
Citation: Manishtha Rao, Madhvi Awasthi. A review on interventions to prevent osteoporosis and improve fracture healing in osteoporotic patients[J]. AIMS Medical Science, 2020, 7(4): 243-268. doi: 10.3934/medsci.2020015
[1] | Daphiny Pottmaier, Marcello Baricco . Materials for hydrogen storage and the Na-Mg-B-H system. AIMS Energy, 2015, 3(1): 75-100. doi: 10.3934/energy.2015.1.75 |
[2] | Daido Fujita, Takahiko Miyazaki . Techno-economic analysis on the balance of plant (BOP) equipment due to switching fuel from natural gas to hydrogen in gas turbine power plants. AIMS Energy, 2024, 12(2): 464-480. doi: 10.3934/energy.2024021 |
[3] | Daido Fujita . The prospects of clean hydrogen utilization in power generation industry. AIMS Energy, 2023, 11(5): 991-1011. doi: 10.3934/energy.2023047 |
[4] | Peter Majewski, Fatemeh Salehi, Ke Xing . Green hydrogen. AIMS Energy, 2023, 11(5): 878-895. doi: 10.3934/energy.2023042 |
[5] | Vui Thi Hoang, Diem Huong Hoang, Ngoc Duc Pham, Hanh My Tran, Ha Thi Viet Bui, Tien Anh Ngo . Hydrogen production by newly isolated Clostridium species from cow rumen in pure- and co-cultures on a broad range of carbon sources. AIMS Energy, 2018, 6(5): 846-865. doi: 10.3934/energy.2018.5.846 |
[6] | Dheeraj Rathore, Anoop Singh, Divakar Dahiya, Poonam Singh Nigam . Sustainability of biohydrogen as fuel: Present scenario and future perspective. AIMS Energy, 2019, 7(1): 1-19. doi: 10.3934/energy.2019.1.1 |
[7] | Kharisma Bani Adam, Jangkung Raharjo, Desri Kristina Silalahi, Bandiyah Sri Aprilia, IGPO Indra Wijaya . Integrative analysis of diverse hybrid power systems for sustainable energy in underdeveloped regions: A case study in Indonesia. AIMS Energy, 2024, 12(1): 304-320. doi: 10.3934/energy.2024015 |
[8] | Patrick Moriarty, Damon Honnery . When will the hydrogen economy arrive?. AIMS Energy, 2022, 10(6): 1100-1121. doi: 10.3934/energy.2022052 |
[9] | Lifita N. Tande, Valerie Dupont . Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling. AIMS Energy, 2016, 4(1): 68-92. doi: 10.3934/energy.2016.1.68 |
[10] | Lawrence Moura, Mario González, Jéssica Silva, Lara Silva, Izaac Braga, Paula Ferreira, Priscila Sampaio . Evaluation of technological development of hydrogen fuel cells based on patent analysis. AIMS Energy, 2024, 12(1): 190-213. doi: 10.3934/energy.2024009 |
Fractional calculus (FC) is a subject that dates back to 1695 and is regarded to be as old as ordinary calculus. Ordinary calculus made it impossible to model nonlinear real-world phenomenon in nature, hence fractional calculus became popular among researchers. The fractional derivative is the derivative of arbitrary order in applied mathematics and mathematical analysis. In the nineteenth century, Riemann Liouville [1] implemented the fractional derivative when simulating real-world problems. Some of the Nobel contributions of mathematicians are listed here, Caputo [2], Kemple and Beyer [3], Abbasbandy [4], Jafari and Seifi [5, 6], Miller and Ross [7], Podlubny [8], Kilbas and Trujillo [9], Diethelm et al. [10], Hayat et al. [11], Debanth [12], Momani and Shawagfeh [13], etc. Fractional calculus has become one of the fascinating science and engineering research areas in recent years. Viscoelasticity and damping, diffusion and wave propagation, electromagnetism and heat transfer, biology, signal processing, robotics system classification, physics, mechanics, chemistry, and control theory are the most important scientific fields that use fractional calculus at the moment.
Researchers are interested in FC because of its wide applications in physics, engineering, and real-life sciences. Fractional differential equations accurately represent these physical facts. Fractional differential equations are significantly greater generalizations of integer-order differential equations. Fractional differential equations (FDEs) have generated much interest in recent years. As a result of their frequent appearance in diverse applications, such as quantum mechanics [14], chaotic dynamics [15], plasma physics [16, 17], theory of long-range interaction [18], mechanics of non-Hamiltonian systems [19], physical kinetics [20], anomalous diffusion and transport theory [21], mechanics of fractional media [22], astrophysics [23], and so on. FDEs have been the subject of numerous investigations. Many works have been dedicated to developing efficient methods for solving FDEs, but it is important to remember that finding an analytical or approximate solution is difficult, therefore, accurate methods for obtaining FDE solutions are still being researched. In the literature, there are several analytical and numerical approaches for solving FDEs. For example, the generalized differential transform method (GDTM) [24], adomian decomposition method (ADM) [25], homotopy analysis method (HAM) [26], variational iteration method (VIM) [27], homotopy perturbation method (HPM) [28], Elzaki transform decomposition method (ETDM) [29], iterative Laplace transform method (ILTM) [30], fractional wavelet method (FWM) [31, 32], residual power series method (RPSM) [33, 34].
In this paper, we used two powerful techniques with the aid of the Antagana-Baleanu fractional derivative operator and Laplace transform for solving time fractional NWSEs. The two well-known methods that we implement are LTDM and VITM. The suggested techniques give series form solutions having quick convergence towards the exact solutions. Four non-linear NWSEs case study issues are resolved using the given methodology. Newell and Whitehead [35] developed the non-linear NWSE. The diffusion term's influence interacts with the reaction term's nonlinear effect in the Newell-Whitehead-Segel equation model. The fractional NWSE is written in the following way:
Dℑτμ(ξ,τ)=kD2ξμ(ξ,τ)+gμ−hμr, | (1.1) |
where r is a positive integer and g,h are real numbers with k>0. The first term Dℑτμ(ξ,τ) on the left hand side in (1.1) shows the deviations of μ(ξ,τ) with time at a fixed location, while the right hand side first term D2ξμ(ξ,τ) shows the deviations with spatial variable ξ of μ(ξ,τ) at a specific time and the right hand side remaining terms gμ−hμr, is the source terms. μ(ξ,τ) is a function of the spatial variable ξ and the temporal variable τ in (1.1), with ξ∈R and τ≥0. The function μ(ξ,τ) might be considered the (nonlinear) temperature distribution in an infinitely thin and long rod or as the fluid flow velocity in an infinitely long pipe with a small diameter. Many researchers find the analytical solution of NWSEs [36, 37] due to their wide range of applications in mechanical and chemical engineering, ecology, biology, and bioengineering.
Some basic definitions related to fractional calculus are expressed here in this section.
Definition 2.1. The Caputo fractional-order derivative is given as
LCDℑτ{g(τ)}=1(n−ℑ)∫τ0(τ−k)n−ℑ−1gn(k)dk, | (2.1) |
where n<ℑ≤n+1.
Definition 2.2. The Caputo fractional-order derivative via Laplace transformation LCDℑτ{g(τ)} is defined as
L{LCDℑτ{g(τ)}}(ω)=1ωn−ℑ[ωnL{g(ξ,τ)}(ω)−ωn−1g(ξ,0)−⋯−gn−1(ξ,0)]. | (2.2) |
Definition 2.3. The Atangana-Baleanu derivative in Caputo manner is given as
ABCDℑτ{g(τ)}=A(ℑ)1−ℑ∫τag′(k)Eℑ[−ℑ1−ℑ(1−k)ℑ]dk, | (2.3) |
where A(γ) is a normalization function such that A(0)=A(1)=1,g∈H1(a,b),b>a,ℑ ∈[0,1] and Eγ represent the Mittag-Leffler function.
Definition 2.4. The Atangana-Baleanu derivative in Riemann-Liouville manner is given as
ABCDℑτ{g(τ)}=A(ℑ)1−ℑddτ∫τag(k)Eℑ[−γ1−ℑ(1−k)ℑ]dk. | (2.4) |
Definition 2.5. The Laplace transform connected with the Atangana-Baleanu operator is define as
ABDℑτ{g(τ)}(ω)=A(γ)ωℑL{g(τ)}(ω)−ωℑ−1g(0)(1−ℑ)(ωℑ+ℑ1−γ). | (2.5) |
Definition 2.6. Consider 0<ℑ<1, and g is a function of ℑ, then the fractional-order integral operator of ℑ is given as
ABCIℑτ{g(τ)}=1−ℑA(ℑ)g(τ)+ℑA(ℑ)Γ(ℑ)∫τag(k)(τ−k)ℑ−1dk. | (2.6) |
The solution by LTDM for partial differential equations having fractional-order is described in this section.
Dℑτμ(ξ,τ)+ˉG1(ξ,τ)+N1(ξ,τ)=F(ξ,τ),0<ℑ≤1, | (3.1) |
with some initial sources
μ(ξ,0)=ξ(ξ)and∂∂τμ(ξ,0)=ζ(ξ), |
where Dℑτ=∂ℑ∂τℑ is the fractional-order AB operator having order ℑ,ˉG1 is linear operator and N1 is non-linear and F(ξ,τ) indicates the source term.
Employing the Laplace transform to (3.1), and we acquire
L[Dℑτμ(ξ,τ)+ˉG1(ξ,τ)+N1(ξ,τ)]=L[F(ξ,τ)]. | (3.2) |
By the virtue of Laplace differentiation property, we have
L[μ(ξ,τ)]=Θ(ξ,ω)−ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξ,τ)+N1(ξ,τ)], | (3.3) |
where
Θ(ξ,ω)=1ωℑ+1[ωℑg0(ξ)+ωℑ−1g1(ξ)+⋯+g1(ξ)]+ωℑ+ℑ(1−ℑ)ωℑF(ξ,τ). |
Now, applying inverse Laplace transform yields (3.3) into
μ(ξ,τ)=Θ(ξ,ω)−L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξ,τ)+N1(ξ,τ)]}, | (3.4) |
where Θ(ξ,ω) demonstrates the terms occurring from source factor. LTDM determines the solution of the infinite sequence of μ(ξ,τ)
μ(ξ,τ)=∞∑m=0μm(ξ,τ). | (3.5) |
and decomposing the nonlinear operator N1 as
N1(ξ,τ)=∞∑m=0Am, | (3.6) |
where Am are Adomian polynomials given as
Am=1m![∂m∂ℓm{N1(∞∑k=0ℓkξk,∞∑k=0ℓkτk)}]ℓ=0. | (3.7) |
Putting (3.5) and (3.7) into (3.4), gives
∞∑m=0μm(ξ,τ)=Θ(ξ,ω)−L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(∞∑m=0ξm,∞∑m=0τm)+∞∑m=0Am]}. | (3.8) |
The following terms are described:
μ0(ξ,τ)=Θ(ξ,ω) | (3.9) |
μ1(ξ,τ)=L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξ0,τ0)+A0]}. | (3.10) |
Thus all components for m≥1 are calculated as
μm+1(ξ,τ)=L−1{ωℑ+ℑ(1−ℑ)ωℑL[ˉG1(ξm,τm)+Am]}. | (3.11) |
The VITM solution for FPDEs is defined in this section.
Dℑτμ(ξ,τ)+Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)=0,m−1<ℑ≤m, | (4.1) |
with initial source
μ(ξ,0)=g1(ξ), | (4.2) |
where Dℑτ=∂ℑ∂τℑ is stand for fractional-order AB operator, M is a linear operator and N is nonlinear term and P indicates the source term.
The Laplace transform is applied to Eq (4.1), we have
L[Dℑτμ(ξ,τ)]+L[Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)]=0. | (4.3) |
By the property of LT differentiation, we get
L[μ(ξ,τ)]=ωℑωℑ+ℑ(1−ℑ)L[Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)]. | (4.4) |
The iteration technique for (4.4) as
μm+1(ξ,τ)=μm(ξ,τ)+ℑ(s)[ωℑωℑ+ℑ(1−ℑ)L[Mμ(ξ,τ)+Nμ(ξ,τ)−P(ξ,τ)]], | (4.5) |
where ℑ(s) is Lagrange multiplier and
ℑ(s)=−ωℑ+ℑ(1−ℑ)ωℑ, | (4.6) |
with the application of inverse Laplace transform, (4.5) series form solution is given by
μ0(ξ,τ)=μ(0)+L−1[ℑ(s)L[−P(ξ,τ)]]μ1(ξ,τ)=L−1[ℑ(s)L[Mμ(ξ,τ)+Nμ(ξ,τ)]]⋮μn+1(ξ,τ)=L−1[ℑ(s)L[M[μ0(ξ,τ)+μ1(ξ,τ)+⋯+μn(ξ,τ)]]+N[μ0(ξ,τ)+μ1(ξ,τ)+⋯+μn(ξ,τ)]]. |
Here we discuss uniqueness and convergence analysis.
Theorem 5.1. The result of (3.1) is unique for LTDMABC, when
0<(θ1+θ2)(1−ℑ+ℑτμΓ(μ+1))<1. |
Proof. Let H=(C[J],||.||) with the norm ||ϕ(τ)||=maxτ∈J|ϕ(τ)| be the Banach space, for all continuous function on J. Let I:H→H is a non-linear mapping, where
μCl+1=μC0+L−1[p(ℑ,υ,ω)L[L(μl(ξ,τ))+N(μl(ξ,τ))]],l≥0. |
Suppose that |L(μ)−L(μ∗)|<θ1|μ−μ∗| and |N(μ)−N(μ∗)|<θ2|μ−μ∗|, where μ:=μ(ξ,τ) and μ∗:=μ∗(ξ,τ) are two different function values and θ1,θ2 are Lipschitz constants.
||Iμ−Iμ∗||≤maxt∈J|L−1[q(ℑ,υ,ω)L[L(μ)−L(μ∗)]+q(ℑ,υ,ω)L[N(μ)−N(μ∗)]|]≤maxt∈J[θ1L−1[q(ℑ,υ,ω)L[|μ−μ∗|]]+θ2L−1[q(ℑ,υ,ω)L[|μ−μ∗|]]]≤maxt∈J(θ1+θ2)[L−1[q(ℑ,υ,ω)L|μ−μ∗|]]≤(ℑ1+θ2)[L−1[q(ℑ,υ,ω)L||μ−μ∗||]]=(θ1+θ2)(1−ℑ+ℑτℑΓℑ+1)||μ−μ∗||, | (5.1) |
where I is contraction as
0<(θ1+θ2)(1−ℑ+ℑτℑΓℑ+1)<1. |
From Banach fixed point theorem, the result of (3.1) is unique.
Theorem 5.2. The LTDMABC result of (3.1) is convergent.
Proof. Let μm=∑mr=0μr(ξ,τ). To show that μm is a Cauchy sequence in H. For n∈N, let
||μm−μn||=maxτ∈J|m∑r=n+1μr|≤maxτ∈J|L−1[q(ℑ,υ,ω)L[m∑r=n+1(L(μr−1)+N(μr−1))]]|=maxτ∈J|L−1[q(ℑ,υ,ω)L[m−1∑r=n+1(L(μr)+N(ur))]]|≤maxτ∈J|L−1[q(ℑ,υ,ω)L[(L(μm−1)−L(μn−1)+N(μm−1)−N(μn−1))]]|≤θ1maxτ∈J|L−1[q(ℑ,υ,ω)L[(L(μm−1)−L(μn−1))]]|+θ2maxτ∈J|L−1[p(ℑ,υ,ω)L[(N(μm−1)−N(μn−1))]]|=(θ1+θ2)(1−ℑ+ℑτℑΓ(ℑ+1))||μm−1−μn−1||. | (5.2) |
Let m=n+1, then
||μn+1−μn||≤θ||μn−μn−1||≤θ2||μn−1μn−2||≤⋯≤θn||μ1−μ0||, | (5.3) |
where
θ=(θ1+θ2)(1−ℑ+ℑτℑΓ(ℑ+1)). |
Similarly, we have
||μm−μn||≤||μn+1−μn||+||μn+2μn+1||+⋯+||μm−μm−1||≤(θn+θn+1+⋯+θm−1)||μ1−μ0||≤θn(1−θm−n1−θ)||μ1||. | (5.4) |
As 0<θ<1, we get 1−θm−n<1. Therefore, we have
||μm−μn||≤θn1−θmaxt∈J||μ1||. | (5.5) |
Since ||μ1||<∞ and ||μm−μn||→0, when n→∞. As a result, μm is a Cauchy sequence in H, implying that the series μm is convergent.
Four cases of nonlinear NWSEs are presented to demonstrate the suggested technique's capability and reliability.
Example 1. The NWSE has given in (1.1) for g=2,h=3,k=1 and r=2 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+2μ(ξ,τ)−3μ2(ξ,τ),0<θ≤1, | (6.1) |
with initial source μ(ξ,0)=Υ.
Applying Laplace transform to (6.1), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+2μ(ξ,τ)−3μ2(ξ,τ)]. | (6.2) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=Υ+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+2μ(ξ,τ)−3μ2(ξ,τ)]]. | (6.3) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.4) |
where μ2=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.3) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=Υ+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+2μ(ξ,τ)−3∞∑m=0Am]]. | (6.5) |
According to (3.7), the decomposition of nonlinear terms by Adomian polynomials is defined as
A0=μ20,A1=2μ0μ1,A2=2μ0μ2+(μ1)2. | (6.6) |
Thus, on comparing both sides of (6.5)
μ0(ξ,τ)=Υ. |
For m=0, we have
μ1(ξ,τ)=Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we have
μ(ξ,τ)=Υ+Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(μ,τ)=−23Υexp(2τ)−23+Υ−Υexp(2τ). | (6.7) |
The analytical results by VITM:
The iteration formulas for (6.1), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+2μm(ξ,τ)−3μ2m(ξ,τ)}], | (6.8) |
where μ0(ξ,τ)=Υ.
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+2μ0(ξ,τ)−3μ20(ξ,τ)}]μ1(ξ,τ)=Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)], | (6.9) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+2μ0(ξ,τ)−3μ20(ξ,τ)}]μ2(ξ,τ)=2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2],⋮ | (6.10) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=Υ+Υ(2−3Υ)[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2Υ(2−3Υ)(1−3Υ)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.11) |
Particularly, putting ℑ=1, we get the exact solution, see Figure 1 and Table 1.
μ(ξ,τ)=−23Υexp(2τ)−23+Υ−Υexp(2τ). | (6.12) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
Υ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000170000000 | 0.100000100000000 | 7.0000000000E-08 | 2.4390000000E-07 | 1.5317000000E-06 |
0.2 | 0.200000280000000 | 0.200000200000000 | 8.0000000000E-08 | 5.4790000000E-07 | 3.1233000000E-06 |
0.3 | 0.300000330000000 | 0.300000300000000 | 3.0000000000E-08 | 9.1180000000E-07 | 4.7750000000E-06 |
0.4 | 0.400000320000000 | 0.400000400000000 | 8.0000000000E-08 | 1.3357000000E-06 | 6.4866000000E-06 |
0.5 | 0.500000250000000 | 0.500000500000000 | 2.5000000000E-07 | 1.8197000000E-06 | 8.2582000000E-06 |
0.6 | 0.600000120000000 | 0.600000600000000 | 4.8000000000E-07 | 2.3636000000E-06 | 1.0089700000E-05 |
0.7 | 0.699999930000000 | 0.700000700000000 | 7.7000000000E-07 | 2.9675000000E-06 | 1.1981300000E-05 |
0.8 | 0.799999680000000 | 0.800000800000000 | 1.1200000000E-06 | 3.6315000000E-06 | 1.3932800000E-05 |
0.9 | 0.899999370000000 | 0.900000900000000 | 1.5300000000E-06 | 4.3554000000E-06 | 1.5944400000E-05 |
1.0 | 0.999999000000000 | 1.000001000000000 | 2.0000000000E-06 | 5.1390000000E-06 | 1.8016000000E-05 |
Example 2. The NWSE has given in (1.1) for g=1,h=1,k=1 and r=2 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+μ(ξ,τ)(1−μ(ξ,τ)),0<ℑ≤1, | (6.13) |
with initial source
μ(ξ,0)=1(1+exp(ξ√6))2. |
Applying Laplace transform to (6.13), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+μ(ξ,τ)(1−μ(ξ,τ))]. | (6.14) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=1(1+exp(ξ√6))2+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)(1−μ(ξ,τ))]]. | (6.15) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.16) |
where μ2=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.15) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=1(1+exp(ξ√6))2+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)−∞∑m=0Am]]. | (6.17) |
Applying the proposed analytical approach and the nonlinear terms can be obtained with the aid of Adomian's polynomials stated in (3.7), we acquire
μ0(ξ,τ)=1(1+exp(ξ√6))2. |
For m=0, we have
μ1(ξ,τ)=53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we obtain
μ(ξ,τ)=1(1+exp(ξ√6))2+53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(μ,τ)=(11+exp(ξ√6−56τ))2. | (6.18) |
The analytical results by VITM:
The iteration formulas for (6.13), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+μm(ξ,τ)(1−μm(ξ,τ))}], | (6.19) |
where
μ0(ξ,τ)=1(1+exp(ξ√6). |
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+μ0(ξ,τ)(1−μ0(ξ,τ))}]μ1(ξ,τ)=53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)] | (6.20) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ1(ξ,τ)+μ1(ξ,τ)(1−μ1(ξ,τ))}]μ2(ξ,τ)=2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]⋮ | (6.21) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=1(1+exp(ξ√6))2+53exp(ξ√6)(1+exp(ξ√6))3[ℑτℑΓ(ℑ+1)+(1−ℑ)]+2518(exp(ξ√6)(−1+2exp(ξ√6))(1+exp(ξ√6))4)[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.22) |
Particularly, putting ℑ=1, we get the exact solution, see Figures 2, 3 and Table 2.
μ(ξ,τ)=(11+exp(ξ√6−56τ))2. | (6.23) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.250020833800000 | 0.250020833700000 | 1.0000000000E-10 | 3.3580800000E-05 | 1.2032390000E-04 |
0.1 | 0.239919747900000 | 0.239919747800000 | 5.0941566800E-11 | 3.2881658260E-05 | 1.1781851670E-04 |
0.2 | 0.230035072700000 | 0.230035072600000 | 8.1583004800E-11 | 3.2156851240E-05 | 1.1522127190E-04 |
0.3 | 0.220374241800000 | 0.220374241700000 | 1.3295068340E-10 | 3.1408781520E-05 | 1.1254074080E-04 |
0.4 | 0.210943948200000 | 0.210943948100000 | 1.7637132220E-10 | 3.0639941880E-05 | 1.0978578190E-04 |
0.5 | 0.201750129200000 | 0.201750129000000 | 1.5669454130E-10 | 2.9852894210E-05 | 1.0696543270E-04 |
0.6 | 0.192797956100000 | 0.192797956000000 | 1.0301314750E-10 | 2.9050141560E-05 | 1.0408873760E-04 |
0.7 | 0.184091829000000 | 0.184091828700000 | 2.3924337590E-10 | 2.8234000470E-05 | 1.0116457590E-04 |
0.8 | 0.175635376500000 | 0.175635376200000 | 2.9445508530E-10 | 2.7407274000E-05 | 9.8202291510E-05 |
0.9 | 0.167431461100000 | 0.167431460800000 | 3.1297190840E-10 | 2.6572425380E-05 | 9.5210825130E-05 |
1.0 | 0.159482188800000 | 0.159482188600000 | 2.6399135400E-10 | 2.5731952810E-05 | 9.2199048510E-05 |
Example 3. The NWSE has given in (1.1) for g=1,h=1,k=1 and r=4 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+μ(ξ,τ)−μ4(ξ,τ),0<ℑ≤1 | (6.24) |
with initial source
μ(ξ,0)=1(1+exp(3ξ√10))23. |
Applying Laplace transform to (6.24), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+μ(ξ,τ)−μ4(ξ,τ)]. | (6.25) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=1(1+exp(3ξ√10))23+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)−μ4(ξ,τ)]]. | (6.26) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.27) |
where μ4=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.26) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=1(1+exp(3ξ√10))23+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+μ(ξ,τ)−∞∑m=0Am]]. | (6.28) |
According to (3.7), the decomposition of nonlinear terms by Adomian polynomials is defined as
A0=μ40,A1=4μ30μ1,A2=4μ30μ2+6μ20μ21. | (6.29) |
Thus, on comparing both sides of (6.30)
μ0(ξ,τ)=1(1+exp(3ξ√10))23. |
For m=0, we have
μ1(ξ,τ)=75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=4950(2exp(3ξ√10)−3)exp(3ξ√10)(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we obtain
μ(ξ,τ)=1(1+exp(3ξ√10))23+75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)]+4950(2exp(3ξ√10)−3)exp(3ξ√10)(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(ξ,τ)=12tanh(−32√10(ξ−7√10τ)). | (6.30) |
The analytical results by VITM:
The iteration formulas for (6.24), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+μm(ξ,τ)−μ4m(ξ,τ)}], | (6.31) |
where
μ0(ξ,τ)=1(1+exp(3ξ√10))23. |
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+μ0(ξ,τ)−μ40(ξ,τ)}],μ1(ξ,τ)=75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)], | (6.32) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ1(ξ,τ)+μ1(ξ,τ)−μ21(ξ,τ)}],μ2(ξ,τ)=4950(2exp(3ξ√10)−3)exp3√10ξ(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2].⋮ | (6.33) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=1(1+exp(3ξ√10))23+75exp(3ξ√10)(1+exp(3ξ√10))53[ℑτℑΓ(ℑ+1)+(1−ℑ)]+4950(2exp(3ξ√10)−3)exp(3ξ√10)(1+exp(3ξ√10))83[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.34) |
Particularly, putting ℑ=1, we get the exact solution, see Figures 4, 5 and Table 3.
μ(ξ,τ)=12tanh(−32√10(ξ−7√10τ)). | (6.35) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.630004621400000 | 0.630004623000000 | 1.6000000000E-09 | 7.1080200000E-05 | 2.5467930000E-04 |
0.1 | 0.609938405400000 | 0.609938406700000 | 1.3721312690E-09 | 7.2077200130E-05 | 2.5825129220E-04 |
0.2 | 0.589628520300000 | 0.589628521400000 | 1.1413782460E-09 | 7.2815436450E-05 | 2.6089584380E-04 |
0.3 | 0.569148496800000 | 0.569148497700000 | 8.7201231790E-10 | 7.3288425700E-05 | 2.6259010230E-04 |
0.4 | 0.548573070400000 | 0.548573071000000 | 6.9266503090E-10 | 7.3494089020E-05 | 2.6332630440E-04 |
0.5 | 0.527977019100000 | 0.527977019700000 | 5.8687018460E-10 | 7.3434320340E-05 | 2.6311129590E-04 |
0.6 | 0.507434030100000 | 0.507434030300000 | 1.9085441870E-10 | 7.3114619290E-05 | 2.6196573810E-04 |
0.7 | 0.487015628200000 | 0.487015628200000 | 1.4619007300E-11 | 7.2545024110E-05 | 2.5992429560E-04 |
0.8 | 0.466790202200000 | 0.466790202100000 | 1.0115621760E-10 | 7.1738176370E-05 | 2.5703268760E-04 |
0.9 | 0.446822151300000 | 0.446822151000000 | 3.7765613140E-10 | 7.0709457140E-05 | 2.5334660600E-04 |
1.0 | 0.427171171700000 | 0.427171171200000 | 5.2356035770E-10 | 6.9477036140E-05 | 2.4893040880E-04 |
Example 4. The NWSE has given in (1.1) for g=3,h=4,k=1 and r=3 becomes
Dℑτμ(ξ,τ)=D2ξμ(ξ,τ)+3μ(ξ,τ)−4μ3(ξ,τ), 0<ℑ≤1, | (6.36) |
with initial source
μ(ξ,0)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ). |
Applying Laplace transform to (6.36), we get
ωℑL[μ(ξ,τ)]−ω−1μ(ξ,0)ωℑ+ℑ(1−ωℑ)=L[D2ξμ(ξ,τ)+3μ(ξ,τ)−4μ3(ξ,τ)]. | (6.37) |
On taking Laplace inverse transform, we get
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+3μ(ξ,τ)−4μ3(ξ,τ)]]. | (6.38) |
Assume that the solution, μ(ξ,τ) in the form of infinite series given by
μ(ξ,τ)=∞∑m=0μm(ξ,τ), | (6.39) |
where μ3=∑∞m=0Am are the so-called Adomian polynomials that represent the nonlinear terms, thus (6.38) having certain terms are rewritten as
∞∑m=0μm(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+L−1[ωℑ+ℑ(1−ωℑ)ωℑL[D2ξμ(ξ,τ)+3μ(ξ,τ)−4∞∑m=0Am]]. | (6.40) |
According to (3.7), the decomposition of nonlinear terms by Adomian polynomials is defined as,
A0=μ30,A1=3μ20μ1,A2=3μ20μ2+3μ0μ21. | (6.41) |
Thus, on comparing both sides of (6.40)
μ0(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ). |
For m=0, we have
μ1(ξ,τ)=92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)]. |
For m=1, we have
μ2(ξ,τ)=814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]. |
The approximate series solution is expressed as
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=μ0(ξ,τ)+μ1(ξ,τ)+μ2(ξ,τ)+⋯. |
Therefore, we obtain
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)]+814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. |
Particularly, putting ℑ=1, we get the exact solution
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ−92τ). | (6.42) |
The analytical results by VITM:
The iteration formulas for (6.36), we have
μm+1(ξ,τ)=μm(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμm(ξ,τ)+3μm(ξ,τ)−4μ3m(ξ,τ)}], | (6.43) |
where
μ0(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ). |
For m=0,1,2,…, we have
μ1(ξ,τ)=μ0(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ0(ξ,τ)+3μ0(ξ,τ)−4μ30(ξ,τ)}],μ1(ξ,τ)=92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)], | (6.44) |
μ2(ξ,τ)=μ1(ξ,τ)−L−1[ωℑ+ℑ(1−ωℑ)ωℑL{ωℑωℑ+ℑ(1−ωℑ)D2ξμ1(ξ,τ)+3μ1(ξ,τ)−4μ31(ξ,τ)}],μ2(ξ,τ)=814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2].⋮ | (6.45) |
Therefore, we obtain
μ(ξ,τ)=∞∑m=0μm(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ)+92√34exp(√6ξ)exp(√62ξ)(exp(√6ξ)+exp(√62ξ))2[ℑτℑΓ(ℑ+1)+(1−ℑ)]+814√34exp(√6ξ)exp(√62ξ)(−exp(√6ξ)+exp(√62ξ))(exp(√6ξ)+exp(√62ξ))3×[ℑ2τ2ℑΓ(2ℑ+1)+2ℑ(1−ℑ)τℑΓ(ℑ+1)+(1−ℑ)2]+⋯. | (6.46) |
Particularly, putting ℑ=1, we get the exact solution, see Figures 6, 7 and Table 4.
μ(ξ,τ)=√34exp(√6ξ)exp(√6ξ)+exp(√62ξ−92τ). | (6.47) |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.433022444800000 | 0.433022445000000 | 1.7320508080E-10 | 7.9386816730E-06 | 2.2292879540E-05 |
0.1 | 0.459505816600000 | 0.459505816600000 | 3.2194421390E-11 | 7.9089032580E-06 | 2.2209048130E-05 |
0.2 | 0.485791725000000 | 0.485791725200000 | 1.6732056440E-10 | 7.8207979170E-06 | 2.1961331750E-05 |
0.3 | 0.511688623000000 | 0.511688622800000 | 2.1377960370E-10 | 7.6762722350E-06 | 2.1556125910E-05 |
0.4 | 0.537016284000000 | 0.537016284300000 | 3.7853826310E-10 | 7.4809626080E-06 | 2.1006564010E-05 |
0.5 | 0.561610593500000 | 0.561610593600000 | 1.3316432970E-10 | 7.2385076780E-06 | 2.0326137420E-05 |
0.6 | 0.585327390000000 | 0.585327389900000 | 4.4316889200E-11 | 6.9562540670E-06 | 1.9533837800E-05 |
0.7 | 0.608045207500000 | 0.608045207500000 | 4.4341099960E-11 | 6.6414869210E-06 | 1.8649762960E-05 |
0.8 | 0.629666845500000 | 0.629666845900000 | 4.6131349780E-10 | 6.3016518320E-06 | 1.7694707350E-05 |
0.9 | 0.650119804000000 | 0.650119803700000 | 7.6816056310E-10 | 5.9421274000E-06 | 1.6687344050E-05 |
1.0 | 0.669355693000000 | 0.669355693500000 | 4.9676049840E-10 | 5.5740946070E-06 | 1.5651582380E-05 |
Figure 1, show the behavior of the exact and proposed methods solution at ℑ=1 in (AB fractional derivative) manner of Example 1. The comparison of the exact and analytical solution of Example 2 is shown Figure 2, whereas the graphical view for various fractional orders is demonstrated with the help of figures. In Figure 3, the two and three dimensional different fractional order graphs of Example 2. The figures show that our solution approaches the exact solution as the fractional order goes towards the integer-order. Figure 4, demonstrate the layout of the exact and analytical solution while Figure 5 shows the error comparison of the exact and analytical results of Example 3. The error confirms the efficiency of the suggested techniques. The graphical view of Example 4 for exact and our solution can be seen in Figure 6, however, Figure 7 shows the error comparison of both results. Furthermore, the behavior of the exact and proposed method solution with the aid of absolute error at different orders of ℑ is shown in Tables 1–4. Finally, it is clear from the figures and tables that the proposed methods have a sufficient degree of accuracy and quick convergence towards the exact solution.
The LTDM and VITM were used for solving time fractional Newell-Whitehead-Segel equation. The solution we obtained is a series that quickly converges to exact solutions. Four cases are studied, which shows that the proposed methods solutions strongly agree with the exact solution. It is found that the suggested techniques are easy to implement and need a small number of calculations. This shows that LTDM and VITM are very efficient, effective, and powerful mathematical tools easily applied in finding approximate analytic solutions for a wide range of real-world problems arising in science and engineering.
This research received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.
The authors declare that they have no competing interests.
[1] |
Kilbanski A, Adams-Campbell L, Bassford T, et al. (2001) Osteoporosis prevention, diagnosis and therapy. JAMA 285: 785-795. doi: 10.1001/jama.285.6.785
![]() |
[2] | U.S. National Library of Medicine Medline Plus. Osteoporosis–overview. [Accessed September 22, 2017]. Updated September 2017. Available from: http://bit.ly/2sQEYYg. |
[3] |
Gomez-Cabello A, Ara I, Gonzalez-Agüero A, et al. (2012) Effects of training on bone mass in older adults: A systematic review. Sports Med 42: 301-325. doi: 10.2165/11597670-000000000-00000
![]() |
[4] |
Nguyen ND, Ahlborg HG, Center JR, et al. (2007) Residual lifetime risk of fracture in women and men. J Bone Miner Res 22: 781-788. doi: 10.1359/jbmr.070315
![]() |
[5] |
Melton LJ, Chrischilles EA, Cooper C, et al. (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7: 1005-1010. doi: 10.1002/jbmr.5650070902
![]() |
[6] |
Center JR, Bliuc D, Nguyen TV, et al. (2007) Risk of subsequent fracture after low trauma fracture in men and women. JAMA 297: 387-394. doi: 10.1001/jama.297.4.387
![]() |
[7] |
Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200: 165-170. doi: 10.3181/00379727-200-43410A
![]() |
[8] |
Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355: S7-S21. doi: 10.1097/00003086-199810001-00003
![]() |
[9] |
Ferguson C, Alpern E, Miclau T, et al. (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87: 57-66. doi: 10.1016/S0925-4773(99)00142-2
![]() |
[10] |
Gerstenfeld LC, Cullinane DM, Barnes GL, et al. (2003) Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88: 873-884. doi: 10.1002/jcb.10435
![]() |
[11] |
Vortkamp A, Pathi S, Peretti GM, et al. (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71: 65-76. doi: 10.1016/S0925-4773(97)00203-7
![]() |
[12] |
Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367: 2010-2018. doi: 10.1016/S0140-6736(06)68891-0
![]() |
[13] |
Dennison E, Medley J, Cooper C (2006) Who is at risk of osteoporosis? Women's Health Med 3: 152-154. doi: 10.1383/wohm.2006.3.4.152
![]() |
[14] | Bonnick SL (1998) Bone Densitometry in Clinical Practice New Jersey: Humana Press Inc.. |
[15] |
Binkley N, Adler R, Bilezikian JP, et al. (2014) Osteoporosi diagnosis in men: The T-score controversy revisited. Curr Osteoporor Rep 12: 403-409. doi: 10.1007/s11914-014-0242-z
![]() |
[16] |
Kanis JA, Johansson H, Harvey NC, et al. (2018) A brief history of FRAX. Arch Osteoporos 13: 118. doi: 10.1007/s11657-018-0510-0
![]() |
[17] |
Kanis JA, Johnell O, Oden A, et al. (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19: 385-397. doi: 10.1007/s00198-007-0543-5
![]() |
[18] |
Lorentzon M, Cummings SR (2015) Osteoporosis: The evolution of a diagnosis. J Intern Med 277: 650-661. doi: 10.1111/joim.12369
![]() |
[19] |
Deloumeau A, Molto A, Roux C, et al. (2017) Determinants of short-term fracture risk in patients with a recent history of low-trauma non-vertebral fracture. Bone 105: 287-291. doi: 10.1016/j.bone.2017.08.018
![]() |
[20] |
Ferrari SL, Abrahamsen B, Napoli N, et al. (2018) Diagnosis and management of bone fragility in diabetes: AN emerging challenge. Osteoporos Int 29: 2585-2596. doi: 10.1007/s00198-018-4650-2
![]() |
[21] |
Cummings SR, Black DM, Rubin SM (1989) Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 149: 2445-2448. doi: 10.1001/archinte.1989.00390110045010
![]() |
[22] |
Butcher JL, MacKenzie EJ, Cushing B, et al. (1996) Long term outcomes after low extremity trauma. J Trauma 41: 4-9. doi: 10.1097/00005373-199607000-00002
![]() |
[23] | MacKenzie EJ, Bose MJ, Pollak AN, et al. (2005) Long term persistence of disability following severe lower limb trauma. Results of a seven year follow up. J Bone Joint Surg Am 87: 1801-1809. |
[24] |
Qaseem A, Snow V, Shekelle P, et al. (2008) Pharmacologic treatment of low bone density or osteoporosis to prevent fractures: A clinical practice guideline from the American College of Physicians. Ann Intern Med 149: 404-415. doi: 10.7326/0003-4819-149-6-200809160-00007
![]() |
[25] |
Russell RG (2011) Bisphosphonates: The first 40 years. Bone 49: 2-19. doi: 10.1016/j.bone.2011.04.022
![]() |
[26] |
Odvina CV, Zerwekh JE, Rao DS, et al. (2005) Severely suppressed bone turnover: A potential complication of alendronate therapy. J Clin Endocrinol Metab 90: 1294-1301. doi: 10.1210/jc.2004-0952
![]() |
[27] |
Yates J (2013) A meta-analysis characterizing the dose-response relationships for three oral nitrogen-containing bisphosphonates in postmenopausal women. Osteoporos Int 24: 253-262. doi: 10.1007/s00198-012-2179-3
![]() |
[28] |
Zhang J, Wang R, Zhao YL, et al. (2012) Efficacy of intravenous zoledronic acid in the prevention and treatment of osteoporosis: A meta-analysis. Asian Pac J Trop Med 5: 743-748. doi: 10.1016/S1995-7645(12)60118-7
![]() |
[29] |
Crandall CJ, Newberry SJ, Diamant A, et al. (2014) Comparative effectiveness of pharmacologic treatments to prevent fractures: An updated systematic review. Ann Intern Med 161: 711-723. doi: 10.7326/M14-0317
![]() |
[30] |
Barrionuevo P, Kapoor E, Asi N, et al. (2019) Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: A network meta-analysis. J Clin Endocrinol Metab 104: 1623-1630. doi: 10.1210/jc.2019-00192
![]() |
[31] |
Freemantle N, Cooper C, Diez-Perez A, et al. (2013) Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: A meta-analysis. Osteoporos Int 24: 209-217. doi: 10.1007/s00198-012-2068-9
![]() |
[32] |
Hak DJ, Fitzpatrick D, Bishop JA, et al. (2014) Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 45: S3-S7. doi: 10.1016/j.injury.2014.04.002
![]() |
[33] |
Hegde V, Jo JE, Andreopoulou P, et al. (2016) Effect of osteoporosis medications on fracture healing. Osteoporos Int 27: 861-871. doi: 10.1007/s00198-015-3331-7
![]() |
[34] |
Saito T, Sterbenz JM, Malay S, et al. (2017) Effectiveness of anti-osteoporotic drugs to prevent secondary fragility fractures: Systematic review and meta-analysis. Osteoporos Int 28: 3289-3300. doi: 10.1007/s00198-017-4175-0
![]() |
[35] |
Duckworth AD, McQueen MM, Tuck CE, et al. (2019) Effect of alendronic acid on fracture healing: A multicenter randomized placebo-controlled trial. J Bone Miner Res 34: 1025-1032. doi: 10.1002/jbmr.3679
![]() |
[36] |
Lim EJ, Kim JT, Kim CH, et al. (2019) Effect of preoperative bisphosphonate treatment on fracture healing after internal fixation treatment of intertrochanteric femoral fractures. Hip Pelvis 31: 75-81. doi: 10.5371/hp.2019.31.2.75
![]() |
[37] |
Goodship AE, Walker PC, McNally D, et al. (1994) Use of a bisphosphonate (pamidronate) to modulate fracture repair in ovine bone. Ann Oncol 5: S53-S55. doi: 10.1093/annonc/5.suppl_2.S53
![]() |
[38] |
Peter CP, Cook WO, Nunamaker DM, et al. (1996) Effect of alendronate on fracture healing and bone remodeling in dogs. J Orthop Res 14: 74-79. doi: 10.1002/jor.1100140113
![]() |
[39] |
Miettinen SS, Jaatinen J, Pelttari A, et al. (2009) Effect of locally administered zoledronic acid on injury-induced intramembranous bone regeneration and osseointegration of a titanium implant in rats. J Orthop Sci 14: 431-436. doi: 10.1007/s00776-009-1352-9
![]() |
[40] |
Skripitz R, Johansson HR, Ulrich SD, et al. (2009) Effect of alendronate and intermittent parathyroid hormone on implant fixation in ovariectomized rats. J Orthop Sci 14: 138-143. doi: 10.1007/s00776-008-1311-x
![]() |
[41] |
Goldhahn J, Feron JM, Kanis J, et al. (2012) Implications for fracture healing of current and new osteoporosis treatments: An ESCEO consensus paper. Calcif Tissue Int 90: 343-353. doi: 10.1007/s00223-012-9587-4
![]() |
[42] |
Gerstenfeld LC, Sacks DJ, Pelis M, et al. (2009) Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24: 196-208. doi: 10.1359/jbmr.081113
![]() |
[43] |
Adami S, Libanati C, Boonen S, et al. (2012) Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: Results from the freedom trial. J Bone Jt Surg Am 94: 2113-2119. doi: 10.2106/JBJS.K.00774
![]() |
[44] |
Hanley DA, Adachi JD, Bell A, et al. (2012) Denosumab: Mechanism of action and clinicaloutcomes. Int J Clin Pract 66: 1139-1146. doi: 10.1111/ijcp.12022
![]() |
[45] |
Bone HG, Bolognese MA, Yuen CK, et al. (2011) Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in post menopausal women with low bone mass. J Clin Endocrinol Metab 96: 972-980. doi: 10.1210/jc.2010-1502
![]() |
[46] |
Papaionnou A, Morin S, Cheung AM, et al. (2010) 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: Summary. CMAJ 182: 1864-1873. doi: 10.1503/cmaj.100771
![]() |
[47] |
Russell RG, Rogers MJ (1999) Bisphophonates: From the laboratory to clinic and back again. Bone 25: 97-106. doi: 10.1016/S8756-3282(99)00116-7
![]() |
[48] |
Papapoulos S, Chapurlat R, Libanati C, et al. (2012) Five years of denosumab exposure in women with postmenopausal osteoporosis: Results from the first two years of the FREEDOM extension. J Bone Miner Res 27: 694-701. doi: 10.1002/jbmr.1479
![]() |
[49] |
Seeman E, Delmas PD, Henley DA, et al. (2010) Microarchitectural deterioration of cortical and trabecular bone: Differing effects of denosumab and alendronate. J Bone Miner Res 25: 1886-1894. doi: 10.1002/jbmr.81
![]() |
[50] |
Lv F, Cai X, Yang W, et al. (2020) Denosumab or romosozumab therapy and risk of cardiovascular events in patients with primary osteoporosis: Systemic review and meta-analysis. Bone 130: 115121. doi: 10.1016/j.bone.2019.115121
![]() |
[51] |
Riggs BL, Khosla S, Melton LJ (2002) Sex steroids and the construction and conservation of the adult skeleton. Endo Rev 23: 279-302. doi: 10.1210/edrv.23.3.0465
![]() |
[52] |
Sahiner T, Aktan E, Kaleli B, et al. (1998) The effects of postmenopausal hormone replacement therapy on sympathetic skin response. Maturitas 30: 85-88. doi: 10.1016/S0378-5122(98)00049-8
![]() |
[53] | Cho CH, Nuttall ME (2001) Therapeutic potential of oestrogen receptor ligands in development for osteoporosis. Expert Opin Emerg Drugs 6: 137-154. |
[54] |
Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators–mechanisms of action and application to clinical practice. N Engl J Med 348: 618-629. doi: 10.1056/NEJMra022219
![]() |
[55] |
Nilsson S, Koehler KF (2005) Oestrogen receptors and selective oestrogen receptor modulators: Molecular and cellular pharmacology. Basic Clin Pharmacol Toxicol 96: 15-25. doi: 10.1111/j.1742-7843.2005.pto960103.x
![]() |
[56] |
Gennari L, Merlotti D, Valleggi F, et al. (2007) Selective estrogen receptor modulators for postmenopausal osteoporosis: Current state of development. Drugs Aging 24: 361-379. doi: 10.2165/00002512-200724050-00002
![]() |
[57] |
Gennari L, Merlotti D, De Paola V, et al. (2008) Bazedoxifene for the prevention of postmenopausal osteoporosis. Ther Clin Risk Manag 4: 1229-1242. doi: 10.2147/TCRM.S3476
![]() |
[58] |
Delmas PD, Bjarnason NH, Mitlak BH, et al. (1997) Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337: 1641-1647. doi: 10.1056/NEJM199712043372301
![]() |
[59] |
Lufkin EG, Whitaker MD, Nickelsen T, et al. (1998) Treatment of established postmenopausal osteoporosis with raloxifene: A randomized trial. J Bone Miner Res 13: 1747-1754. doi: 10.1359/jbmr.1998.13.11.1747
![]() |
[60] |
Ettinger B, Black DM, Mitlak BH, et al. (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. Multiple outcomes of raloxifene evaluation (MORE) Investigators. JAMA 282: 637-645. doi: 10.1001/jama.282.7.637
![]() |
[61] |
Maricic M, Adachi JD, Sarkar S, et al. (2002) Early effects of raloxifene on clinical vertebral fractures at 12 months in postmenopausal women with osteoporosis. Arch Intern Med 162: 1140-1143. doi: 10.1001/archinte.162.10.1140
![]() |
[62] |
Langdahl BL, Silverman S, Fujiwara S, et al. (2018) Real-world effectiveness of teriparatide on fracture reduction in patients with osteoporosis and comorbidities or risk factors for fractures: Integrated analysis of 4 prospective observational studies. Bone 116: 58-66. doi: 10.1016/j.bone.2018.07.013
![]() |
[63] | Lou S, Lv H, Wang G, et al. (2016) The effect of teriparatide on fracture healing of osteoporotic patients: A meta-analysis of randomized controlled trials. Biomed Res Int . |
[64] |
Kim SM, Kang KC, Kim JW, et al. (2017) Current role and application of teriparatide in fracture healing of osteoporotic patients: A systematic review. J Bone Metab 24: 65-73. doi: 10.11005/jbm.2017.24.1.65
![]() |
[65] |
Johansson T (2016) PTH 1-34 (teriparatide) may not improve healing in proximal humerus fractures. A randomized, controlled study of 40 patients. Acta Orthop 87: 79-82. doi: 10.3109/17453674.2015.1073050
![]() |
[66] |
Huang TW, Chuang PY, Lin SJ, et al. (2016) Teriparatide improves fracture healing and early functional recovery in treatment of osteoporotic intertrochanteric fractures. Medicine (Baltimore) 95: e3626. doi: 10.1097/MD.0000000000003626
![]() |
[67] |
Kim SJ, Park HS, Lee DW, et al. (2019) Short-term daily teriparatide improve postoperative functional outcome and fracture healing in unstable intertrochanteric fractures. Injury 50: 1364-1370. doi: 10.1016/j.injury.2019.06.002
![]() |
[68] |
Bernhardsson M, Aspenberg P (2018) Abaloparatide versus teriparatide: A head to head comparison of effects on fracture healing in mouse models. Acta Orthop 89: 674-677. doi: 10.1080/17453674.2018.1523771
![]() |
[69] |
Miller PD, Hattersley G, Riis BJ, et al. (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: A randomized clinical trial. JAMA 316: 722-733. doi: 10.1001/jama.2016.11136
![]() |
[70] |
Miller PD, Hattersley G, Lau E, et al. (2018) Bone mineral density response rates are greater in patients treated with abaloparatide compared with those treated with placebo or teriparatide: Results from the ACTIVE phase 3 trial. Bone 120: 137-140. doi: 10.1016/j.bone.2018.10.015
![]() |
[71] |
Langdahl BL, Silverman S, Fujiwara S, et al. (2018) Real-world effectiveness of teriparatide on fracture reduction in patients with osteoporosis and comorbidities or risk factors for fractures: Integrated analysis of 4 prospective observational studies. Bone 116: 58-66. doi: 10.1016/j.bone.2018.07.013
![]() |
[72] |
Wojda SJ, Donahue SW (2018) Parathyroid hormone for bone regeneration. J Orthop Res 36: 2586-2594. doi: 10.1002/jor.24075
![]() |
[73] | Cheng ZY, Ye T, Ling QY, et al. (2018) Parathyroid hormone promotes osteoblastic differentiation of endothelial cells via the extracellular signal-regulated protein kinase 1/2 and nuclear factor-kappaB signaling pathways. Exp Ther Med 15: 1754-1760. |
[74] |
Swarthout JT, D'Alonzo RC, Selvamurugan N, et al. (2002) Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 282: 1-17. doi: 10.1016/S0378-1119(01)00798-3
![]() |
[75] |
Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by wnt signaling. J Clin Investig 116: 1202-1209. doi: 10.1172/JCI28551
![]() |
[76] |
Sims NA, Ng KW (2014) Implications of osteoblast-osteoclast interactions in the management of osteoporosis by antiresorptive agents denosumab and odanacatib. Curr Osteoporos Rep 12: 98-106. doi: 10.1007/s11914-014-0196-1
![]() |
[77] |
Wan M, Yang C, Li J, et al. (2008) Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev 22: 2968-2979. doi: 10.1101/gad.1702708
![]() |
[78] |
Li X, Zhang Y, Kang H, et al. (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280: 19883-19887. doi: 10.1074/jbc.M413274200
![]() |
[79] |
Koide M, Kobayashi Y (2018) Regulatory mechanisms of sclerostin expression during bone remodeling. J Bone Miner Metab 37: 9-17. doi: 10.1007/s00774-018-0971-7
![]() |
[80] |
Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37: 148-158. doi: 10.1016/j.bone.2005.03.018
![]() |
[81] |
Pazianas M (2015) Anabolic effects of PTH and the “anabolic window”. Trends Endocrinol Metab 26: 111-113. doi: 10.1016/j.tem.2015.01.004
![]() |
[82] |
Chandler H, Lanske B, Varela A, et al. (2018) Abaloparatide, a novel osteoanabolic PTHrP analog, increases cortical and trabecular bone mass and architecture in orchiectomized rats by increasing bone formation without increasing bone resorption. Bone 120: 148-155. doi: 10.1016/j.bone.2018.10.012
![]() |
[83] |
Kakar S, Einhorn TA, Vora S, et al. (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 22: 1903-1912. doi: 10.1359/jbmr.070724
![]() |
[84] |
Andreassen TT, Ejersted C, Oxlund H (1999) Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 14: 960-968. doi: 10.1359/jbmr.1999.14.6.960
![]() |
[85] |
Yu M, D'Amelio P, Tyagi AM, et al. (2018) Regulatory T cells are expanded by teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep 19: 156-171. doi: 10.15252/embr.201744421
![]() |
[86] |
Liu Y, Wang L, Kikuiri T, et al. (2011) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat Med 17: 1594-1601. doi: 10.1038/nm.2542
![]() |
[87] |
Subbiah V, Madsen VS, Raymond AK, et al. (2010) Of mice and men: Divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int 21: 1041-1045. doi: 10.1007/s00198-009-1004-0
![]() |
[88] |
Lou S, Lv H, Li Z, et al. (2018) Parathyroid hormone analogues for fracture healing: Protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 8: e019291. doi: 10.1136/bmjopen-2017-019291
![]() |
[89] | Ozturan KE, Demir B, Yucel I, et al. (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res 24: 1651-1661. |
[90] |
Li YF, Luo E, Feng G, et al. (2011) Systemic treatment with strontium ralenate promotes tibial fracture healing in the osteoporotic rats. J Orthop Res 29: 138-142. doi: 10.1002/jor.21204
![]() |
[91] | Tarantino U, Celi M, Saturnino L, et al. (2010) Strontium ralenate and bone healing: Report of two cases. Clin Cases Miner Bone Metab 7: 65-68. |
[92] |
Alegre DN, Ribeiro C, Sousa C, et al. (2012) Possible benefits of strontium ralenate in complicated long bone fractures. Rheumatol Int 32: 439-443. doi: 10.1007/s00296-010-1687-8
![]() |
[93] |
Scaglione M, Fabbri L, Casella F, et al. (2016) Strontium ranelate as an adjuvant for fracture healing: Clinical, radiological, and ultrasound findings in a randomized controlled study on wrist fractures. Osteoporos Int 27: 211-218. doi: 10.1007/s00198-015-3266-z
![]() |
[94] | Murray SS, Murray BEJ, Wang JC, et al. (2016) The history and histology of bone morphogenetic protein. Histol Histopathol 31: 721-732. |
[95] |
Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24: 218-235. doi: 10.1210/er.2002-0023
![]() |
[96] |
Onishi T, Ishidou Y, Nagamine T, et al. (1998) Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 22: 605-612. doi: 10.1016/S8756-3282(98)00056-8
![]() |
[97] |
Pluhar GE, Turner AS, Pierce AR, et al. (2006) A comparison of two biomaterial carriers for osteogenic protein-1 (BMP-7) in an ovine critical defect model. J Bone Jt Surg Br 88: 960-966. doi: 10.1302/0301-620X.88B7.17056
![]() |
[98] |
Sawyer AA, Song SJ, Susanto E, et al. (2009) The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials 30: 2479-2488. doi: 10.1016/j.biomaterials.2008.12.055
![]() |
[99] |
Cipitria A, Reichert JC, Epari DR, et al. (2013) Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 34: 9960-9968. doi: 10.1016/j.biomaterials.2013.09.011
![]() |
[100] |
Guzman JZ, Merrill RK, Kim JS, et al. (2017) Bone morphogenetic protein use in spine surgery in the United States: How have we responded to the warnings? Spine J 17: 1247-1254. doi: 10.1016/j.spinee.2017.04.030
![]() |
[101] |
Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned. Spine J 11: 471-491. doi: 10.1016/j.spinee.2011.04.023
![]() |
[102] |
James AW, LaChaud G, Shen J, et al. (2016) A Review of the clinical side effects of bone morphogenetic protein 2. Tissue Eng Part B Rev 22: 284-297. doi: 10.1089/ten.teb.2015.0357
![]() |
[103] |
Glaeser JD, Salehi K, Kanim LEA, et al. (2018) Anti-inflammatory peptide attenuates edema and promotes bmp-2-induced bone formation in spine fusion. Tissue Eng Part A 24: 1641-1651. doi: 10.1089/ten.tea.2017.0512
![]() |
[104] |
Bara JJ, Dresing I, Zeiter S, et al. (2018) A doxycycline inducible, adenoviral bone morphogenetic protein-2 gene delivery system to bone. J Tissue Eng Regen Med 12: e106-e118. doi: 10.1002/term.2393
![]() |
[105] |
Kolk A, Tischer T, Koch C, et al. (2016) A novel nonviral gene delivery tool of BMP-2 for the reconstitution of critical-size bone defects in rats. J Biomed Mater Res A 104: 2441-2455. doi: 10.1002/jbm.a.35773
![]() |
[106] |
Wang M, Park S, Nam Y, et al. (2018) Bone-fracture-targeted dasatinib-oligoaspartic acid conjugate potently accelerates fracture repair. Bioconjug Chem 29: 3800-3809. doi: 10.1021/acs.bioconjchem.8b00660
![]() |
[107] |
Li X, Ominsky MS, Niu QT, et al. (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 223: 860-869. doi: 10.1359/jbmr.080216
![]() |
[108] |
Van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE (2017) Sclerostin deficiency in humans. Bone 96: 51-62. doi: 10.1016/j.bone.2016.10.010
![]() |
[109] |
Koide M, Kobayashi Y (2019) Regulatory mechanisms of sclerostin expression during bone remodeling. J Bone Miner Metab 37: 9-17. doi: 10.1007/s00774-018-0971-7
![]() |
[110] |
Regard JB, Zhong Z, Williams BO, et al. (2012) Wnt signaling in bone development and disease: Making stronger bone with Wnts. Cold Spring Harb Perspect Biol 4: a007997. doi: 10.1101/cshperspect.a007997
![]() |
[111] |
Shi C, Li J, Wang W, et al. (2011) Antagonists of LRP6 regulate PTH-induced cAMP generation. Ann N Y Acad Sci 1237: 39-46. doi: 10.1111/j.1749-6632.2011.06226.x
![]() |
[112] |
Wijenayaka AR, Kogawa M, Lim HP, et al. (2011) Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 6: e25900. doi: 10.1371/journal.pone.0025900
![]() |
[113] |
Alaee F, Virk MS, Tang H, et al. (2014) Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model. J Orthop Res 32: 197-203. doi: 10.1002/jor.22498
![]() |
[114] |
Ominsky MS, Brown DL, Van G, et al. (2015) Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone 81: 380-391. doi: 10.1016/j.bone.2015.08.007
![]() |
[115] |
Cosman F, Crittenden DB, Ferrari S, et al. (2018) Frame Study: The foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33: 1219-1226. doi: 10.1002/jbmr.3427
![]() |
[116] |
Graeff C, Campbell GM, Pena J, et al. (2015) Administration of romosozumab improves vertebral trabecular and cortical bone as assessed with quantitative computed tomography and finite element analysis. Bone 81: 364-369. doi: 10.1016/j.bone.2015.07.036
![]() |
[117] |
Saag KG, Petersen J, Brandi ML, et al. (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377: 1417-1427. doi: 10.1056/NEJMoa1708322
![]() |
[118] |
Weske S, Vaidya M, Reese A, et al. (2018) Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss. Nat Med 24: 667-678. doi: 10.1038/s41591-018-0005-y
![]() |
[119] |
Xu R, Yallowitz A, Qin A, et al. (2018) Targeting skeletal endothelium to ameliorate bone loss. Nat Med 24: 823-833. doi: 10.1038/s41591-018-0020-z
![]() |
[120] |
Baltzer AWA, Whalen JD, Wooley P, et al. (2001) Gene therapy for osteoporosis: Evaluation in a murine ovariectomy model. Gene Ther 8: 1770-1776. doi: 10.1038/sj.gt.3301594
![]() |
[121] |
Feng Q, Zheng S, Zheng J (2018) The emerging role of micro RNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep 38: BSR20180453. doi: 10.1042/BSR20180453
![]() |
[122] | Hemigou P, Poignard A, Beaujean F, et al. (2005) Percutaneous autologous bone marrow grafting for non-unions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87: 1430-1437. |
[123] |
Kawaguchi H, Oka H, Jingushi S, et al. (2010) A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: A randomized placebo-controlled trial. J Bone Miner Res 12: 2735-2743. doi: 10.1002/jbmr.146
![]() |
[124] |
DiGiovanni CW, Lin SS, Baumhauer JF, et al. (2013) Recombinant human platelet derived growth factor-BB and beta-tricalcium phosphate (rhPDGF-BB/beta-TCP): An alternative to autologous bone graft. J Bone Joint Surg Am 95: 1184-1192. doi: 10.2106/JBJS.K.01422
![]() |
[125] |
Brighton CT, Black J, Friedenberg ZB, et al. (1981) A multicenter study of the treatment of non-unions with constant direct current. J Bone Joint Surg Am 63: 847-851. doi: 10.2106/00004623-198163050-00030
![]() |
[126] |
Brighton CT (1981) Treatment of non-unions of the Tibia with constant direct current (1980 Fitts Lecture, AAST). J Trauma 21: 189-195. doi: 10.1097/00005373-198103000-00001
![]() |
[127] |
Scott G, King JB (1994) A prospective, double blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg Am 76: 820-826. doi: 10.2106/00004623-199406000-00005
![]() |
[128] |
Sharrard WJ (1990) A double blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Joint Surg Br 72: 347-355. doi: 10.1302/0301-620X.72B3.2187877
![]() |
[129] |
Mollen B, De Silva V, Busse JW, et al. (2008) Electrical stimulation for long bone fracture healing: A meta-analysis of randomosed control trials. J Bone Joint Surg Am 90: 2322-2330. doi: 10.2106/JBJS.H.00111
![]() |
[130] |
Li S, Jiang H, Wang B, et al. (2018) Magnetic resonance spectroscopy for evaluating effect of pulsed electromagnetic fields on marrow adiposityin postmenopausal women with osteopenia. J Comput Assist Tomography 42: 792-797. doi: 10.1097/RCT.0000000000000757
![]() |
[131] |
Catalano A, Loddo S, Bellone F, et al. (2018) Pulsed electromagnetic fields modulate bpne metabolism via RANKL/OPG and Wnt/beta-catenin pathways in women with postmenopausal osteoporosis: A pilot study. Bone 116: 42-46. doi: 10.1016/j.bone.2018.07.010
![]() |
[132] |
Ziegler P, Nussler AK, Wilbrand B, et al. (2019) Pulsed electromagnetic field therapy improves osseous consolidation after high tibial osteotomy in elderly patients–A randomized placebo-controlled, double blind trial. J Clin Med 8: 2008. doi: 10.3390/jcm8112008
![]() |
[133] |
Leung KS, Lee WS, Tsui HF, et al. (2004) Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 30: 389-395. doi: 10.1016/j.ultrasmedbio.2003.11.008
![]() |
[134] |
Siska PA, Gruen GS, Pape HC (2008) External adjuncts to enhance fracture healing: What is the role of ultrasound? Injury 39: 1095-105. doi: 10.1016/j.injury.2008.01.015
![]() |
[135] |
Schortinghuis J, Bronckers AL, Stegenga B, et al. (2005) Ultrasound to stimulate early bone formation in a distraction gap: A double blind randomised clinical pilot trial in the edentulous mandible. Arch Oral Biol 50: 411-420. doi: 10.1016/j.archoralbio.2004.09.005
![]() |
[136] |
El-Bialy TH, Elgazzar RF, Megahed EE, et al. (2008) Effects of ultrasound modes on mandibular osteodistraction. J Dent Res 87: 953-957. doi: 10.1177/154405910808701018
![]() |
[137] |
Leung KS, Cheung WH, Zhang C, et al. (2004) Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res 253-259. doi: 10.1097/00003086-200401000-00044
![]() |
[138] |
Pilla AA, Mont MA, Nasser PR, et al. (1990) Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 4: 246-253. doi: 10.1097/00005131-199004030-00002
![]() |
[139] | Busse JW, Bhandari M, Kulkarni AV, et al. (2002) The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: A meta-analysis. CMAJ 166: 437-441. |
[140] | Heckman JD, Sarasohn-Kahn J (1997) The economics of treating tibia fractures. The cost of delayed unions. Bull Hosp Joint Dis 56: 63-72. |
[141] | Romano CL, Zavaterelli A, Meani E (2006) Biophysical treatment of septic non-unions. Archivio di Ortopedia e Reumatologia 117: 12-13. |
[142] |
Mundi R, Petis S, Kaloty R, et al. (2009) Low-intensity pulsed ultrasound: Fracture healing. Indian J Orthop 43: 132-140. doi: 10.4103/0019-5413.50847
![]() |
[143] | Schandelmaier S, Kaushal A, Lytvyn L, et al. (2017) Low intensity pulsed ultrasound for bone healing: A systematic review of randomised controlled trials. BMJ 356: j656. |
[144] | Yadollahpour A, Rashidi S (2017) Therapeutic applications of low-intensity pulsed ultrasound in osteoporosis. Asian J Pharm 11: S1-S6. |
[145] |
Farmer ME, Harris T, Madans JH, et al. (1989) Anthropometric indicators and hip fracture. The NHANES I epidemiologic follow-up study. J Am Geriatr Soc 37: 9-16. doi: 10.1111/j.1532-5415.1989.tb01562.x
![]() |
[146] |
Cosman F, Lindsay R, LeBoff MS, et al. (2014) Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 25: 2359-2381. doi: 10.1007/s00198-014-2794-2
![]() |
[147] | National Osteoporosis Foundation Osteoporosis exercise for strong bones. Available from: https://www.nof.org/patients/fracturesfall-prevention/exercisesafe-movement/osteoporosis-exercise-for-strong-bones/. |
[148] | Pfeifer M, Minne H (2005) Bone loading exercise recommendations for prevention and treament of osteoporosis. Int Osteoporosis Foundation . |
[149] | (2020) NIH Osteoporosis and Related Bone Disease National Resource Center. Health Topics: Osteoporosis. Available from: www.bones.nih.gov. |
[150] |
Carneiro MB, Alves DPL, Mercadante MT (2013) Physical therapy in the postoperative of proximal femur fracture in elderly. Literature review. Acta Ortop Bras 21: 175-178. doi: 10.1590/S1413-78522013000300010
![]() |
[151] |
Meys G, Kalmet PHS, Sanduleau S, et al. (2019) A protocol for permissive weight-bearing during allied health therapy in surgically treated fractures of the pelvis and lower extremities. J Rehabil Med 51: 290-297. doi: 10.2340/16501977-2532
![]() |
[152] |
Baer M, Neuhaus V, Pape HC, et al. (2019) Influence of mobilization and weight bearing on in-hospital outcome in geriatric patients with hip fractures. SICOT J 5: 4. doi: 10.1051/sicotj/2019005
![]() |
[153] |
Senderovich H, Kosmopoulos A (2018) An insight into the effect of exercises on the prevention of osteoporosis and associated fractures in high-risk individuals. Rambam Maimonides Med J 9: e0005. doi: 10.5041/RMMJ.10325
![]() |
[154] | Benedetti MG, Furlini G, Zati A, et al. (2018) The effectiveness of physical exercise on bone density in osteoporotic patients. BioMed Res Int . |
[155] | Erhan B, Ataker Y (2020) Rehabilitation of patients with osteoporotic fractures. J Clin Densitom In Press. |
[156] |
Atkins GJ, Welldon KJ, Wijenayaka AR, et al. (2009) Vitamin K promotes mineralization, osteoclast to osteocyte transition, and an anticatabolic phenotype by gamma-carboxylation-dependent and -independent mechanisms. Am J Physio Cell Physiol 297: C1358-1367. doi: 10.1152/ajpcell.00216.2009
![]() |
[157] |
Lee NK, Sowa H, Hinoi E, et al. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456-469. doi: 10.1016/j.cell.2007.05.047
![]() |
[158] | Yamaguchi M, Weitzmann MN (2011) Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing nF-kappa B activation. Int J Mol Med 27: 3-14. |
[159] |
Palermo A, Tuccinardi D, D'Onofrio L, et al. (2017) Vitamin K and osteoporosis: Myth or reality? Metabolism 70: 57-71. doi: 10.1016/j.metabol.2017.01.032
![]() |
[160] |
Rossini M, Bianchi G, Di Munno O, et al. (2006) Treatment of osteoporosis in clinical practice (TOP) study group. Determinants of adherence to osteoporosis treatment in clinical practice. Osteopros Int 17: 914-921. doi: 10.1007/s00198-006-0073-6
![]() |
[161] |
Bischoff-Ferrari B, Giovannucci E, Willett WC, et al. (2006) Estimation of optimal serum concentration of 25-hydroxy vitamin D for multiple health outcomes. Am J Clin Nutr 84: 18-28. doi: 10.1093/ajcn/84.1.18
![]() |
[162] |
Holick MF, Siris ES, Binkley N, et al. (2005) Prevalence of vitamin D inadequacy among post menopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 90: 3215-3224. doi: 10.1210/jc.2004-2364
![]() |
[163] |
Adani S, Giannini S, Bianchi G, et al. (2009) Vitamin D status and response to treatment in postmenopausal osteoporosis. Osteoporos Int 20: 239-244. doi: 10.1007/s00198-008-0650-y
![]() |
[164] | Merskey HE (1986) Classification of chronic pain: Description of chronic pain syndromes and definition of pain terms. Pain . |
[165] |
Catalano A, Martino G, Morabito N, et al. (2017) Pain in osteoporosis: From pathophysiology to therapeutic approach. Drugs Aging 34: 755-765. doi: 10.1007/s40266-017-0492-4
![]() |
[166] |
Edwards MH, Dennison EM, Sayer AA, et al. (2015) Osteoporosis and sarcopenia in older age. Bone 80: 126-130. doi: 10.1016/j.bone.2015.04.016
![]() |
[167] |
Lange U, Teichmann J, Uhlemann C (2005) Current knowledge about physiotherapeutic strategies in osteoporosis prevention and treatment. Rheumatol Int 26: 99-106. doi: 10.1007/s00296-004-0528-z
![]() |
[168] |
Ehde DM, Dillworth TM, Turner JA (2014) Cognitive-behavioural therapy for individuals with chronic pain: efficacy, innovations, and direction for research. Am Psycho 69: 153-166. doi: 10.1037/a0035747
![]() |
[169] |
Iwamoto J, Takeda T, Sato Y, et al. (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in postmenopausal women treated with alendronate. Aging Clin Exp Res 17: 157-163. doi: 10.1007/BF03324589
![]() |
[170] |
O'Connor JP, Lysz T (2008) Celecoxib, NSAIDs and the skeleton. Drugs Today (Barc) 44: 693-709. doi: 10.1358/dot.2008.44.9.1251573
![]() |
[171] | Vellucci R, Consalvo M, Celidoni L, et al. (2016) Implications of analgesics use in osteoporotic-related pain treatment: focus on opioids. Clin Cases Miner Bone Metab 13: 89-92. |
[172] |
Adolphson P, Abbaszadegan H, Jonsson U, et al. (1993) No effects of piroxicam on osteopenia and recovery after Colles' fracture. A randomized, double-blind, placebo-controlled, prospective trial. Arch Orthop Trauma Surg 112: 127-130. doi: 10.1007/BF00449987
![]() |
[173] | Davis TR, Ackroyd CE (1998) Non-steroidal anti-inflammatory agents in management of Colles' fractures. Br J Clin Prct 42: 184-189. |
[174] |
Bauer DC, Orwell ES, Fox KM, et al. (1996) Aspirin and NSAID use in older women: Effect on bone mineral density and fracture risk. Study of osteoporotic fractures research group. J Bone Miner Res 11: 29-35. doi: 10.1002/jbmr.5650110106
![]() |
[175] | Alkhiary YM, Gerstenfeld LC, Elizabeth K, et al. (2005) Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1–34). J Bone Joint Surg Am 87: 731-741. |
[176] |
Morgan EF, ZD Mason, Bishop G, et al. (2008) Combined effects of recombinant human BMP-7 (rhBMP-7) and parathyroid hormone (1–34) in metaphyseal bone healing. Bone 43: 1031-1038. doi: 10.1016/j.bone.2008.07.251
![]() |
[177] |
Jorgensen NR, Schwarz P (2011) Effects of anti-osteoporosis medications on fracture healing. Curr Osteoporos Rep 9: 149-145. doi: 10.1007/s11914-011-0065-0
![]() |
[178] |
Sarahrudi K, Thomas A, Albrecht C, et al. (2012) Strongly enhanced levels of sclerostin during human fracture healing. J Orthop Res 30: 1549-1155. doi: 10.1002/jor.22129
![]() |
[179] |
Kamiya N (2012) The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr Mol Pharmacol 5: 153-163. doi: 10.2174/1874467211205020153
![]() |
1. | Bharati Panigrahy, K. Narayan, B. Ramachandra Rao, Green hydrogen production by water electrolysis: A renewable energy perspective, 2022, 67, 22147853, 1310, 10.1016/j.matpr.2022.09.254 | |
2. | Richard Cartland, Al-Mas Sendegeya, Jean de Dieu Khan Hakizimana, Performance Analysis of a Hybrid of Solar Photovoltaic, Genset, and Hydro of a Rural-Based Power Mini-Grid: Case Study of Kisiizi Hydro Power Mini-Grid, Uganda, 2023, 11, 2227-9717, 175, 10.3390/pr11010175 | |
3. | Harpreet Singh, Chengxi Li, Peng Cheng, Xunjie Wang, Qing Liu, A critical review of technologies, costs, and projects for production of carbon-neutral liquid e-fuels from hydrogen and captured CO2, 2022, 1, 2753-1457, 580, 10.1039/D2YA00173J | |
4. | Josmar B. Cristello, Jaehyun M. Yang, Ron Hugo, Youngsoo Lee, Simon S. Park, Feasibility analysis of blending hydrogen into natural gas networks, 2023, 03603199, 10.1016/j.ijhydene.2023.01.156 | |
5. | Pasquale Marcello Falcone, Editorial to the 'Special Issue—Energy transition in a circular economy perspective' of AIMS Energy, 2022, 10, 2333-8334, 582, 10.3934/energy.2022029 | |
6. | Patrick Moriarty, Damon Honnery, When will the hydrogen economy arrive?, 2022, 10, 2333-8334, 1100, 10.3934/energy.2022052 | |
7. | Franz Teske, Jano Schubert, Adrian Fehrle, Felix Funk, Jörg Franke, Techno-economic analysis of battery storage systems and hydrogen-based storage systems as an alternative to grid expansion in the medium voltage grid in Germany, 2023, 11, 2333-8334, 358, 10.3934/energy.2023019 | |
8. | Marino Burba, Eleonora Pargoletti, Frank Marken, Neil B. McKeown, Mariolino Carta, Alberto Vertova, Alessandro Minguzzi, Polymer of Intrinsic Microporosity as Binders for both Acidic and Alkaline Oxygen Reduction Electrocatalysis, 2024, 11, 2196-0216, 10.1002/celc.202300481 | |
9. | Inês Rolo, Vítor A. F. Costa, Francisco P. Brito, Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges, 2023, 17, 1996-1073, 180, 10.3390/en17010180 | |
10. | Pedro Fernandes, Pedro D. Gaspar, Pedro D. Silva, Peltier Cell Integration in Packaging Design for Minimizing Energy Consumption and Temperature Variation during Refrigerated Transport, 2023, 7, 2411-9660, 88, 10.3390/designs7040088 | |
11. | Hasan Ozcan, Rami S. El-Emam, Selahattin Celik, Bahman Amini Horri, Recent advances, challenges, and prospects of electrochemical water-splitting technologies for net-zero transition, 2023, 8, 27727823, 100115, 10.1016/j.clce.2023.100115 | |
12. | Andrea Navarro Jiménez, Huaili Zheng, Fueling Costa Rica’s green hydrogen future: A financial roadmap for global leadership, 2024, 51, 17550084, 100651, 10.1016/j.ref.2024.100651 | |
13. | Eugeniusz Mokrzycki, Lidia Gawlik, The Development of a Green Hydrogen Economy: Review, 2024, 17, 1996-1073, 3165, 10.3390/en17133165 | |
14. | Juan Gabriel Segovia-Hernández, Advancing E-fuels production through process intensification: overcoming challenges and seizing opportunities for a sustainable energy future - A critical review, 2025, 208, 02552701, 110107, 10.1016/j.cep.2024.110107 | |
15. | Jianxin Wang, Xianying Hao, Hui Zhang, Zhiguang Chen, Chaokui Qin, Simulation and experimental investigation on the static mixer of natural gas mixed with hydrogen, 2025, 99, 03603199, 1, 10.1016/j.ijhydene.2024.12.045 | |
16. | Hancheng Lu, Baoling Guo, Jingxin Yao, Yufeng Yan, Xinhui Chen, Zilong Xu, Baoqing Liu, CFD analysis on leakage and diffusion of hydrogen-blended natural gas pipeline in soil-brick gutter coupling space, 2025, 100, 03603199, 33, 10.1016/j.ijhydene.2024.12.280 | |
17. | Laveet Kumar, Ahmad K. Sleiti, Wahib A. Al-Ammari, Thermo-economic analysis of blending hydrogen into natural gas pipeline with gaseous inhibitors for sustainable hydrogen transportation, 2025, 311, 00092509, 121619, 10.1016/j.ces.2025.121619 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
Υ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000170000000 | 0.100000100000000 | 7.0000000000E-08 | 2.4390000000E-07 | 1.5317000000E-06 |
0.2 | 0.200000280000000 | 0.200000200000000 | 8.0000000000E-08 | 5.4790000000E-07 | 3.1233000000E-06 |
0.3 | 0.300000330000000 | 0.300000300000000 | 3.0000000000E-08 | 9.1180000000E-07 | 4.7750000000E-06 |
0.4 | 0.400000320000000 | 0.400000400000000 | 8.0000000000E-08 | 1.3357000000E-06 | 6.4866000000E-06 |
0.5 | 0.500000250000000 | 0.500000500000000 | 2.5000000000E-07 | 1.8197000000E-06 | 8.2582000000E-06 |
0.6 | 0.600000120000000 | 0.600000600000000 | 4.8000000000E-07 | 2.3636000000E-06 | 1.0089700000E-05 |
0.7 | 0.699999930000000 | 0.700000700000000 | 7.7000000000E-07 | 2.9675000000E-06 | 1.1981300000E-05 |
0.8 | 0.799999680000000 | 0.800000800000000 | 1.1200000000E-06 | 3.6315000000E-06 | 1.3932800000E-05 |
0.9 | 0.899999370000000 | 0.900000900000000 | 1.5300000000E-06 | 4.3554000000E-06 | 1.5944400000E-05 |
1.0 | 0.999999000000000 | 1.000001000000000 | 2.0000000000E-06 | 5.1390000000E-06 | 1.8016000000E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.250020833800000 | 0.250020833700000 | 1.0000000000E-10 | 3.3580800000E-05 | 1.2032390000E-04 |
0.1 | 0.239919747900000 | 0.239919747800000 | 5.0941566800E-11 | 3.2881658260E-05 | 1.1781851670E-04 |
0.2 | 0.230035072700000 | 0.230035072600000 | 8.1583004800E-11 | 3.2156851240E-05 | 1.1522127190E-04 |
0.3 | 0.220374241800000 | 0.220374241700000 | 1.3295068340E-10 | 3.1408781520E-05 | 1.1254074080E-04 |
0.4 | 0.210943948200000 | 0.210943948100000 | 1.7637132220E-10 | 3.0639941880E-05 | 1.0978578190E-04 |
0.5 | 0.201750129200000 | 0.201750129000000 | 1.5669454130E-10 | 2.9852894210E-05 | 1.0696543270E-04 |
0.6 | 0.192797956100000 | 0.192797956000000 | 1.0301314750E-10 | 2.9050141560E-05 | 1.0408873760E-04 |
0.7 | 0.184091829000000 | 0.184091828700000 | 2.3924337590E-10 | 2.8234000470E-05 | 1.0116457590E-04 |
0.8 | 0.175635376500000 | 0.175635376200000 | 2.9445508530E-10 | 2.7407274000E-05 | 9.8202291510E-05 |
0.9 | 0.167431461100000 | 0.167431460800000 | 3.1297190840E-10 | 2.6572425380E-05 | 9.5210825130E-05 |
1.0 | 0.159482188800000 | 0.159482188600000 | 2.6399135400E-10 | 2.5731952810E-05 | 9.2199048510E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.630004621400000 | 0.630004623000000 | 1.6000000000E-09 | 7.1080200000E-05 | 2.5467930000E-04 |
0.1 | 0.609938405400000 | 0.609938406700000 | 1.3721312690E-09 | 7.2077200130E-05 | 2.5825129220E-04 |
0.2 | 0.589628520300000 | 0.589628521400000 | 1.1413782460E-09 | 7.2815436450E-05 | 2.6089584380E-04 |
0.3 | 0.569148496800000 | 0.569148497700000 | 8.7201231790E-10 | 7.3288425700E-05 | 2.6259010230E-04 |
0.4 | 0.548573070400000 | 0.548573071000000 | 6.9266503090E-10 | 7.3494089020E-05 | 2.6332630440E-04 |
0.5 | 0.527977019100000 | 0.527977019700000 | 5.8687018460E-10 | 7.3434320340E-05 | 2.6311129590E-04 |
0.6 | 0.507434030100000 | 0.507434030300000 | 1.9085441870E-10 | 7.3114619290E-05 | 2.6196573810E-04 |
0.7 | 0.487015628200000 | 0.487015628200000 | 1.4619007300E-11 | 7.2545024110E-05 | 2.5992429560E-04 |
0.8 | 0.466790202200000 | 0.466790202100000 | 1.0115621760E-10 | 7.1738176370E-05 | 2.5703268760E-04 |
0.9 | 0.446822151300000 | 0.446822151000000 | 3.7765613140E-10 | 7.0709457140E-05 | 2.5334660600E-04 |
1.0 | 0.427171171700000 | 0.427171171200000 | 5.2356035770E-10 | 6.9477036140E-05 | 2.4893040880E-04 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.433022444800000 | 0.433022445000000 | 1.7320508080E-10 | 7.9386816730E-06 | 2.2292879540E-05 |
0.1 | 0.459505816600000 | 0.459505816600000 | 3.2194421390E-11 | 7.9089032580E-06 | 2.2209048130E-05 |
0.2 | 0.485791725000000 | 0.485791725200000 | 1.6732056440E-10 | 7.8207979170E-06 | 2.1961331750E-05 |
0.3 | 0.511688623000000 | 0.511688622800000 | 2.1377960370E-10 | 7.6762722350E-06 | 2.1556125910E-05 |
0.4 | 0.537016284000000 | 0.537016284300000 | 3.7853826310E-10 | 7.4809626080E-06 | 2.1006564010E-05 |
0.5 | 0.561610593500000 | 0.561610593600000 | 1.3316432970E-10 | 7.2385076780E-06 | 2.0326137420E-05 |
0.6 | 0.585327390000000 | 0.585327389900000 | 4.4316889200E-11 | 6.9562540670E-06 | 1.9533837800E-05 |
0.7 | 0.608045207500000 | 0.608045207500000 | 4.4341099960E-11 | 6.6414869210E-06 | 1.8649762960E-05 |
0.8 | 0.629666845500000 | 0.629666845900000 | 4.6131349780E-10 | 6.3016518320E-06 | 1.7694707350E-05 |
0.9 | 0.650119804000000 | 0.650119803700000 | 7.6816056310E-10 | 5.9421274000E-06 | 1.6687344050E-05 |
1.0 | 0.669355693000000 | 0.669355693500000 | 4.9676049840E-10 | 5.5740946070E-06 | 1.5651582380E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
Υ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.000000000000000 | 0.000000000000000 | 0.0000000000E+00 | 0.0000000000E+00 | 0.0000000000E+00 |
0.1 | 0.100000170000000 | 0.100000100000000 | 7.0000000000E-08 | 2.4390000000E-07 | 1.5317000000E-06 |
0.2 | 0.200000280000000 | 0.200000200000000 | 8.0000000000E-08 | 5.4790000000E-07 | 3.1233000000E-06 |
0.3 | 0.300000330000000 | 0.300000300000000 | 3.0000000000E-08 | 9.1180000000E-07 | 4.7750000000E-06 |
0.4 | 0.400000320000000 | 0.400000400000000 | 8.0000000000E-08 | 1.3357000000E-06 | 6.4866000000E-06 |
0.5 | 0.500000250000000 | 0.500000500000000 | 2.5000000000E-07 | 1.8197000000E-06 | 8.2582000000E-06 |
0.6 | 0.600000120000000 | 0.600000600000000 | 4.8000000000E-07 | 2.3636000000E-06 | 1.0089700000E-05 |
0.7 | 0.699999930000000 | 0.700000700000000 | 7.7000000000E-07 | 2.9675000000E-06 | 1.1981300000E-05 |
0.8 | 0.799999680000000 | 0.800000800000000 | 1.1200000000E-06 | 3.6315000000E-06 | 1.3932800000E-05 |
0.9 | 0.899999370000000 | 0.900000900000000 | 1.5300000000E-06 | 4.3554000000E-06 | 1.5944400000E-05 |
1.0 | 0.999999000000000 | 1.000001000000000 | 2.0000000000E-06 | 5.1390000000E-06 | 1.8016000000E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.250020833800000 | 0.250020833700000 | 1.0000000000E-10 | 3.3580800000E-05 | 1.2032390000E-04 |
0.1 | 0.239919747900000 | 0.239919747800000 | 5.0941566800E-11 | 3.2881658260E-05 | 1.1781851670E-04 |
0.2 | 0.230035072700000 | 0.230035072600000 | 8.1583004800E-11 | 3.2156851240E-05 | 1.1522127190E-04 |
0.3 | 0.220374241800000 | 0.220374241700000 | 1.3295068340E-10 | 3.1408781520E-05 | 1.1254074080E-04 |
0.4 | 0.210943948200000 | 0.210943948100000 | 1.7637132220E-10 | 3.0639941880E-05 | 1.0978578190E-04 |
0.5 | 0.201750129200000 | 0.201750129000000 | 1.5669454130E-10 | 2.9852894210E-05 | 1.0696543270E-04 |
0.6 | 0.192797956100000 | 0.192797956000000 | 1.0301314750E-10 | 2.9050141560E-05 | 1.0408873760E-04 |
0.7 | 0.184091829000000 | 0.184091828700000 | 2.3924337590E-10 | 2.8234000470E-05 | 1.0116457590E-04 |
0.8 | 0.175635376500000 | 0.175635376200000 | 2.9445508530E-10 | 2.7407274000E-05 | 9.8202291510E-05 |
0.9 | 0.167431461100000 | 0.167431460800000 | 3.1297190840E-10 | 2.6572425380E-05 | 9.5210825130E-05 |
1.0 | 0.159482188800000 | 0.159482188600000 | 2.6399135400E-10 | 2.5731952810E-05 | 9.2199048510E-05 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.630004621400000 | 0.630004623000000 | 1.6000000000E-09 | 7.1080200000E-05 | 2.5467930000E-04 |
0.1 | 0.609938405400000 | 0.609938406700000 | 1.3721312690E-09 | 7.2077200130E-05 | 2.5825129220E-04 |
0.2 | 0.589628520300000 | 0.589628521400000 | 1.1413782460E-09 | 7.2815436450E-05 | 2.6089584380E-04 |
0.3 | 0.569148496800000 | 0.569148497700000 | 8.7201231790E-10 | 7.3288425700E-05 | 2.6259010230E-04 |
0.4 | 0.548573070400000 | 0.548573071000000 | 6.9266503090E-10 | 7.3494089020E-05 | 2.6332630440E-04 |
0.5 | 0.527977019100000 | 0.527977019700000 | 5.8687018460E-10 | 7.3434320340E-05 | 2.6311129590E-04 |
0.6 | 0.507434030100000 | 0.507434030300000 | 1.9085441870E-10 | 7.3114619290E-05 | 2.6196573810E-04 |
0.7 | 0.487015628200000 | 0.487015628200000 | 1.4619007300E-11 | 7.2545024110E-05 | 2.5992429560E-04 |
0.8 | 0.466790202200000 | 0.466790202100000 | 1.0115621760E-10 | 7.1738176370E-05 | 2.5703268760E-04 |
0.9 | 0.446822151300000 | 0.446822151000000 | 3.7765613140E-10 | 7.0709457140E-05 | 2.5334660600E-04 |
1.0 | 0.427171171700000 | 0.427171171200000 | 5.2356035770E-10 | 6.9477036140E-05 | 2.4893040880E-04 |
τ=0.0001 | Exact solution | Our methods solution | AE of our methods | AE of our methods | AE of our methods |
ξ | ℑ=1 | ℑ=1 | ℑ=1 | ℑ=0.9 | ℑ=0.8 |
0 | 0.433022444800000 | 0.433022445000000 | 1.7320508080E-10 | 7.9386816730E-06 | 2.2292879540E-05 |
0.1 | 0.459505816600000 | 0.459505816600000 | 3.2194421390E-11 | 7.9089032580E-06 | 2.2209048130E-05 |
0.2 | 0.485791725000000 | 0.485791725200000 | 1.6732056440E-10 | 7.8207979170E-06 | 2.1961331750E-05 |
0.3 | 0.511688623000000 | 0.511688622800000 | 2.1377960370E-10 | 7.6762722350E-06 | 2.1556125910E-05 |
0.4 | 0.537016284000000 | 0.537016284300000 | 3.7853826310E-10 | 7.4809626080E-06 | 2.1006564010E-05 |
0.5 | 0.561610593500000 | 0.561610593600000 | 1.3316432970E-10 | 7.2385076780E-06 | 2.0326137420E-05 |
0.6 | 0.585327390000000 | 0.585327389900000 | 4.4316889200E-11 | 6.9562540670E-06 | 1.9533837800E-05 |
0.7 | 0.608045207500000 | 0.608045207500000 | 4.4341099960E-11 | 6.6414869210E-06 | 1.8649762960E-05 |
0.8 | 0.629666845500000 | 0.629666845900000 | 4.6131349780E-10 | 6.3016518320E-06 | 1.7694707350E-05 |
0.9 | 0.650119804000000 | 0.650119803700000 | 7.6816056310E-10 | 5.9421274000E-06 | 1.6687344050E-05 |
1.0 | 0.669355693000000 | 0.669355693500000 | 4.9676049840E-10 | 5.5740946070E-06 | 1.5651582380E-05 |