
In this paper, we consider a discrete non-autonomous Lotka-Volterra model. Under some assumptions, we prove the existence of positive almost periodic solutions. Our analysis relies on the exponential dichotomy for the difference equations and the Banach fixed point theorem. Furthermore, by constructing a Lyapunov function, the exponential convergence is proved. Finally, a numerical example illustrates the effectiveness of the results.
Citation: Lini Fang, N'gbo N'gbo, Yonghui Xia. Almost periodic solutions of a discrete Lotka-Volterra model via exponential dichotomy theory[J]. AIMS Mathematics, 2022, 7(3): 3788-3801. doi: 10.3934/math.2022210
[1] | Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang . Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113 |
[2] | Jing Ge, Xiaoliang Li, Bo Du, Famei Zheng . Almost periodic solutions of neutral-type differential system on time scales and applications to population models. AIMS Mathematics, 2025, 10(2): 3866-3883. doi: 10.3934/math.2025180 |
[3] | Ramazan Yazgan . An analysis for a special class of solution of a Duffing system with variable delays. AIMS Mathematics, 2021, 6(10): 11187-11199. doi: 10.3934/math.2021649 |
[4] | Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585 |
[5] | Li Wang, Hui Zhang, Suying Liu . On the existence of almost periodic solutions of impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms. AIMS Mathematics, 2022, 7(1): 925-938. doi: 10.3934/math.2022055 |
[6] | Tian Yue . Barbashin type characterizations for nonuniform h-dichotomy of evolution families. AIMS Mathematics, 2023, 8(11): 26357-26371. doi: 10.3934/math.20231345 |
[7] | Ping Zhu . Dynamics of the positive almost periodic solution to a class of recruitment delayed model on time scales. AIMS Mathematics, 2023, 8(3): 7292-7309. doi: 10.3934/math.2023367 |
[8] | Shihe Xu, Zuxing Xuan, Fangwei Zhang . Analysis of a free boundary problem for vascularized tumor growth with time delays and almost periodic nutrient supply. AIMS Mathematics, 2024, 9(5): 13291-13312. doi: 10.3934/math.2024648 |
[9] | Yan Yan . Multiplicity of positive periodic solutions for a discrete impulsive blood cell production model. AIMS Mathematics, 2023, 8(11): 26515-26531. doi: 10.3934/math.20231354 |
[10] | Tianwei Zhang, Zhouhong Li, Jianwen Zhou . 2p-th mean dynamic behaviors for semi-discrete stochastic competitive neural networks with time delays. AIMS Mathematics, 2020, 5(6): 6419-6435. doi: 10.3934/math.2020413 |
In this paper, we consider a discrete non-autonomous Lotka-Volterra model. Under some assumptions, we prove the existence of positive almost periodic solutions. Our analysis relies on the exponential dichotomy for the difference equations and the Banach fixed point theorem. Furthermore, by constructing a Lyapunov function, the exponential convergence is proved. Finally, a numerical example illustrates the effectiveness of the results.
In recent years, using a wide variety of methods, a considerable amount of literature has been produced regarding the stability and existence of almost periodic solutions of differential equations [2,3,4,5,6,7,8,9,10,11,12,13]. Almost periodic solutions of most differential equations are vector-valued functions defined on the set of real numbers R, but the concept of almost periodic solution, makes more sense on any additive group except R, in mathematical modeling, discrete time models are preferred over the continuous time models. As it is directly applicable to various fields (economics, populations dynamics, species interactions, mathematical biology, ecology etc.), the theory of difference equation is much more substantiated than the corresponding theory of differential equation (see [14,15,16,17,18,19,20]).
Gopalsamy and Mohamad [21] established the following criteria for the existence of globally attractive positive almost periodic solutions for discrete Lotka-Volterra systems:
x(n+1)=α(n)x(n)1+β(n)x(n). |
Xia et al. [22] studied the relationship between the global quasi-uniform asymptotic stability of a difference system and the existence of almost periodic solutions. Moreover, they applied their results to a discrete Lotka-Volterra system as follows:
xi(n+1)=xi(n)exp{ri(n)−m∑j=1aij(n)xj(n)},i=1,…,m. |
Meng [23], Niu [24] and Xue [25] et al. obtained the results of global stability, global attraction and uniform stability of almost periodic solutions of discrete Lotka-Volterra systems by constructing Lyapunov functions. To the best of our knowledge, there is no paper employing exponential dichotomy theory (for difference system) to study the existence of almost periodic solutions of discrete Lotka- Volterra systems. Different from the above mentioned works [21,22,23,24,25], in this paper, by using the exponential dichotomy theory for difference equations and Banach fixed point theorem, we prove the existence and uniqueness of solutions for the discrete almost periodic Lotka-Volterra model, formulated as follows:
xi(n+1)=xi(n)exp{ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n))}, | (1.1) |
where ri(n),aij(n),bij,τ(n), i,j=1,…,N are the almost periodic sequences.
The rest of this paper is organized as follows. In the second section, we introduce some preconditions for the existence of almost periodic solutions. In the third section, we prove the properties of the exponential dichotomy for the difference equationsand existence of exponential stability of almost periodic solutions for the Lotka-Volterra model. In the last section, the validity of the results is proved by numerical simulations.
For a bounded sequence f defined on Z, we define f− and f+ as follows:
f−=lim infn→∞f(n),f+=lim supn→∞f(n). |
Taking Z[a,b]={a,a+1,…,b−1,b}, where a,b∈Z. Similarly, we denote Z[a,+∞]={a,a+1,a+2,…}.
Definition 2.1. [2,3,4] If for ϵ>0, there is a constant l(ϵ)>0 such that in any interval of length l(ϵ)>0 there exists a number ˉτ∈Z such that the inequality
|x(n+ˉτ)−x(n)|<ϵ, |
is satisfied for all n∈Z. Then a sequence x(n) is called to be almost periodic sequence.
Lemma 2.1. [2,3,4]Let x:Z→R and y:Z→R. The following holds:
(a) If x(n) is an almost periodic sequence, then it is bounded.
(b) If x(n),y(n) are almost periodic sequences, x(n)+y(n) and x(n)⋅y(n) arealmost periodic.
(c) If x(n) is an almost periodic sequence, then X(n) is almost periodicif and only if X(n) is bounded on Z where
X(n)=n−1∑k=0x(n). |
(d) If x(n) is an almost periodic sequence and X(⋅) is defined on thevalue field of x(n), then X∘x is almost periodic.
Consider the following almost periodic difference system:
x(n+1)=A(n)x(n)+f(n), | (2.1) |
where A:Z→Zm×m is an almost periodic matrix sequence and f:Z→Zm is an almost periodic vector sequence. Its linear system is
x(n+1)=A(n)x(n). | (2.2) |
Definition 2.2. [26] Suppose that Φ(n) is a fundamental matrix of the difference system (2.2). If there exists a projection P such that P2=P and two positive constants K,v, such that
{‖Φ(r)PΦ−1(s+1)‖≤K(11+v)r−s−1,r≥s,‖Φ(r)(I−P)Φ−1(s+1)‖≤K(11+v)s+1−r,s≥r, | (2.3) |
then the difference system (2.2) is said to admit an exponential dichotomy.
Lemma 2.2. [26]Let r(n)>0 be an almost periodic sequence on Z and infn∈Zr(n)>0, then the linear system
Δx(n)=−r(n)x(n) |
admits an exponential dichotomy on Z.
Lemma 2.3. [27] [Chapter 7, Exercise 4]Suppose that system (2.2) admits an exponential dichotomy satisfying definition 2.Then system (2.2) does not admit a non-trivial bounded solution. i.eIf there is a bounded solution, it's only a zero solution.
Lemma 2.4. [27] [Chapter 7, Theorem 7.6.5]Suppose that Φ(n) is the normal fundamental matrix of the linear system (2.2).If the system (2.2) admits exponential dichotomy with the projection P and the constantsK, v, M with ‖f(n)‖≤M. Then the system (2.1) has a unique bounded solution which canbe uniquely expressed by
x(n)=n−1∑k=−∞Φ(n)PΦ−1(k+1)f(k)−+∞∑k=nΦ(n)(I−P)Φ−1(k+1)f(k). |
We consider the discrete almost periodic Lotka-Volterra system as follows:
xi(n+1)=xi(n)exp{ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n))}, | (3.1) |
where ri(n),aij(n), bij(n) and τ(n) are positive almost periodic sequences defined on Z. Throughout this paper, we use the notations er+ia−ii=Bi and B=max{Bi}. Further, we always assume that system (3.1) satisfies the following conditions:
(H1)r−i>∑Nj≠ia+ijBj+∑Nj=1b+ijBj, 1a+ii(r−i−∑Nj≠ia+ijBj−∑Nj=1b+ijBj)=Di.
Set D=min1≤n≤n{Di}. We further suppose that Eq (3.3) satisfies :
(H2)(D+B)∑Nj=1(a+ij+b+ij)D2r−i<1.
(H3)r−i>1+(D+B)∑Nj=1(a+ij+b+ij)D2.
Let ui(t)=1xi(t), ˙ui(t)=−1x2i(t)˙xi(t), ˙xi(t)=˙ui(t)−1u2i(t), then we have,
˙ui(t)=−ri(t)ui(t)+ui(t)[N∑j=1aij(t)1uj(t)+N∑j=1bij(t)1uj(t−τ(t))]. | (3.2) |
then we can get the difference equation as follow:
Δui(n)=−ri(n)ui(n)+ui(n)[N∑j=1aij(n)1uj(n)+N∑j=1bij(n)1uj(n−τ(n))]. | (3.3) |
Theorem 3.1. If (H1)−(H3) hold, then there exists a unique positive almost periodic solution ui(n) of (3.3), i.e, system (3.3) has a unique almost periodic solution xi(n).
Theorem 3.2. Let x∗(n)={x∗1(n),…,x∗N(n)}be a positive almost periodic solution of (3.1)in the B. If (H1)−(H3) hold, then the solution x(n)={x1(n),…,xN(n)}of (3.1) converges exponentially to x∗(n) as n→∞.
We consider the almost periodic Lotka-Volterra system as follows:
˙xi(t)=xi(t)[ri(t)−N∑j=1aij(t)xj(t)−N∑j=1bij(t)xj(t−τ(t))],i=1,…,N, | (4.1) |
where xi(t) denotes the density of prey species xi at time t; ri(t),aij(t), bij(t) and τ(t) are positive continuous almost periodic functions defined on t∈(−∞,+∞).
For the purpose of convenience, we should use piecewise constant variable differential equations to obtain the discrete model. Assume that the average growth rate changes over regular time intervals in (4.1), and then we can incorporate this aspect in (4.1) and obtain the following semi-discretization modified system (4.1):
˙xi(t)xi(t)=ri([t])−N∑j=1aij([t])xj([t])−N∑j=1bij(t)xj([t]−τ([t])), | (4.2) |
where t≠…−2,−1,0,1,2,… and [t] denotes the integer part t, t∈(−∞,+∞).
Integrating over n≤t<n+1,n=…,−2,−1,0,1,2,…, we have
xi(t)=xi(n)exp{ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n))}(t−n). |
Let t→n+1, then lead us to
xi(n+1)=xi(n)exp{ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n))}, | (4.3) |
where ri(n),aij(n) and bij(n) are positive almost periodic sequences defined on Z.
Proposition 4.1. For every solution {(x1(n),…,xN(n))T} of (4.3), we have
xi(n)≤Bi,i=1,…,N. | (4.4) |
Proof: Obviously, when n≥n0 xi(n)>0. Suppose that there exists a l0∈Z[n0,+∞), such that xi(l0+1)≥xi(l0), then
xi(l0+1)=xi(l0)exp{ri(l0)−N∑j=1aij(l0)xj(l0)−N∑j=1bij(l0)xj(l0−τ(l0))}≥xi(l0), |
then we get,
ri(l0)−N∑j=1aij(l0)xj(l0)−N∑j=1bij(l0)xj(l0−τ(l0))≥0. |
It follows that
xi(l0)≤ri(l0)−∑Nj≠iaij(l0)xj(l0)−∑Nj=1bij(l0)xj(l0−τ(l0))aii(l0)≤ri(l0)aii(l0)≤r+ia−ii. |
By the fact that maxx∈R(xexp(a−bx))=exp(a−1)b, for a,b>0. Hence,
xi(l0+1)=xi(l0)exp{ri(l0)−N∑j=1aij(l0)xj(l0)−N∑j=1bij(l0)xj(l0−τ(l0))}≤xi(l0)exp{ri(l0)−aii(l0)xi(l0)}≤xi(l0)exp{r+i−a−iixi(l0)}≤exp(r+i−1)a−ii≤exp(r+i)a−ii=Bi. |
We claim that xi(n)≤Bi, for n≥l0. By way of contradiction, we assume that there exists a q0≥l0, such that xi(q0)>Bi, then, q0≥l0+2. Let xi(˜q0)>Bi, where ˜q0≥l0+2 is the smallest integer, then, xi(˜q0−1)<xi(˜q0). The above argument produces that xi(˜q0)≤Bi, which is contradictory. The proof of our claim is complete.
Now, considering that xi(n+1)<xi(n) for all n∈Z[n0,+∞). Then limn→+∞xi(n) exists, we denote limn→+∞xi(n)=ˉxi. We claim that ˉxi≤er+ia−ii. Let us assume that ˉxi>er+ia−ii. Taking the limit of both sides in system (3.1), gives us
ˉxi=ˉxiexp{limn→+∞(ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n)))}. |
Hence,
limn→+∞(ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n)))=0. |
However,
limn→+∞(ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n)))≤limn→+∞(ri(n)−aii(n)xi(n))≤r+i−a−iiˉxi<r+i−er+i<0, |
which is a contradiction. The proof is complete.
Proposition 4.2. Assume that (H1),(H2) and (H3) hold. For every solution {(x1(n),…,xN(n))T} of (3.1), we have
xi(n)≥Di,i=1,…,N. | (4.5) |
Proof: By proposition 1, there exists a n∗∈N, such that
Bi−ε≤xi(n)≤Bi+ε,n≥n∗. |
Suppose that there exists a k0≥n∗, such that xi(k0+1)≤xi(k0). Note that
xi(n+1)=xi(n)exp{ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n))}≥xi(n)exp{ri(n)−aii(n)xi(n)−N∑j≠iaij(n)Bj−N∑j=1bij(n)Bj} |
≥xi(n)exp{r−i−a+iixi(n)−N∑j≠ia+ijBj−N∑j=1b+ijxjBj}. |
When n=k0, we have
xi(k0)≥xi(k0+1)=xi(k0)exp{r−i−a+iixi(k0)−N∑j≠ia+ijBj−N∑j=1b+ijBj}. |
Then we obtain,
r−i−a+iixi(k0)−N∑j≠ia+ijBj−N∑j=1b+ijBj≤0. |
Thus,
xi(k0)≥1a+ii(r−i−N∑j≠ia+ijBj−N∑j=1b+ijBj). |
Then,
xi(k0+1)≥1a+ii(r−i−N∑j≠ia+ijBj−N∑j=1b+ijBj)exp{r−i−N∑j=1a+ijBj−N∑j=1b+ijBj}Δ=˜xi. |
We claim that xi(n)≥˜xi, for n≥k0. Suppose that there exists a p0≥k0, such that xi(p0)<˜xi, then p0≥k0+2. Let xi(˜p0)<˜xi, where ˜p0≥k0+2 is the smallest integer, then, xi(˜p0−1)≥xi(˜p0). The above argument produces that xi(˜p0)≥˜xi, which is a contradiction. The proof of our claim is complete.
Next, considering that xi(n+1)>xi(n) for all n∈Z[n0,+∞). Then limn→+∞xi(n) exists, we denoted limn→+∞xi(n)=x_i. we state that x_i≥1a+ii(r−i−∑Nj≠ia+ijBj−∑Nj=1b+ijBj)≥Di. We write x_i<1a+ii(r−i−∑Nj≠ia+ijBj−∑Nj=1b+ijBj). Taking the limit of both sides in system (3.1), we obtain
x_i=x_iexp{limn→+∞(ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n)))}. |
Hence, we get
0=limn→+∞(ri(n)−N∑j=1aij(n)xj(n)−N∑j=1bij(n)xj(n−τ(n)))≥limn→+∞r−i−a+iixi(n)−N∑j≠ia+ijBj−N∑j=1b+ijBj≥r−i−a+iix_i−N∑j≠ia+ijBj−N∑j=1b+ijBj>r−i−(r−i−N∑j≠ia+ijBj−N∑j=1b+ijBj)−N∑j≠ia+ijBj−N∑j=1b+ijBj=0, |
which is contradictory. Since
˜xi=1a+ii(r−i−N∑j≠ia+ijBj−N∑j=1b+ijBj)exp{r−i−N∑j=1a+ijBj−N∑j=1b+ijBj}>1a+ii(r−i−N∑j≠ia+ijBj−N∑j=1b+ijBj)=Di, |
then for n≥n0, we have xi(n)≥Di.
Proof of Theorem 2.1: Let B={φ(n)=(φ1(n),φ2(n),…,φN(n))|φi(n):Z→R is almost periodic sequence}. For any φ∈B, we consider equation
Δui(n)=−ri(n)ui(n)+[N∑j=1aij(n)φi(n)φj(n)+N∑j=1bij(n)φi(n)φj(n−τ(n))]. | (4.6) |
Let uφ(n)=(uφ1(n),uφ2(n),…,uφN(n))T be a solution of (4.6).
Since r−i>0, then Δui(n)=−ri(n)ui(n) admits an exponential dichotomy on Z. By Lemma 2.4, we have a bounded solution of the form
uφi(n)=n−1∑m=−∞Φi(n)Φ−1i(m+1)fi(m). |
In view of Δui(n)=−ri(n)ui(n)⟹ui(n+1)=(1−ri(n))ui(n), we have
Φi(n)=(1−ri(n−1))(1−ri(n−2))…(1−ri(m+1))Φi(m+1). |
We can get
uφi(n)=n−1∑m=−∞n−1∏s=m+1(1−ri(s))[N∑j=1aij(m)φi(m)φj(m)+N∑j=1bij(m)φi(m)φj(m−τ(m))]. |
According to Lemma 2.1, and using the almost periodicity of n−1∏s=m+1(1−ri(s)), we deduce that uφi is also almost periodic.
We define a mapping T:B→B by setting
T(φ(n))=uφi(n),φ∈B, |
with the norm ‖T‖=supn∈Z|T|.
Let φ(n)=(φ1(n),φ2(n),…,φN(n)),ψ(n)=(ψ1(n),ψ2(n),…,ψN(n))∈B, we have
‖Ti(φ(n))−Ti(ψ(n))‖=supn∈Z|Ti(φ(n))−Ti(ψ(n))|=supn∈Z|n−1∑m=−∞n−1∏s=m+1(1−ri(s))[N∑j=1aij(m)(φi(m)φj(m)−ψi(m)ψj(m))+N∑j=1bij(m)(φi(m)φj(m−τ(m))−ψi(m)ψj(m−τ(m)))]|. |
We observe that
φi(m)φj(m)−ψi(m)ψj(m)=φi(m)−ψi(m)φj(m)+ψi(m)φj(m)−ψi(m)ψj(m)≤(φi(m)−ψi(m)D)+ψi(m)(ψj(m)−φj(m))φj(m)ψj(m)≤φi(m)−ψi(m)D+B[(ψj(m)−φj(m))]D2. |
Similarly,
φi(m)φj(m−τ(m))−ψi(m)ψj(m−τ(m))=φi(m)−ψi(m)φj(m−τ(m))+ψi(m)φj(m−τ(m))−ψi(m)ψj(m−τ(m))≤(φi(m)−ψi(m)D)+ψi(m)[ψj(m−τ(m))−φj(m−τ(m))]φj(m−τ(m))ψj(m−τ(m))≤φi(m)−ψi(m)D+B[(ψj(m−τ(m))−φj(m−τ(m)))]D2, |
where j=1,…,N. Therefore,
‖Ti(φ(n))−Ti(ψ(n))‖≤supn∈Z|n−1∑m=−∞n−1∏s=m+1(1−r−i)[N∑j=1a+ij(φi(m)−ψi(m)D+B[(ψj(m)−φj(m))]D2)+N∑j=1b+ij(φi(m)−ψi(m)D+B[(ψj(m−τ(m))−φj(m−τ(m)))]D2)]|≤supn∈Zn−1∑m=−∞(1−r−i)n−m−1N∑j=1(a+ij+b+ij)(|φi(m)−ψi(m)D+B[(ψj(m)−φj(m))]D2|)≤(D+B)∑Nj=1(a+ij+b+ij)D2r−i‖φ−ψ‖. |
Hence, by (H2), the mapping T is contractive on B. It follows that the mapping T possesses a unique fixed point φ∗∈B, such that Tφ∗=φ∗. thus φ∗ is an almost periodic solution.
Proof of Theorem 2.2: Let y(n)=u(n)−u∗(n), where yi(n)={y1(n),…,yN(n)}. Then, for i=1,…,N,
Δyi(n)=−ri(n)yi(n)+[N∑j=1aij(m)(ui(n)uj(n)−u∗i(n)u∗j(n))+N∑j=1bij(n)(ui(n)uj(n−τ(n))−u∗i(n)u∗j(n−τ(n)))]. |
Define a function Φ(μ) by setting
Φ(μ)=eμ−r−ieμ+eμ(D+B)D2N∑j=1a+ij+(eμD+(D+B)eμ(τ++1)D2)N∑j=1b+ij,μ∈[0,1]. |
Obviously, Φ is continuous on [0,1]. Then, by (H3), we have
Φ(0)=1−r−i+(D+B)D2N∑j=1a+ij+(1D+D+BD2)N∑j=1b+ij=1−r−i+(D+B)∑Nj=1(a+ij+b+ij)D2<0, |
which implies that there exist a constant λ∈(0,1], such that
Φ(λ)=eλ−r−ieλ+eλ(D+B)D2N∑j=1a+ij+(eλD+(D+B)eλ(τ++1)D2)N∑j=1b+ij<0. |
We consider the discrete Lyapunov functional V(n)=|y(n)|eλn. We calculate the difference of Vi(n), for all n≥n0, i=1,…,N, it yields
ΔVi(n)=Δ(|yi(n)|eλn)=Δ|yi(n)|eλ(n+1)+|yi(n)|Δeλn≤−ri(n)|yi(n)|eλ(n+1)+[N∑j=1aij(n)|ui(n)uj(n)−u∗i(n)u∗j(n)|+N∑j=1bij(n)|ui(n)uj(n−τ(n))−u∗i(n)u∗j(n−τ(n))|]eλ(n+1)+|yi(n)|(eλ(n+1)−eλn)≤|yi(n)|eλ(n+1)−ri(n)|yi(n)|eλ(n+1)+[N∑j=1aij(n)|ui(n)uj(n)−u∗i(n)u∗j(n)|+N∑j=1bij(n)|ui(n)uj(n−τ(n))−u∗i(n)u∗j(n−τ(n))|]eλ(n+1). |
Let Mi=eλn0(maxn∈Z[n0,∞)|xi(n)−x∗i(n)|), for all n≥n0. We claim that
V(n)=|y(n)|eλn<M, | (4.7) |
where M=maxMi. We prove our claim by contradiction. Let be a n∗>n0, such that Vi(n∗+1)≥Mi, and Vi(n)<M, ∀n∈Z[n0,n∗), which implies that Vi(n∗)−Mi≥0 and Vi(n)−Mi<0, ∀n∈Z[n0,n∗). However,
0≤Δ(Vi(n∗)−M)=ΔVi(n∗)≤|yi(n∗)|eλ(n∗+1)−ri(n∗)|yi(n∗)|eλ(n∗+1)+[N∑j=1aij(n)|ui(n)uj(n)−u∗i(n)u∗j(n)|+N∑j=1bij(n)|ui(n)uj(n−τ(n))−u∗i(n)u∗j(n−τ(n))|]eλ(n∗+1)≤(1−r−i)Mieλ+[N∑j=1a+ij|yi(n)eλ(n∗+1)D+Byj(n)eλ(n∗+1)D2|+N∑j=1b+ij|yi(n)eλ(n∗+1)D+Byj(n−τ(n))eλ(n∗+1)D2|]≤[eλ−r−ieλ+eλ(D+B)D2N∑j=1a+ij+(eλD+Beλ(τ++1)D2)N∑j=1b+ij]Mi. |
Thus,
eλ−r−ieλ+eλ(D+B)D2N∑j=1a+ij+(eλD+(D+B)eλ(τ++1)D2)N∑j=1b+ij≥0, |
which is contradictory. Hence (4.7) holds, then |y(n)|<Me−λn for all n≥n0. This complete the proof.
We consider two specific examples.
Example 1: Consider the following system, when N=1,
x′(t)=x(t)[1+sin(t)20−140+sintx(t)]. |
Discretization of the differential equations, we get
Δx(n)=x(n)[1+sin(n)20−140+sintx(n)]. | (5.1) |
It is easy to verity that system (5.1) satisfies all the assumptions. Thus, system (5.1) admits an almost periodic solution that is quasi-uniformly asymptotically stable. Figure 1 shows the dynamics of system (5.1).
Therefore, the system satisfies all the assumptions. It follows that this system has an almost periodic solution which is exponentially stable.
Example 2: Consider the following two dimensional predator-prey system, that is N=2,
{x′1(t)=x1(t)[3+sint30−x1(t)−1+sint40x2(t)]x′2(t)=x2(t)[1+sint−140+sintx1(t)−2−sint20x2(t)]. |
Discretization of the above differential equations, we obtain
{Δx1(n)=x1(n)[3+sinn30−x1(n)−1+sinn40x2(n)]Δx2(n)=x2(n)[1+sinn−140+sinnx1(n)−2−sinn20x2(n)]. | (5.2) |
It is easy to verity that system (5.2) satisfies all the assumptions. Thus, system (5.2) admits an almost periodic solution that is exponential convergence. Figure 2 shows the dynamics of system (5.2).
Therefore, the system satisfies all the assumptions. It follows that this system has an almost periodic solution which is exponentially stable.
In this paper, by applying exponential dichotomy, we obtain the existence and exponential convergence of positive non-autonomous discrete Lotka-Volterra systems. The method is different from the previous works [21,22,23,24,25]. I believe that this result has potential applications in population dynamics.
This work was supported by the National Natural Science Foundation of China under Grant (No. 11931016).
The authors declare that there is no conflict of interests regarding the publication of this article.
[1] |
S. Ahmad, On almost periodic solutions of the competing species problems, Proc. Amer. Math. Soc., 102 (1988), 855–861. doi: 10.1090/S0002-9939-1988-0934856-5. doi: 10.1090/S0002-9939-1988-0934856-5
![]() |
[2] |
J. K. Hale, Periodic and almost periodic solution of functional differential equations, Arch. Ration. Mech. An., 15 (1964), 289–304. doi: 10.1007/BF00249199. doi: 10.1007/BF00249199
![]() |
[3] | T. Yoshizawa, Stability properties in almost periodic system of functional differential equations, In: Functional differential equations and bifurcation, 799 (1980), 385–409. doi: 10.1007/BFb0089326. |
[4] | T. Yoshizawa, Stability theory and the existence of periodic solutions and almost periodic solutions, New York: Springer, 1975. doi: 10.1007/978-1-4612-6376-0. |
[5] | Y. Hamaya, Existence of an almost periodic solution in a difference equation by Liapunov functions, Nonlinear Stud., 8 (2001), 373–380. |
[6] |
S. Gao, K. Peng, C. Zhang, Existence and global exponential stability of periodic solutions for feedback control complex dynamical networks with time-varying delays, Chaos Solitons Fractals, 152 (2021), 111483. doi: 10.1016/j.chaos.2021.111483. doi: 10.1016/j.chaos.2021.111483
![]() |
[7] | S. Zhang, Existence of almost periodic solution for difference systems, Differ. Equ., 16 (2000), 184–206. |
[8] |
S. Zhang, G. Zheng, Almost periodic solutions of delay difference systems, Appl. Math. Comput., 131 (2002), 497–516. doi: 10.1016/S0096-3003(01)00165-5. doi: 10.1016/S0096-3003(01)00165-5
![]() |
[9] |
T. Q. Zhang, W. B. Ma, X. Z. Meng, T. H. Zhang, Periodic solution of a prey-predator model with nonlinear state feedback control, Appl. Math. Comput., 266 (2015), 95–107. doi: 10.1016/j.amc.2015.05.016. doi: 10.1016/j.amc.2015.05.016
![]() |
[10] |
T. H. Zhang, T. Q. Zhang, X. Z. Meng, Stability analysis of a chemostat model with maintenance energy, Appl. Math. Lett., 68 (2017), 1–7. doi: 10.1016/j.aml.2016.12.007. doi: 10.1016/j.aml.2016.12.007
![]() |
[11] | Y. H. Xia, Almost periodic solution of a population model: Via spectral radius of matrix, Bull. Malays. Math. Sci. Soc., 37 (2014), 249–259. |
[12] |
F. Chen, Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model, Appl. Math. Comput., 171 (2005), 760–770. doi: 10.1016/j.amc.2005.01.085. doi: 10.1016/j.amc.2005.01.085
![]() |
[13] |
Q. Wang, Y. Wang, B. Dai, Existence and uniqueness of positive periodic solutions for a neutral Logarithmic population model, Appl. Math. Comput., 213 (2009), 137–147. doi: 10.1016/j.amc.2009.03.028. doi: 10.1016/j.amc.2009.03.028
![]() |
[14] |
Y. Li, C. Wang, Almost periodic functions on time scales and applications, Discrete Dyn. Nat. Soc., 2011 (2011), 1–20. doi: 10.1155/2011/727068. doi: 10.1155/2011/727068
![]() |
[15] |
S. Gao, R. Shen, T. R. Chen, Periodic solutions for discrete-time Cohen-Grossberg neural networks with delays, Phys. Lett. A, 383 (2019), 414–420. doi: 10.1016/j.physleta.2018.11.016. doi: 10.1016/j.physleta.2018.11.016
![]() |
[16] |
Y. Hamaya, Existence of an almost periodic solution in a difference equation with infinite delay, J. Differ. Equ. Appl., 9 (2003), 227–237. doi: 10.1080/1023619021000035836. doi: 10.1080/1023619021000035836
![]() |
[17] |
Y. Hamaya, Bifurcation of almost periodic solutions in difference equation, J. Differ. Equ. Appl., 10 (2004), 257–279. doi: 10.1080/10236190310001634794. doi: 10.1080/10236190310001634794
![]() |
[18] |
Y. Xia, Z. Huang, M. Han, Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument, J. Math. Anal. Appl., 333 (2007), 798–816. doi: 10.1016/j.jmaa.2006.11.039. doi: 10.1016/j.jmaa.2006.11.039
![]() |
[19] |
W. Liu, T. Chen, Positive periodic solutions of delayed periodic Lotka-Volterra systems, Phys. Lett. A, 334 (2005), 273–287. doi: 10.1016/j.physleta.2004.10.083. doi: 10.1016/j.physleta.2004.10.083
![]() |
[20] | C. Corduneanu, Almost periodic discrete processes, Libertas Math., 2 (1982), 159–170. |
[21] |
K. Gopalsamy, S. Mohamad, Canonical solutions and almost periodicity in a discrete logistic equation, Appl. Math. Comput., 113 (2000), 305–323. doi: 10.1016/S0096-3003(99)00093-4. doi: 10.1016/S0096-3003(99)00093-4
![]() |
[22] |
Y. H. Xia, S. S. Chen, Quasi-uniformly asymptotic stability and existence of almost periodic solutions of difference equations with applications in population dynamic systems, J. Differ. Equ. Appl., 14 (2008), 59–81. doi: 10.1080/10236190701470407. doi: 10.1080/10236190701470407
![]() |
[23] |
X. Meng, J. Jiao, L. Chen, Global dynamics behaviors for a nonautonomous Lotka-Volterra almost periodic dispersal system with delays, Nonlinear Anal.-Theor. Methods Appl., 68 (2008), 3633–3645. doi: 10.1016/j.na.2007.04.006. doi: 10.1016/j.na.2007.04.006
![]() |
[24] |
C. Niu, X. Chen, Almost periodic sequence solutions of a discrete Lotka-Volterra competitive system with feedback control, Nonlinear Anal.: Real World Appl., 10 (2009), 3152–3161. doi: 10.1016/j.nonrwa.2008.10.027. doi: 10.1016/j.nonrwa.2008.10.027
![]() |
[25] |
Y. Xue, X. Xie, F. Chen, R. Han, Almost periodic solution of a discrete commensalism system, Discrete Dyn. Nat. Soc., 2015 (2015), 295483. doi: 10.1155/2015/295483. doi: 10.1155/2015/295483
![]() |
[26] |
J. Alzabut, Y. Bolat, T. Abdeljawad, Almost periodic dynamics of a discrete Nicholson's blowflies model involving a linear harvesting term, Adv. Differ. Equ., 2012 (2012), 158. doi: 10.1186/1687-1847-2012-158. doi: 10.1186/1687-1847-2012-158
![]() |
[27] | D. Henry, Geometric theory of semilinear parabolic equations, New York: Springer, 1981. doi: 10.1007/BFb0089647. |
1. | Arjun Hasibuan, Asep K. Supriatna, Ema Carnia, Local stability analysis of two density-dependent semelparous species in two age classes, 2022, 8, 2297-4687, 10.3389/fams.2022.953223 |