population at time t ≥ 0 and x ∈ Ξ = [−2, 2] is

N(t) =

∫
Ξ

{
S (x, t) + E(x, t) + IS (x, t) + IA(x, t) + V(x, t) + R(x, t)

}
dx.

The following assumptions are taken into the account to construct the desired mathematical model:

• Each newborn is susceptible i.e., having the capability of getting infection.
• The population in IS and IA are capable to transmit the infection.
• Vaccination is not permanent. The vaccinated individuals can wane vaccine immunity and be-

come susceptible again.

The desired nonlinear spatio-temporal COVID-19 epidemic model is presented as follows:

∂S
∂t

= DS
∂2S
∂x2 + b + ψVV − β(IS +β1IA)S

N − (µ + ωV)S ,

∂E
∂t

= DE
∂2E
∂x2 +

β(IS +β1IA)S
N − (κ + µ)E,

∂IS

∂t
= DIS

∂2IS

∂x2 + (1 − η)κE − (µ + µ1 + γ1)IS ,

∂IA

∂t
= DIA

∂2IA

∂x2 + ηκE − (µ + γ2)IA,

∂V
∂t

= DV
∂2V
∂x2 + ωVS − (ψV + µ)V,

∂R
∂t

= DR
∂2R
∂x2 + γ1IS + γ2IA − µR,

(2.1)

subjected to non-negative initial conditions (ICs):
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S (0, x) = S 0 exp
(
−

( x
0.7

)2
)
,

E(0, x) = E0 exp
(
−

( x
0.8

)2
)
,

IS (0, x) = IS 0 exp
(
−

( x
0.5

)2
)
,

IA(0, x) = IA0 exp
(
−

( x
0.2

)2
)
,

V(0, x) = 0,
R(0, x) = 0,

(2.2)

where S (0, x) = S 0 ≥ 0, E(0, x) = E0 ≥ 0, IS (0, x) = IS 0 ≥ 0, IA(0, x) = IA0 ≥ 0,V(0, x) = R(0, x) = 0
and x ∈ [−2, 2] is the computational domain for the proposed model (2.1). The biological description of
embedded parameters is shown in the Table 2. Further, DS ,DE,DIS ,DIA ,DV and DR are the coefficients
of diffusivity for the respective population groups. Furthermore, no flux boundary conditions are being
imposed for the proposed model given by:

S x(−2, t) = Ex(−2, t) = IS x(−2, t) = IAx(−2, t) = Vx(−2, t) = Rx(−2, t) = 0,

S x(2, t) = Ex(2, t) = IS x(2, t) = IAx(2, t) = Vx(2, t) = Rx(2, t) = 0.
(2.3)

Table 1. Model (2.1) variables.

State variables Definition

S Susceptible individuals
E Exposed individuals
IS Symptomatically Infected individuals
IA Asymptomatically Infected individuals
V Vaccinated population
R Recovered individuals

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4643–4672.



4647

Table 2. Physical/biological description of the model embedded parameters. The parameters
are estimated from reported COVID-19 cases in Pakistan [19].

ParameterPhysical/bilogical description value (per day)

b birth rate 8939
µ natural mortality rate 1/(67.7 × 365)
µ1 death rate caused due to infection 0.022
γ1 recovery/removal rate of infected person with symptoms 0.4958
γ2 recovery/removal rate of infected person with no clinical symptoms 0.1110
β infection transmission rate 0.6022
β1 infection transmission probability relative person with no clinical symptoms0.7459
κ incubation period 0.5171
η proportion of exposed people join IA class 0.8833
ωV vaccine rate 0.0313
ψV vaccine wanning/loss of immunity 0.0233

3. Theoretical analysis of model

In the current section, we establish some of the important theoretical analyses of the proposed
COVID-19 reaction-diffusion model (2.1). The well-known threshold parameter of the epidemiological
model is derived. Moreover, the disease free and endemic equilibria of model (2.1) are computed. In
addition, the stability results of the model are accomplished.

3.1. Well-posedness of model (2.1)

The well-posedness of partial differential equations (PDEs) with some initial and boundary con-
ditions is important to verify in order to claim the existence and uniqueness of its solution. For this
purpose, the semi-group theory approach can be utilized to check when a problem is well-posed. To
proceeds with this analysis, a Banach space X = C(Ξ;R) is considered, which is a space of real-
valued continuous function Υ define on Ξ and X+ is a positive cone. The space is combined with norm
‖Υ‖X = supx∈Ξ |Υ(x)|. Assume thatAξ is a linear operator defined by

Aξ(Υ) = αξ∆Υ,

where ξ represent the state variables S , E, IS , IV ,V,R and ∆ is the second order differential operator ∂2

∂x2 .
Further,

D(Aξ) =

{
Υ ∈ X : ∆Υ ∈ X,

∂Υ

∂x
= 0 on δΞ

}
.

After utilizing the well-known facts regarding the operatorAξ, i.e.,Aξ is an infinitesimal generator
of a strongly continuous semi-group {etAξ : t ≥ 0} of linear operators in X [20]. On other hand the
operator,
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A(φ1, φ2, φ3, φ4, φ5, , φ6) =



Aξ(φ1)
Aξ(φ2)
Aξ(φ3)
Aξ(φ4)
Aξ(φ5)
Aξ(φ6)


,D(A) = D(Aξ) × D(Aξ), (3.1)

is an infinitesimal generator of a strongly continuous semi-group {etA : t ≥ 0} of linear operators in
Y = X6 [20], where Y is a Banach space with norm define by,

‖(φ1, φ2, φ3, φ4, φ5, φ6)‖Y = ‖φ1‖Y + ‖φ2‖Y + ‖φ3‖Y + ‖φ4‖Y + ‖φ5‖Y + ‖φ6‖Y

and Y+ = X6
+ ⊂ Y be a positive cone in Y . Let F be a nonlinear operator define on Y as:

F(φ1, φ2, φ3, φ4, φ5, φ6) =



b − β(φ3 + β1φ4)
φ1

N
+ ψVφ5 − (µ + ωV)φ1

β(φ3 + β1φ4)
φ1

N
− (µ + κ)φ2

(1 − η)κφ2 − (µ + µ1 + γ1)φ3

ηκφ2 − (µ + γ2)φ4

ωφ1 − (µ + ψV)φ5

γ1φ3 + γ2φ4 − µφ6


,

for (φ1, φ2, φ3, φ4, φ5, φ6) ∈ Y+. Thus model (2.1) can be expressed in compact form as:

d
dt

u(t) = Au(t) + F(u(t)), (3.2)

where

u(t) =



S (., t)
E(., t)
IS (., t)
IA(., t)
V(., t)
R(., t)


, and u(0) =



S 0(.)
E0(.)
IS 0(.)
IA0(.)
V0(.)
R0(.)


.

Clearly, F is Lipschitz continuous on Y+. Since the following inequality holds,

‖F(x) − F(y)‖ ≤ L‖x − y‖ for all x, y ∈ Y+,

where L = µ + µ1 + 2(ψV + κ + γ1 + γ2 + ωV). Hence, by Theorem 3.3.3 in [21], the following result is
concluded.

Proposition 3.1. Assume that A be an operator define by (3.1) and for each u0 =

(S 0, E0, IS 0, IS 0,V0,R0)T ∈ Y+ there exist a unique continuously differentiable solution u(t) of (3.2)
define on some maximum interval of existence [0, τ] such that

u(t) = u0etA +

∫ t

0
e(t−ζ)AF(u(ζ))dζ.
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3.2. Positivity and boundedness

To show that the solution of model (2.1) is non-negative, we follow the lemma provided in [22–24].

Lemma 3.2. Assume that u ∈ C(Ξ̄ × [0, τ))
⋂

C2,1(Ξ × (0, τ)) satisfy

∂

∂t
u(x, t) − D∆u(x, t) ≥ k(x, t)u(x, t), x ∈ Ξ, t ∈ [0, τ)

∂

∂t
u(x, t) ≥ 0, x ∈ δΞ, t ∈ [0, τ)

u(x, 0) ≥ 0, x ∈ Ξ̄, t ∈ [0, τ)


where k(x, t) ∈ C(Ξ̄ × [0, τ)). Then u(x, t) ≥ 0 0n Ξ̄ × [0, τ) and u(x, t) > 0 or u(x, t) ≡ 0 in Ξ × [0, τ)

In view of the above Lemma 3.2, the following result is obtained.

Proposition 3.3. The solution (S (., t), E(., t), IS (., t), IA(., t),V(., t),R(., t)) of model (2.1) is non-
negative on Ξ×[0, τ) provided that the initial condition (S (.), E(.), IS (.), IA(.),V(.),R(.)) is non-negative.

Proof. Suppose K(x, t) = β(IS (x, t) + β1IA(x, t)) 1
N + (µ + ωV). Then from first equation of model (2.1)

∂

∂t
S (x, t) − DS

∂2

∂x2 S (x, t) > −K(x, t)S (x, t), x ∈ Ξ, t ∈ [0, τ)

∂

∂x
S (x, t) = 0, x ∈ δΞ, t ∈ [0, τ)

S (x, 0) > 0, x ∈ Ξ, t ∈ [0, τ)


(3.3)

Clearly, (3.3) fulfill the conditions of Lemma 3.2. So, by direct application of Lemma 3.2 S (x, t) ≥ 0
on Ξ× [0, τ). The non-negativity of the rest of state variables E(x, t), IS (x, t), IA(x, t), V(x, t) and R(x, t)
can be prove in similar manner.

Next, the boundedness of solution of model (2.1) is demonstrated in order to prove the time exis-
tence of global solution. For this the following result is derived.

Theorem 3.4. The solution (S (., t), E(., t), IS (., t), IA(., t),V(., t),R(., t)) of model (2.1) is bounded for
all t ≥ 0.

Proof. By sum up all equations of model (2.1), we obtained

∂S (x, t)
∂t

+
∂E(x, t)
∂t

+
∂IS (x, t)
∂t

+
∂IA(x, t)
∂t

+
∂V(x, t)
∂t

+
∂R(x, t)
∂t

= DS
∂2S (x, t)
∂x2 + DE

∂2E(x, t)
∂x2 + DIS

∂2IS (x, t)
∂x2 + DIA

∂2IA(x, t)
∂x2 + DV

∂2V(x, t)
∂x2 + DR

∂2R(x, t)
∂x2

+ b − µ(S (x, t) + E(x, t) + IS (x, t) + IA(x, t) + V(x, t) + R(x, t)) − µ1IS (x, t).
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Integrating over Ξ = [−2, 2] yields to,∫
Ξ

{
∂S (x, t)
∂t

+
∂E(x, t)
∂t

+
∂IS (x, t)
∂t

+
∂IA(x, t)
∂t

+
∂V(x, t)
∂t

+
∂R(x, t)
∂t

}
dx

=

∫
Ξ

{
DS

∂2S (x, t)
∂x2 + DE

∂2E(x, t)
∂x2 + DIS

∂2IS (x, t)
∂x2 + DIA

∂2IA(x, t)
∂x2 + DV

∂2V(x, t)
∂x2

+ DR
∂2R(x, t)
∂x2

}
dx +

∫
Ξ

{
b − µ(S (x, t) + E(x, t) + IS (x, t) + IA(x, t) + V(x, t)

+ R(x, t)) − µ1IS (x, t)
}
dx.

By utilizing the no flux boundary conditions imposed to the problem we have∫
Ξ

{
DS

∂2S (x, t)
∂x2 + DE

∂2E(x, t)
∂x2 + DIS

∂2IS (x, t)
∂x2 + DIA

∂2IA(x, t)
∂x2 + DV

∂2V(x, t)
∂x2 + DR

∂2R(x, t)
∂x2

}
dx = 0.

Therefore,∫
Ξ

{
∂S (x, t)
∂t

+
∂E(x, t)
∂t

+
∂IS (x, t)
∂t

+
∂IA(x, t)
∂t

+
∂V(x, t)
∂t

+
∂R(x, t)
∂t

}
dx

= b|Ξ| − µ
∫

Ξ

{
S (x, t) + E(x, t) + IS (x, t) + IA(x, t) + V(x, t) + R(x, t)

}
dx

− µ1

∫
Ξ

IS (x, t)dx

≤ b|Ξ| − µ
∫

Ξ

{
S (x, t) + E(x, t) + IS (x, t) + IA(x, t) + V(x, t) + R(x, t)

}
dx

= b|Ξ| − µN(t),
d
dt
N(t) ≤ b|Ξ| − µN(t).

It follows that
0 ≥ N(t) ≤

b|Ξ|
µ

+N(0) exp(−µt).

Thus,

lim
t→+∞

N(t) ≤
b|Ξ|
µ
.

Invariant region

The transmission dynamics of the problem is studied in the biological feasible region given by,

∆ ⊂ R6
+,

where,

∆ =

{
(S (x, t), E(x, t), IS (x, t), IA(x, t),V(x, t),R(x, t)) ∈ R6

+ : N(t) ≤
Θ|Ξ|

µ

}
.
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3.3. Steady-state of the model

The proposed spatio-temporal vaccine model (2.1) has two steady-states. The disease free steady-
state is

E0 =
(
S 0, 0, 0, 0,V0, 0

)
=

(b
µ
, 0, 0, 0,

bωV

ψVωV − (µ + ωV)(ψV + µ)
, 0

)
.

The endemic equilibrium is stated as follows: E1(S ∗∗∗, E∗∗∗, I∗∗∗S , I∗∗∗A ,V∗∗∗,R∗∗∗) with

S ∗∗∗ = bc4
λ∗∗∗c4+c0c4−ψVωV

,

E∗∗∗=
bλ∗∗∗c4

c1(λ∗∗∗c4+c0c4−ψVωV ) ,

I∗∗∗S =
Bκλ∗∗∗c4(1−η)

c2c1(λ∗∗∗c4+c0c4−ψVωV ) ,

I∗∗∗A =
bκλ∗∗∗c4η

c1c3(λ∗∗∗c4+c0c4−ψVωV ) ,

V∗∗∗ = bωV
λ∗∗∗c4+c0c4−ψVωV

,

R∗∗∗ =
bκλ∗∗∗c4(c3(1−η)γ1+c2ηγ2)

c1c2c3d(λ∗∗∗c4+c0c4−ψVωV ) ,

(3.4)

where,

c0 = (µ + ωV), c1 = (κ + µ), c2 = (µ + µ1 + γ1), c3 = (µ + γ2), c4 = (ψV + µ).

Substituting values from (3.4) into the following force of infection:

λ??? =
β(IS

??? + β1I???A )
N???

. (3.5)

After some manipulations, the non-zero equilibria of the model satisfies the following equation

C0λ
??? + C1 = 0, (3.6)

with the coefficients

C0 = c4
{
κc3(1 − η)(γ1 + µ) + c2

(
c3µ + κη(µ + γ2)

)}
,

C1 = µc1c2c3(c4 + ωV)
(
1 − R0

)
.

The basic reproduction number R0 is the epidemiological threshold parameter called the basic re-
productive number. By utilizing the next generation technique R0 is computed as fallow:

R0 =
βκ(ψV + µ)(ηβ1(µ + µ1 + γ1) + c3(1 − η))

(µ + µ1 + γ1)(κ + µ)(µ + γ2)((ψV + µ + ωV)
. (3.7)
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3.4. Stability of the model equilibria

In this subsection, we provide the stability analysis of the spatio-temporal COVID-19 model (2.1).
In order to investigate the local stability of the model at E0, we follow the Fourier series expansion tech-
nique discussed in [15]. The variational matrix obtained after linearizing the spatio-temporal COVID-
19 model (2.1) is given as follows:

V =



−b11 0 −
βc4

c4+ωv
−

βc4β1
c4+ωV

ψV 0
0 −b22

βc4
c4+ωv

βc4β1
c4+ωV

0 0
0 (1 − η)κ −b33 0 0 0
0 ηκ 0 −b44 0 0
ωV 0 0 0 −b55 0
0 0 γ1 γ2 0 −b66


, (3.8)

where,

b11 = c0 + DS k2, b22 = c1 + DEk2, b33 = c2 + DIS k2, b44 = c3 + DIAk2, (3.9)
b55 = c4 + DVk2, b66 = µ + DRk2.

The corresponding characteristic equation of the variational matrix V is obtained as:

(λ + µ + DRk2)(λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ + a5) = 0. (3.10)

The eigenvalue −(µ + DS k2) has negative real part while the following coefficients of (3.10) are
obtained

a1 = b11 + b22 + b33 + b44 + b55,

a2 = b22b33(1 −
βc4(1 − η)κ

b22b33(c4 + ωV)
) + b22b44(1 −

ββ1c4κη

b22b44(c4 + ωV)
) + b11b22 + b11b33 + b11b44 + b33b44

+b11b55 + b22b55 + b33b55 + b44b55 − ψVωV ,

a3 = b22b33 (b11 + b44 + b55)
(
1 −

βc4(1 − η)κ
b22b33 (c4 + ωV)

)
+ b22b44 (b11 + b33 + b55)

(
1 −

ββ1c4κη

b22b44 (c4 + ωV)

)
−

(b22 + b33 + b44)ψω + b11b33b44 + b11b55b44 + b33b55b44 + b11b22b55 + b11b33b55,

a4 = b22b33 (b11 + b44 + b55)
(
1 −

βc4(1 − η)κ
b22b33 (c4 + ωV)

)
+ b22b44 (b11 + b33 + b55)

(
1 −

ββ1c4κν

b22b44 (c4 + ωV)

)
−

(b22 + b33 + b44)ψVωV + b11b33b44 + b11b55b44 + b33b55b44 + b11b22b55 + b11b33b55,

a5 = b22b33b44 (b11b55 − ψVωV)
(
1 −

βc4(1 − η)κ
b22b33 (c4 + ωV)

−
ββ1c4κη

b22b44 (c4 + ωV)

)
.
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After substituting values from (3.9), it can be shown that ai > 0 for i = 1, 2, ..., 5 under the condition
R0 < 1. Furthermore, after some manipulation, the Routh-Hurwitz criteria for characteristic polyno-
mial (3.10) arrived when R0 < 1. Thus, the spatio-temporal COVID-19 (2.1) is locally asymptotically
at E0 whenever, R0 < 1.

Moreover, to inveterate the global asymptotical stability of the spatio-temporal model (2.1) at E0, the
well-known Lyapunov function approach is implemented. The subsequent theorem yield the desired
result.

Theorem 3.5. If R0 ≤ 1, the equilibrium point E0 of model (2.1) is globally asymptotically stable.

Proof. To prove the result, consider Lyapunov functional as follows:

F (t) =

∫
Ξ

{
g1E(x, t) +

∫ g1(µ+κ)t

t0
E

(
x,

σ

g1(µ + κ)

)
dσ +

∫ τ

(µ+κ)t
E

(
x,

σ

µ + κ

)
dσ

}
dx

+ g2

∫
Ξ

I(x, t)dx + g3

∫
Ξ

IA(x, t)dx,

where g1 =
µ + ψV

µ + ψV + ωV
, g2 =

βg1

(µ + µ1 + γ1)(µ + γ2)
, g2 =

ββ1g1

µ + γ2
and τ is the maximum time.

Then, the time derivative F (t) is given by

d
dt
F (t) =

∫
Ξ

{
g1DE

∂2E(x, t)
∂x2 + g1β(IS (x, t) + κIA(x, t))

S (x, t)
N(x, t)

}
dx − (µ + κ)

∫
Ξ

E (x, t) dx

+ g2

∫
Ω

{
DIS

∂2IS (x, t)
∂x2 + (1 − η)κE(x, t) − (µ + µ1 + γ1)IS (x, t)

}
dx

+ g3

∫
Ξ

{
DIA

∂2IA(x, t)
∂x2 + ηκE(x, t) − (µ + γ2)IA(x, t)

}
dx

By utilizing the no flux boundary conditions implies,∫
Ξ

{
g1DE

∂2E(x, t)
∂x2 + g2DIS

∂2IS (x, t)
∂x2 + g3DIA

∂2IA(x, t)
∂x2

}
dx = 0.

Since,
S(x, t) ≤ N(x, t) for all t ≥ 0, x ∈ Ξ.

Therefore,

d
dt
F (t) ≤

∫
Ξ

({
g2(1 − η)κ + g3ηκ − (µ + κ)

}
E(x, t) +

{
g1β − g2(µ + µ1 + γ1)

}
IS (x, t)

)
dx,

=

∫
Ξ

{
g1ββ1κ − g3(µ + γ2)

}
IA(x, t)dx

≤ (µ + κ)
∫

Ξ

{
g1

(
βκ(1 − η) + ββ1(µ + µ1 + γ1)
(µ + κ)(µ + µ1 + γ1)(µ + γ2)

)
− 1

}
E(x, t)dx,

= (µ + κ)(R0 − 1)
∫

Ξ

E(x, t)dx.
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It is clear that
d
dt
F (t) ≤ 0 for all t ≥ 0 and x ∈ Ξ if and only if R0 ≤ 1. Moreover

d
dt
F (t) = 0

whenever, E(x, t) → 0, for all t ≥ 0 and x ∈ Ξ. It follows from the well-known LaSalle’s invari-
ance principle presented in [25], that the equilibrium E0 of spatio-temporal model (2.1) is globally
asymptotically stable if R0 ≤ 1.

4. Numerical method and simulation

This section presents the numerical scheme of the proposed spatio-temporal COVID-19 model (2.1).
The operator-splitting finite difference approximation technique is utilized for the numerical solution
and is described in detail as follows:

4.1. Numerical scheme

The operator splitting approach is a well-known and efficient numerical technique. It has been ap-
plied to solve nonlinear partial differential equations arising from nonlinear and complex problems. In
this scheme, we split the differential operator into sub-operators and split the problems under consider-
ation for solution into sub-problems, where each of these problems correspond to a particular physical
phenomenon. Further, the operator-splitting technique is implemented to solve the proposed reaction-
diffusion epidemic model (2.1). Each differential equation in the model (2.1) denotes the physical
process consisting of two individual processes: the population with different disease status interacting
with each other and diffusing spatially in one direction, required different time steps. It is therefore im-
portant to split the time operator and shift model (2.1) into two sub-systems: The resulting non-linear
reaction system used for time step t0 to 1

2dt is,



1
2
∂S
∂t

= b + ψVV − β(IS +β1IA)S
N − (µ + ωV)S ,

1
2
∂E
∂t

=
β(IS +β1IA)S

N − (κ + µ)E,

1
2
∂IS

∂t
= (1 − η)κE − (µ + µ1 + γ1)IS ,

1
2
∂IA

∂t
= ηκE − (µ + γ2)IA,

1
2
∂V
∂t

= ωVS − (ψV + µ)V,

1
2
∂R
∂t

= γ1IS + γ2IA − µR,

(4.1)
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and the linear diffusion system used for time step 1
2dt to tn is,

1
2
∂S
∂t

= DS
∂2S
∂x2 ,

1
2
∂E
∂t

= DE
∂2E
∂x2 ,

1
2
∂IS

∂t
= DIS

∂2IS

∂x2 ,

1
2
∂IA

∂t
= DIA

∂2IA

∂x2 ,

1
2
∂V
∂t

= DV
∂2V
∂x2 ,

1
2
∂R
∂t

= DR
∂2R
∂x2 ,

(4.2)

using conventional finite difference approximations, the first order time derivative in (4.1) and (4.2) is
approximated by first order-forward difference,

∂ξn
j

∂t
=
ξn+1

j − ξn
j

dt
, (4.3)

while the second order spatial derivative in (4.2) is approximated by second order central finite differ-
ence given by,

∂2ξn
j

∂x2 =
ξn

j−1 − ξ
n
j + ξn

j+1

dx
, (4.4)

where ξ represent each of the variables S , E, IS , IA,V and R. The sub-systems (4.1) and (4.2) in iterative
form can be written as fallow:

S n+ 1
2

j = S n
j + dt

(
b + ψVVn

j −
β(In

S j+β1In
A j)S

n
j

Nn
j

− (µ + ωV)S n
j

)
,

En+ 1
2

j = En
j + dt

(
β(In

S j+β1In
A j)S

n
j

Nn
j

− (κ + µ)En
j

)
,

IS
n+ 1

2
j = IS

n
j + dt

(
κ(1 − η)En

j − (µ + µ1 + γ1)IS
n
j

)
,

IA
n+ 1

2
j = IA

n
j + dt

(
κηEn

j − (µ + γ2)IA
n
j

)
,

Vn+ 1
2

j = Vn
j + dt

(
ωS n

j − (φV + µ)Vn
j

)
,

Rn+ 1
2

j = Rn
j + dt

(
γ1IS

n
j + γ2IA

n
j − µRn

j

)
,

(4.5)
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and 

S n+1
j = S n+ 1

2
j + DS

dt
dx2

(
S n+ 1

2
j−1 − 2S n+ 1

2
j + S n+ 1

2
j+1

)
,

En+1
j = En+ 1

2
j + DE

dt
dx2

(
En+ 1

2
j−1 − 2En+ 1

2
j + En+ 1

2
j+1

)
,

IS
n
j = IS

n+ 1
2

j + DIS

dt
dx2

(
IS

n+ 1
2

j−1 − 2IS
n+ 1

2
j + IS

n+ 1
2

j+1

)
,

IA
n
j = IA

n+ 1
2

j + DIA

dt
dx2

(
IA

n+ 1
2

j−1 − 2IA
n+ 1

2
j + IA

n+ 1
2

j+1

)
,

Vn
j = Vn+ 1

2
j + DV

dt
dx2

(
Vn+ 1

2
j−1 − 2Vn+ 1

2
j + Vn+ 1

2
j+1

)
,

Rn+1
j = Rn+ 1

2
j + DR

dt
dx2

(
Rn+ 1

2
j−1 − 2Rn+ 1

2
j + Rn+ 1

2
j+1

)
,

(4.6)

4.2. Simulation and discussions

In this section, numerical simulations of the proposed reaction-diffusion epidemic model (2.1) is
performed using the iterative scheme derived in (4.5) and (4.6). The purpose of the model simulation is
to analyze the impact of diffusion phenomena under several control strategies. Model (2.1) is simulated
in two ways: with and without diffusion in parallel with other control measures such as, the effective
contact rate β, the transmissibility of infection relative to asymptomatically infected individuals β1, the
vaccine waning rate ψV and the effective vaccination rate ωV . The simulation is performed based on
initial conditions (2.2) and estimated parameters given in Tabe 2, while the diffusion coefficients are
assumed as DS = 0.00005,DE = 0.0005,DIS = 0.0001,DIA = 0.001,DV = 0.0001,DR = 0 so that the
quantity

Dξ

dt
dx2 ≤ 0.5, (4.7)

where ξ represents each of the state variables. In order to perform simulation, the spatial step is taken
as dx = 0.06 and the time step dt = 0.02 days based on Von Neumann stability criteria [26]. Figure 1
demonstrate in detail the dynamics of exposed, symptomatically and asymptomatically infected indi-
viduals, with and without diffusion using the baseline values of the model (2.1) embedded parameters.
From the corresponding plots, it is observed that the number of infected individuals in all categories
reduces significantly, in the case of diffusion as compared to without diffusion. Physically, it means
that restricting public gathering plays an important role in reducing the transmission of infection. In
the subsequent sections, we present the impact of different control interventions as mentioned before
on the dynamics of exposed, symptomatically and asymptomatically infected individuals in case of
diffusion and without diffusion. In Table 3, we compare the results of the present technique with fully
explicit Euler scheme in terms of CPU time.
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Figure 1. Dynamics of exposed, symptomatically infected, and asymptomatically infected
individuals with and without diffusion.

Table 3. Comparison of the present technique with fully explicit Euler scheme in terms of
CPU time.

Numerical scheme Number of iteration CPU time

Operating splitting technique 25,000 1.268433 Sec
Explicit Euler technique 25,000 1.319197 Sec
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4.2.1. Dynamics without diffusion at x = 0

In this case, the proposed model (2.1) is simulated without diffusion by assuming DS = DE =

DIS = DIA = DV = DR = 0. In addition, the effects of the above control interventions are analyzed
considering different situations. The dynamics of exposed, symptomatically and asymptomatically
infected individuals, in this case are graphically illustrated for the time period 0 to 700 days. A detailed
interpretation is presented in Figures 2–4. Figure 2 describes the influence of control measure β on the
dynamics of COVID-19. The impact is observed for the estimated baseline value of the effective-
contact rate β, without diffusion. Simulations are performed by reducing the baseline value of β to 10,
20 and 30%. It is found that with a 20% decrease in social contacts (β), 53% reduction is observed
in infected individuals, while 30% reduction in social contacts, i.e., strengthening lock-down yield to
75% decrease in the number of exposed, symptomatically and asymptomatically infected individuals.
Therefore, this analysis shows that enforcing a quarantine policy is beneficial and helps control the
spread of infection. The effect of the parameter β1 on the dynamics of exposed asymptomatic and
symptomatic infected individuals is shown in Figure 3. The corresponding dynamics are observed
without diffusion for 10, 20 and 30% reduction in β1 to its estimated baseline value given in Table 2.
Simulations show that the number of cases in each category decreased by 23, 45 and 64% respectively.
The model (2.1) is simulated without diffusion to investigate the impact of various vaccination rates on
the dynamics of exposed, symptomatically and asymptomatically infected individuals. Parameter ψν is
reduced by 10, 20 and 30% to its estimated baseline value. The resulting plots are shown in Figure 4.

Table 4. Projected peaks of infected individuals generated by model (2.1) without diffusion
at x = 0.

Parameters E IS IA % Change from Baseline

β (baseline value) 2.1924 × 106 2.5505 × 105 8.7175 × 106 -
10% reduction in β 1.4496 × 106 1.6876 × 105 5.8465 × 106 33.8%
20% reduction in β 7.5062 × 105 8.7437 × 104 3.0607 × 106 65.7%
30% reduction in β 1.7857 × 105 2.0808 × 104 7.3326 × 105 91.8%
β1 (baseline value) 2.1924 × 106 2.5505 × 105 8.7175 × 106 -
10% reduction in β1 1.4804 × 106 1.7235 × 105 5.9673 × 106 32.4%
20% reduction in β1 8.0367 × 105 9.3613 × 104 3.2744 × 106 63.3%
30% reduction in β1 2.3140 × 105 2.6962 × 104 9.4959 × 105 89.4%
ψν (baseline value) 2.1924 × 106 2.5505 × 105 8.7175 × 106 -
10% reduction in ψν 1.6864 × 106 1.9629 × 105 6.7663 × 106 23.0%
20% reduction in ψν 1.1858 × 106 1.3808 × 105 4.7985 × 106 45.9%
30% reduction in ψν 7.0805 × 105 8.2478 × 104 2.8870 × 106 67.7%
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Figure 2. Impact of β on exposed, symptomatically and asymptomatically infected individ-
uals without diffusion.
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Figure 3. Impact of β1 on exposed, symptomatically and asymptomatically infected individ-
uals without diffusion.
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Figure 4. Impact of ψν on exposed, symptomatically and asymptomatically infected individ-
uals without diffusion.

4.2.2. Dynamics with diffusion at x = 0

This section presents a simulation of the model (2.1) with diffusion. The values of corresponding
diffusion coefficients are assumed as DS = 0.00005,DE = 0.0005,DIS = 0.0001,DIA = 0.001,DV =

0.0001,DR = 0. Figure 5 demonstrates the dynamics of the infected population with variation in β

in the presence of diffusion. The parameter β is reduced with the same rate discussed in the previous
section. By implementing an isolation policy with diffusion, one can analyze that 20% reduction
in social contacts yields to 75% decrease in infected individuals. Moreover, with 30% reduction in
parameter β the infected individuals are decreased to 93%. Thus, the isolation policy with diffusion is
more effective and plays a significant role in controlling the prevalence of infection.
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Figure 5. Impact of β on exposed, symptomatically infected individuals with diffusion.
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Figure 6. Impact of β1 on exposed, symptomatically and asymptomatically infected individ-
uals with diffusion.

Figure 6, describes the effect of control intervention β1 on the disease incidence with diffusion.
The simulation results are performed by reducing β1 to 10, 20 and 30%. One can observe that in this
case with a 30% reduction in β1 the peaks of infected population curvesis reduced to 95.1%. It shows
that using the suggested control measure β1 with diffusion is more beneficial in controlling infection
prevalence as compared to without diffusion.
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Figure 7. Impact of control intervention ψν on exposed, symptomatically and asymptomati-
cally infected individuals with diffusion.
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Table 5. Projected peaks of infected individuals generated by model (2.1) with diffusion at
x = 0.

Parameters E IS IA % Change from Baseline

β (baseline value) 4.0435 × 104 4.6373 × 103 1.5481 × 105 -
10% reduction in β 9.1015 × 103 1.0415 × 103 3.4668 × 104 77.4%
20% reduction in β 3.2609 × 103 3.722 × 102 1.2107 × 104 91.9%
30% reduction in β 1.9697 × 103 1.778 × 102 5.6651 × 103 95%

β1 (baseline value) 4.0435 × 104 4.6373 × 103 1.5481 × 105 -
10% reduction in β1 9.6960 × 103 1.1096 × 103 3.6738 × 104 76%
20% reduction in β1 3.5689 × 103 4.074 × 102 1.3270 × 104 91%
30% reduction in β1 1.9697 × 103 1.975 × 102 6.3011 × 103 95.1%

ψV (baseline value) 4.0435 × 104 4.6373 × 103 1.5481 × 105 -
10% reduction in ψV 2.2449 × 104 2.5712 × 103 8.5421 × 104 44.5%
20% reduction in ψV 1.4729 × 104 1.6843 × 103 5.5473 × 104 63.6%
30% reduction in ψV 1.1100 × 104 1.2674 × 103 4.1216 × 104 72.5%

Figure 7 describes the impact of variation in parameter ψν on the dynamics of infected individuals.
The dynamics are observed in the presence of diffusion. We reduce the estimated value of ψV to 10,
20, and 30% and analyze the behavior of exposed, symptomatically, and asymptomatically infected
individuals. Simulation results show that reduction in ψν to 30% decreased the population in the
respective infected classes to 72.1%. These details are provided in Table 4 and 6.

4.2.3. Dynamics with diffusion at x = 1

This section presents a simulation of the model (2.1) with diffusion at x = 1. The corresponding
plots are shown in Figures 8–10. The time evolutionary trajectories of exposed, symptomatically and
asymptomatically infected individuals at x = 1 with a reduction in β at different rates are shown in
Figure 8. Initially, an increase is observed in the respective curves for the baseline value of β. It is due
to the population is diffuses from a higher concentration place to a low concentration region. It has been
observed that with diffusion in case of strict lock-down (with a 30% reduction in β) lowest projected
peaks are noticed. Figure 9 depicts the influence of β1 on the dynamics of exposed, symptomatically
and asymptomatically infected individuals with diffusion at x = 1. The simulation is obtained for a
reduction in β1 with various rates. According to initial condition (2.2) the population is concentrated at
the origin and decreases exponentially at x = 1. As the population diffuses the concentration increase
for β1 = 0.7459 at x = 1 and significantly reduces with a 30% reduction in β1. Finally, the impact of
ψν(vaccine waning rate) on the dynamics of exposed, symptomatically and asymptomatically infected
individuals with diffusion at x = 1 is described in Figure 10. By reducing the vaccine waning rate to 10,
20 and 30%, a reasonable decrease is analyzed in the respective compartments of infected individuals.
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Figure 8. Impact of control intervention β on exposed, symptomatically and asymptomati-
cally infected individuals with diffusion.
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Figure 9. Impact of control intervention β1 on exposed, symptomatically and asymptomati-
cally infected individuals with diffusion.
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Figure 10. Impact of control intervention ψν on exposed, symptomatically and asymptomat-
ically infected individuals with diffusion.
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Table 6. Projected peaks of infected individuals generated by model (2.1) with diffusion at
x = 1.

Parameters E IS IA % Change from Baseline

β (baseline value) 8.807 × 102 1.112 × 102 5.1435 × 103 -
10% reduction in β 1.334 × 102 17.12 8.380 × 102 84.6%
20% reduction in β 32.35 4.22 2.201 × 102 96.3%
30% reduction in β 12.06 1.60 86.30 98.6%

β1 (baseline value) 8.807 × 102 1.112 × 102 5.1435 × 103 -
10% reduction in β1 1.441 × 102 18.49 9.031 × 102 55.9%
20% reduction in β1 36.14 4.720 2.448 × 102 77.6%
30% reduction in β1 13.54 1.796 96.72 86.6%

ψV (baseline value) 8.807 × 102 1.112 × 102 5.1435 × 103 -
10% reduction in ψV 3.883 × 102 49.50 2.3638 × 103 55.4%
20% reduction in ψV 1.967 × 102 25.35 1.2577 × 103 77.2%
30% reduction in ψV 1.176 × 102 15.33 7.877 × 102 86.2%

(a) (b)

(c)

Figure 11. Mesh plots of exposed, symptomatically and asymptomatically infected individ-
uals with diffusion.
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Figure 11 describes mesh plots of model (2.1), which represent the Spatio-temporal evolution of
exposed, symptomatically and asymptomatically infected individuals for all time and spatial points
in [5,−5]. As long as the stability condition given by (4.7) fulfills the proposed scheme produces
a stable solution. Moreover the coefficients of diffusivity Dξ, where ξ represents each of the state
variables S , E, IS , IA,V and R are chosen so that (4.7) is satisfied. The corresponding mesh plots show
the consistent behavior of the proposed operator-splitting finite-difference numerical scheme. Clearly,
it preserves the positivity property of the solution, i.e., the solution stays positive for all t > 0 and
spatial points within the domain of definition [5,−5].

5. Conclusions

In this study, a new mathematical model based on PDEs is constructed to explore the dynamics of
COVID-19 outbreak in a spatially heterogeneous environment. The primary focus is to analyze the
impact of various significant measures with and without diffusion on the dynamics and control of the
pandemic. The basic mathematical properties including existence, uniqueness, positivity, and bound-
edness of the diffusive vaccinated model are presented. Moreover, the spatio-temporal COVID-19
mathematical model is numerically solved using the finite difference operator-splitting scheme with
uniform and non-uniform initial conditions. Based on the derived iterative scheme the model is sim-
ulated for various key parameters such as β, β1, ψV with and without diffusion. Further, the dynamics
are observed spatially at x = 0.0 and x = 1.0. The respective results are also shown in tabular form.
These results revealed that with diffusion (and at x = 1) the reduction in disease transmission coeffi-
cients β and β1 with a 30% rate, the projected peaks of infected individuals reduce upto 98 and 78%
respectively as shown in Table 5. The corresponding evolutionary trajectories showed a clear picture
of diffusion phenomena and the number of infective individuals significantly reduced with diffusion as
compared to without diffusion.
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