Review Special Issues

Role of mushrooms in gestational diabetes mellitus

  • Received: 17 August 2018 Accepted: 21 January 2019 Published: 28 January 2019
  • Many studies have shown that plant-based diets and Mediterranean diets can lower the risk of development of gestational diabetes mellitus. Plants have been the main source of medicines since ancient times. Despite tremendous advances in medicinal chemistry, synthetic drugs have not provided cures to many diseases due to their adverse side effects or diminution in response after prolonged use. Medicinal mushrooms have been used traditionally as an anti-diabetic food for centuries especially in countries such as China, Japan, India and Korea. These are source of natural bioactive compounds. The bioactive constituents are polysaccharides, proteins, dietary fibres, lectins, lactones, alkaloids, terpenoids, sterols and phenolic compounds which have various health benefits. This review will focus on recent examples of diverse types of mushrooms that have been validated by scientific evaluation as having promising activity for the prevention and/or treatment of gestational diabetes mellitus. Dietary components and plant-derived molecules can be used in the future to complement current treatment strategies for gestational diabetes mellitus.

    Citation: Vandana Gulati, Mansi Dass Singh, Pankaj Gulati. Role of mushrooms in gestational diabetes mellitus[J]. AIMS Medical Science, 2019, 6(1): 49-66. doi: 10.3934/medsci.2019.1.49

    Related Papers:

    [1] Naime Altay, Ebru Kılıcarslan Toruner, Ebru Akgun-CITAK . Determine the BMI levels, self-concept and healthy life behaviours of children during a school based obesity training programme. AIMS Public Health, 2020, 7(3): 535-547. doi: 10.3934/publichealth.2020043
    [2] Marie K. Fialkowski, Ashley Yamanaka, Lynne R. Wilkens, Kathryn L. Braun, Jean Butel, Reynolette Ettienne, Katalina McGlone, Shelley Remengesau, Julianne M. Power, Emihner Johnson, Daisy Gilmatam, Travis Fleming, Mark Acosta, Tayna Belyeu-Camacho, Moria Shomour, Cecilia Sigrah, Claudio Nigg, Rachel Novotny . Recruitment Strategies and Lessons Learned from the Children’s Healthy Living Program Prevalence Survey. AIMS Public Health, 2016, 3(1): 140-157. doi: 10.3934/publichealth.2016.1.140
    [3] Elizabeth Dean, Margot Skinner, Homer Peng-Ming Yu, Alice YM Jones, Rik Gosselink, Anne Söderlund . Why COVID-19 strengthens the case to scale up assault on non-communicable diseases: role of health professionals including physical therapists in mitigating pandemic waves. AIMS Public Health, 2021, 8(2): 369-375. doi: 10.3934/publichealth.2021028
    [4] Helen Mary Haines, Opie Cynthia, David Pierce, Lisa Bourke . Notwithstanding High Prevalence of Overweight and Obesity, Smoking Remains the Most Important Factor in Poor Self-rated Health and Hospital Use in an Australian Regional Community. AIMS Public Health, 2017, 4(4): 402-417. doi: 10.3934/publichealth.2017.4.402
    [5] Sameer Badri Al-Mhanna, Alexios Batrakoulis, Abdulrahman M. Sheikh, Abdulaziz A. Aldayel, Abdulwali Sabo, Mahaneem Mohamed, Hafeez Abiola Afolabi, Abdirizak Yusuf Ahmed, Sahra Isse Mohamed, Mehmet Gülü, Wan Syaheedah Wan Ghazali . Impact of COVID-19 lockdown on physical activity behavior among students in Somalia. AIMS Public Health, 2024, 11(2): 459-476. doi: 10.3934/publichealth.2024023
    [6] Tyler C. Smith MS PhD, Besa Smith MPH PhD . Understanding the Early Signs of Chronic Disease by Investigating the Overlap of Mental Health Needs and Adolescent Obesity. AIMS Public Health, 2015, 2(3): 487-500. doi: 10.3934/publichealth.2015.3.487
    [7] MaríaVictorinaAguilarVilas, GabrielaRubalcava, AntonioBecerra, MaríaCarmenMartínezPara . Nutritional Status and Obesity Prevalence in People with Gender Dysphoria. AIMS Public Health, 2014, 1(3): 137-146. doi: 10.3934/publichealth.2014.3.137
    [8] Martin Burtscher, Grégoire P Millet, Jeannette Klimont, Johannes Burtscher . Differences in the prevalence of physical activity and cardiovascular risk factors between people living at low (<1,001 m) compared to moderate (1,001–2,000 m) altitude. AIMS Public Health, 2021, 8(4): 624-635. doi: 10.3934/publichealth.2021050
    [9] Richard Bailey, Claude Scheuer . The COVID-19 pandemic as a fortuitous disruptor in physical education: the case of active homework. AIMS Public Health, 2022, 9(2): 423-439. doi: 10.3934/publichealth.2022029
    [10] Karl Peltzer, Supa Pengpid . The Association of Dietary Behaviors and Physical Activity Levels with General and Central Obesity among ASEAN University Students. AIMS Public Health, 2017, 4(3): 301-313. doi: 10.3934/publichealth.2017.3.301
  • Many studies have shown that plant-based diets and Mediterranean diets can lower the risk of development of gestational diabetes mellitus. Plants have been the main source of medicines since ancient times. Despite tremendous advances in medicinal chemistry, synthetic drugs have not provided cures to many diseases due to their adverse side effects or diminution in response after prolonged use. Medicinal mushrooms have been used traditionally as an anti-diabetic food for centuries especially in countries such as China, Japan, India and Korea. These are source of natural bioactive compounds. The bioactive constituents are polysaccharides, proteins, dietary fibres, lectins, lactones, alkaloids, terpenoids, sterols and phenolic compounds which have various health benefits. This review will focus on recent examples of diverse types of mushrooms that have been validated by scientific evaluation as having promising activity for the prevention and/or treatment of gestational diabetes mellitus. Dietary components and plant-derived molecules can be used in the future to complement current treatment strategies for gestational diabetes mellitus.


    Flies are complete metamorphosis insects that contain various species, including Muscidae (houseflies), Calliphoridae (blowflflies) Drosophilae (fruitflies) and Scrcophagidae (fleshflies), etc. The life history of flies can be divided into egg, larva, pre-pupa, pupa and adult stages. Although the life span of flies is only about one month, they are very fertile and multiply rapidly in a short period [1]. The feeding habits of flies are very complex. They can feed on a variety of substances, such as human food, animal waste, kitchen scraps and other refuses. It is known to us that flies transmit various pathogens from filth to humans and cause many diseases [2,3,4]. On the other hand, flies are also beneficial to medical research, ecosystem food chain and pollen dispersal. Considering medical research, for example, fruit fly Drosophila is of great significance in studying the pathogenesis and therapy of human diseases. The nervous system of Drosophila is much simpler than that of human beings, but it also exhibits complex behavioral characteristics similar to humans [5,6]. Therefore, studying fly population dynamics is of crucial importance to both nature and human society.

    The study of biological population growth model promotes the development of human society to a great extent. It has important applications in population control, social resource allocation, ecological environment improvement, species protection and human life and health [7,8,9]. To understand the population dynamics of the Australian sheep blowfly, Gurney et al. [10] constructed the autonomous delay differential equation

    $ x(t)=δx(t)+Px(tτ)eγx(tτ)
    $

    based on experimental data [11,12]. In this model, $ x $ is the density of mature blowflies, $ \delta $ is the daily mortality rate of adult blowflies, $ P $ is the maximum daily spawning rate of female blowflies, $ \tau $ is the time required for a blowfly to mature from an egg to an adult, $ 1/\gamma $ is the blowfly population size at which the production function $ f(u) = ue^{-\gamma u} $ reaches the maximum value. Subsequently, this model and its modified extensions were continually used to describe rich fly dynamics.

    Environmental changes play an important role in biological systems. The influence of a periodically changing environment on the system is different from that of a constant environment, and it can better facilitate system evolution. Moreover, delay is one of the important factors which can change the dynamical properties and result in more rich and complex dynamics in biological systems [13,14]. Many researchers have assumed periodic coefficients and time delays in the system to combine with the periodic changes of the environment [15,16,17,18]. For related literature, we refer to [19,20]. However, considering the fact that adult flies number is a discrete value that varies daily and the situations where population numbers are small and individual effects are important or dominate, a discrete model would indeed be more realistic to describe the population evolution in discrete time-steps [21,22,23].

    Interactions between different species are extremely important for maintaining ecological balance. Such interactions are typically direct or indirect between multiple species, including positive interactions and negative interactions. Among them, the positive interactions can be divided into three categories according to the degree of action: commensalism, protocooperation and mutualism [24,25]. In the paper [9], a delay differential Nicholson-type system concerning the mutualism effects with constant coefficients was proposed. The existence, global stability and instability of positive equilibrium were obtained. Based on this system, Zhou [26] and Amster [27] considered periodic Nicholson-type system combined with nonlinear harvesting terms. The main research theme is the existence of positive periodic solutions. Recently, Ossandóna et al. [28] presented a Nicholson-type system with nonlinear density-dependent mortality to describe the dynamics of multiple species, the uniqueness and local exponential stability of the periodic solution are established. However, relatively few studies on discrete dynamical systems have explored the mutualism of flies. In this paper, we consider the mutualism relationship between two fly species and establish a two-dimensional discrete Nicholson system with multiple time-varying delays

    $ {Δx1(k)=a1(k)x1(k)+b1(k)x2(k)+nj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))Δx2(k)=a2(k)x2(k)+b2(k)x1(k)+nj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k)).
    $
    (1.1)

    We assume that $ a_i\!: \mathbb{Z} \to (0, 1) $, $ b_i\!: \mathbb{Z} \to (0, \infty) $, $ c_{ij}\!: \mathbb{Z} \to (0, \infty) $, $ \tau_{ij}\!: \mathbb{Z} \to \mathbb{Z}^+ $ and $ \gamma_{ij}\!: \mathbb{Z} \to (0, \infty) $ are $ \omega $-periodic discrete functions for $ 1 \le i \le 2 $ and $ 1 \le j \le n $. The period $ \omega $ is a positive integer. Moreover, the interaction rate of second fly specie on first fly species and that of first fly specie on second fly species are represented by $ b_1 $ and $ b_2 $, respectively.

    Because $ \tau_{ij} $ $ (1 \le i \le 2) $ have $ \omega $-periodicity, we can find the maximum values

    $ \overline{\tau}_i = \max\limits_{1 \le j \le n}\bigg\{\max\limits_{1 \le k \le \omega}\tau_{ij}(k)\bigg\} \in \mathbb{Z}^+ $

    of $ \{\tau_{i1}(k)\} $, $ \{\tau_{i2}(k)\} $, $\dots$, $ \{\tau_{in}(k)\} $ for $ i = 1, 2. $ Note that $ 0 < a_i(k) < 1 $ for $ k \in \mathbb{Z} $. Then, the solution $ x(\cdot, \phi) = (x_1(\cdot, \phi_1), x_2(\cdot, \phi_2))^T $ of system (1.1) that satisfies the initial condition

    $ xi(s)=ϕi(s)>0fors[¯τi,0]Z
    $
    (1.2)

    is a positive solution. The purpose of this paper is to present sufficient conditions for the existence of positive $ \omega $-periodic solution of (1.1).

    We discuss the parametric delay difference system

    $ {Δx1(k)=λa1(k)x1(k)+λb1(k)x2(k)+λnj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))Δx2(k)=λa2(k)x2(k)+λb2(k)x1(k)+λnj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k))
    $
    (2.1)

    for each parameter $ \lambda\in (0, 1) $. Let $ \underline{a}_i = \min_{1 \le k \le \omega}a_i(k) $ and $ \overline{b}_i = \max_{1 \le k \le \omega}b_i(k) $ for $ i = 1, 2 $. Then, an estimation of upper and lower bounds of positive $ \omega $-periodic solution of (2.1) can be conducted.

    Proposition 2.1. Suppose that

    $ a_1a_2¯b1¯b2>0
    $
    (2.2)

    and there exists a constant $ \gamma > 1 $ such that

    $ nj=1cij(k)>γai(k)fork=1,2,,ωand1i2.
    $
    (2.3)

    Then, every positive $ \omega $-periodic solution $ x = (x_1, x_2)^{T} $ of (2.1) is bounded. Specifically,

    $ A_1 < x_1(k) \le B_1 \quad\mathit{\text{and}}\quad A_2 < x_2(k) \le B_2 \quad\mathit{\text{for}}\;\; k = 1, 2, \dots, \omega, $

    where

    $ A_1 \le \min\left\{\frac{\ln\gamma}{\overline{\gamma}_1}, \;\gamma B_1e^{-\overline{\gamma}_1B_1}\right\} \quad\mathit{\text{and}}\quad B_1 = \frac{\underline{a}_2}{(\underline{a}_1\underline{a}_2-\overline{b}_1\overline{b}_2)e} \left(\sum\limits_{j = 1}^{n}\frac{\overline{c}_{1j}}{\underline{\gamma}_{1j}}+\frac{\overline{b}_1}{\underline{a}_2}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{2j}}{\underline{\gamma}_{2j}}\right) , $
    $ A_2 \le \min\left\{\frac{\ln\gamma}{\overline{\gamma}_2}, \;\gamma B_2e^{-\overline{\gamma}_2B_2}\right\}\quad\mathit{\text{and}}\quad B_2 = \frac{\underline{a}_1}{(\underline{a}_1\underline{a}_2-\overline{b}_1\overline{b}_2)e} \left(\sum\limits_{j = 1}^{n}\frac{\overline{c}_{2j}}{\underline{\gamma}_{2j}}+\frac{\overline{b}_2}{\underline{a}_1}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{1j}}{\underline{\gamma}_{1j}}\right), $

    in which $ \underline{\gamma}_{1j} = \min_{1 \le k \le \omega}\gamma_{1j}(k), $ $ \underline{\gamma}_{2j} = \min_{1 \le k \le \omega}\gamma_{2j}(k), $ $ \overline{c}_{1j} = \max_{1 \le k \le \omega}c_{1j}(k), $ $ \overline{c}_{2j} = \max_{1 \le k \le \omega}c_{2j}(k), $ $ \overline{\gamma}_1 = \max_{1 \le j \le n}\{\max_{1\le k\le\omega}\gamma_{1j}(k)\} $ and $ \overline{\gamma}_2 = \max_{1 \le j \le n}\{\max_{1\le k\le\omega}\gamma_{2j}(k)\} $.

    Remark 1. Note that $ A_i $ and $ B_i $ are the lower bound and upper bound of $ x_i $, respectively. We can verify the fact that $ A_i < B_i $ for $ i = 1, 2 $. From the definitions of $ A_1 $ and $ A_2 $, we see that

    $ A_1 \le \gamma B_1 e^{-\overline{\gamma}_1B_1} \le \frac{\gamma}{e \overline{\gamma}_1} \quad{and}\quad A_2 \le \gamma B_2 e^{-\overline{\gamma}_2B_2} \le \frac{\gamma}{e \overline{\gamma}_2}. $

    Hence, we obtain

    $ B1>a_2(a_1a_2¯b1¯b2)enj=1¯c1jγ_1j=1/(1¯b1¯b2a_1a_2)×1a_1enj=1¯c1jγ_1j>nj=1¯c1ja_11e¯γ1>γe¯γ1A1.
    $

    Similarly, it follows that

    $ B_2 > \frac{\underline{a}_1}{(\underline{a}_1\underline{a}_2-\overline{b}_1\overline{b}_2)e} \sum\limits_{j = 1}^{n}\frac{\overline{c}_{2j}}{\underline{\gamma}_{2j}} > \frac{\gamma}{e \overline{\gamma}_2} \ge A_2. $

    Proof. Let $ x = (x_1, x_2)^{T} $ be arbitrary positive $ \omega $-periodic solution of (2.1) under the initial condition (1.2). For $ i = 1, 2 $, we define

    $ \overline{x}_i = \max\limits_{1 \le k \le \omega}x_i(k)\quad\text{and}\quad\underline{x}_i = \min\limits_{1 \le k \le \omega}x_i(k). $

    Then $ \underline{x}_i \le x_i(k) \le \overline{x}_i $ for $ k \in \mathbb{Z}^+\! $. We can rewrite system (2.1) into

    $ {x1(k+1)=(1λa1(k))x1(k)+λb1(k)x2(k)+λnj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))x2(k+1)=(1λa2(k))x2(k)+λb2(k)x1(k)+λnj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k)).
    $
    (2.4)

    Taking the maximum on both sides of the first equation of (2.4) in one period, we have

    $ ¯x1=max1kω{x1(k+1)}max1kω{(1λa1(k))x1(k)}+λmax1kω{b1(k)x2(k)}+λmax1kω{nj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))}max1kω{(1λa1(k))}max1kω{x1(k)}+λmax1kω{b1(k)}max1kω{x2(k)}+λmax1kω{nj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))}(1λa_1)¯x1+λ¯b1¯x2+λmax1kω{nj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))}.
    $

    Similarly, we obtain

    $ ¯x2(1λa_2)¯x2+λ¯b2¯x1+λmax1kω{nj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k))}.
    $

    Hence, it leads to

    $ ¯x1¯b1a_1¯x2+1a_1max1kω{nj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))}¯b1a_1¯x2+1a_1enj=1¯c1jγ_1j,
    $
    (2.5)

    and

    $ ¯x2¯b2a_2¯x1+1a_2max1kω{nj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k))}¯b1a_2¯x1+1a_2enj=1¯c2jγ_2j.
    $
    (2.6)

    By (2.5) and (2.6), basic computations show that

    $ \overline{x}_1 \le 1\Bigg/\left(1-\frac{\overline{b}_1\overline{b}_2}{\underline{a}_1\underline{a}_2}\right)\times\left(\frac{1}{\underline{a}_1e}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{1j}}{\underline{r}_{1j}}+\frac{\overline{b}_1}{\underline{a}_1\underline{a}_2 e}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{2j}}{\underline{\gamma}_{2j}}\right) = \frac{\underline{a}_2}{(\underline{a}_1\underline{a}_2-\overline{b}_1\overline{b}_2)e} \left(\sum\limits_{j = 1}^{n}\frac{\overline{c}_{1j}}{\underline{\gamma}_{1j}}+\frac{\overline{b}_1}{\underline{a}_2}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{2j}}{\underline{\gamma}_{2j}}\right) = B_1, $
    $ \overline{x}_2 \le1\Bigg/\left(1-\frac{\overline{b}_1\overline{b}_2}{\underline{a}_1\underline{a}_2}\right)\times\left(\frac{1}{\underline{a}_2e}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{2j}}{\underline{r}_{2j}}+\frac{\overline{b}_2}{\underline{a}_1\underline{a}_2 e}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{1j}}{\underline{\gamma}_{1j}}\right) = \frac{\underline{a}_1}{(\underline{a}_1\underline{a}_2-\overline{b}_1\overline{b}_2)e} \left(\sum\limits_{j = 1}^{n}\frac{\overline{c}_{2j}}{\underline{\gamma}_{2j}}+\frac{\overline{b}_2}{\underline{a}_1}\sum\limits_{j = 1}^{n}\frac{\overline{c}_{1j}}{\underline{\gamma}_{1j}}\right) = B_2 . $

    Note that $ 1-\lambda a_i(k) > 0 $ for all $ k \in \mathbb{Z} $ and $ i = 1, 2 $. Multiplying both sides of the two equation of (2.1) by $ \prod_{r = 0}^{k}1/(1-\lambda a_1(r)) $ and $ \prod_{r = 0}^{k}1/(1-\lambda a_2(r)) $ respectively, we have

    $ x1(k+1)kr=011λa1(r)x1(k)k1r=011λa1(r)λb1(k)x2(k)kr=011λa1(r)=λnj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k))kr=011λa1(r),
    $
    (2.7)

    and

    $ x2(k+1)kr=011λa2(r)x2(k)k1r=011λa2(r)λb2(k)x1(k)kr=011λa2(r)=λnj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k))kr=011λa2(r).
    $
    (2.8)

    Choosing natural numbers $ k_1 $ and $ k_2 $ such that

    $ \overline{\tau}_{1} \le k_1 \le \overline{\tau}_{1} + \omega - 1 \quad\text{and}\quad x_1(k_1) = \underline{x}_1, $
    $ \overline{\tau}_{2} \le k_2 \le \overline{\tau}_{2} + \omega - 1 \quad\text{and}\quad x_2(k_2) = \underline{x}_2. $

    Summing both sides of (2.7) and (2.8) over $ k $ ranging from $ k_1 $ to $ k_1+\omega-1 $ and $ k_2 $ to $ k_2+\omega-1 $ respectively, by using $ x_i(k_i+\omega) = x_i(k_i) = \underline{x}_i $, we obtain

    $ x_1k11r=011λa1(r)(k1+ω1r=k111λa1(r)1)                =λk1+ω1s=k1((b1(s)x2(s)+nj=1c1j(s)x1(sτ1j(s))eγ1j(s)x1(sτ1j(s)))sr=011λa1(r)),
    $

    and

    $ x_2k21r=011λa2(r)(k2+ω1r=k211λa2(r)1)                =λk2+ω1s=k2((b2(s)x1(s)+nj=1c2j(s)x2(sτ2j(s))eγ2j(s)x2(sτ2j(s)))sr=011λa2(r)).
    $

    Note that $ a_i $ $ (i = 1, 2) $ is positive $ \omega $-periodic. It follws that

    $ ki+ω1r=ki(1λai(r))=ω1r=0(1λai(r)).
    $
    (2.9)

    Hence, we obtain

    $ x_1=λk1+ω1r=0(1λa1(r))1ω1r=0(1λa1(r))(k1+ω1s=k1(b1(s)x2(s)+nj=1c1j(s)x1(sτ1j(s))eγ1j(s)x1(sτ1j(s)))sr=011λa1(r))=λ1ω1r=0(1λa1(r))k1+ω1s=k1((b1(s)x2(s)+nj=1c1j(s)x1(sτ1j(s))eγ1j(s)x1(sτ1j(s)))k1+ω1r=s+1(1λa1(r))),
    $
    (2.10)

    and

    $ x_2=λ1ω1r=0(1λa2(r))k2+ω1s=k2((b2(s)x1(s)+nj=1c2j(s)x1(sτ2j(s))eγ2j(s)x1(sτ2j(s)))k1+ω1r=s+1(1λa2(r))).
    $
    (2.11)

    Recall that $ \overline{\gamma}_i = \max_{1 \le j \le n}\{\max_{1\le k\le\omega-1}\gamma_{ij}(k)\} $ for $ i = 1, 2 $. We define $ f_1(u) = ue^{-\overline{\gamma}_1u} $ and $ f_2(u) = ue^{-\overline{\gamma}_2u} $ for $ u\ge 0. $ Since $ \underline{x}_i \le x_i(k) \le \overline{x}_i $ for all $ k \in \mathbb{Z}^+\! $, it turns out that

    $ x_i(s-\tau_{ij}(s))e^{-\gamma_{ij}(s)x_i(s-\tau_{ij}(s))} \ge \min\left\{f_i(\underline{x}_i), \, f_i(\overline{x}_i)\right\} \quad\text{for}\;\; s \ge \overline{\tau}_{ij} \quad\text{for}\;\;i = 1, 2. $

    Note that $ k_1 \ge \overline{\tau}_1 $. By using (2.3) and (2.10), we have

    $ x_1λmin{f1(x_1),f1(¯x1)}1ω1r=0(1λa1(r))k1+ω1s=k1(nj=1c1j(s)k1+ω1r=s+1(1λa1(r)))>λmin{f1(x_1),f1(¯x1)}1ω1r=0(1λa1(r))k1+ω1s=k1(γa1(s)k1+ω1r=s+1(1λa1(r)))=γmin{f1(x_1),f1(¯x1)}1ω1r=0(1λa1(r))k1+ω1s=k1(λa1(s)k1+ω1r=s+1(1λa1(r)))=γmin{f1(x_1),f1(¯x1)}1ω1r=0(1λa1(r))k1+ω1s=k1((1(1λa1(s)))k1+ω1r=s+1(1λa1(r)))=γmin{f1(x_1),f1(¯x1)}1ω1r=0(1λa1(r))k1+ω1s=k1(k1+ω1r=s+1(1λa1(r))k1+ω1r=s(1λa1(r)))=γmin{f1(x_1),f1(¯x1)}1ω1r=0(1λa1(r))(k1+ω1r=k1+ω(1λa1(r))k1+ω1r=k1(1λa1(r))).
    $

    Calculating by the same way, from (2.3) and (2.11), we obtain

    $ x_2=γmin{f2(x_2),f2(¯x2)}1ω1r=0(1λa2(r))(k2+ω1r=k2+ω(1λa2(r))k2+ω1r=k2(1λa2(r))).
    $

    Then, it follows from (2.9) that

    $ x_i>γmin{fi(x_i),fi(¯xi)}fori=1,2.
    $
    (2.12)

    It is natural to divide the argument into two cases: (ⅰ) $ f_i(\underline{x}_i) \le f_i(\overline{x}_i) $; (ⅱ) $ f_i(\underline{x}_i) > f_i(\overline{x}_i) $.

    Case (ⅰ): It follows from (2.12) that $ \underline{x}_i > \gamma\:\!f_i(\underline{x}_i) $. Specifically, we have

    $ \underline{x}_1 > \gamma\:\!f_1(\underline{x}_1) = \frac{\gamma\underline{x}_1}{e^{\overline{\gamma}_1}\underline{x}_1} \quad\text{and}\quad \underline{x}_2 > \gamma\:\!f_2(\underline{x}_2) = \frac{\gamma\underline{x}_2}{e^{\overline{\gamma}_2}\underline{x}_2}, $

    which imply that $ \underline{x}_1 > \ln\gamma/\overline{\gamma}_1 $ and $ \underline{x}_2 > \ln\gamma/\overline{\gamma}_2. $

    Case (ⅱ): Function $ f_i $ is unimodal and takes the only peak value at $ 1/\overline{\gamma}_i $. Also, $ f_i $ monotonically increases on $ \left[0, 1/\overline{\gamma}_i\right] $ and monotonically decreases on $ \left[1/\overline{\gamma}_i, \infty\right) $. If $ \overline{x}_i \le 1/1/\overline{\gamma}_i $, then we see that $ f_i(\underline{x}_i) \le f_i(\overline{x}_i) \le f_i(1/\overline{\gamma}_i) $, which is a contradiction. Hence, it follows that $ \overline{x}_i > 1/\overline{\gamma}_i $. Note that $ \overline{x}_i \le B_i $. From (2.12), we obtain

    $ \underline{x}_1 > \gamma f_1(\overline{x}_1) \ge \gamma f_1(B_1) = \gamma B_1e^{-\overline{\gamma}_1B_1} $

    and

    $ \underline{x}_2 > \gamma f_2(\overline{x}_2) \ge \gamma f_2(B_2) = \gamma B_2e^{-\overline{\gamma}_2B_2}. $

    Thus, we estimate

    $ \underline{x}_1 > \min\left\{\frac{\ln\gamma}{\overline{\gamma}_1}, \;\gamma B_1 {e^{-\overline{\gamma}_1B_1}_1}\right\} \ge A_1 $

    and

    $ \underline{x}_2 > \min\left\{\frac{\ln\gamma}{\overline{\gamma}_2}, \;\gamma B_2 {e^{-\overline{\gamma}_2B_2}_2}\right\} \ge A_2. $

    Now, it can be concluded that each positive $ \omega $-periodic solution $ x = (x_1, x_2)^{T} $ of (2.1) satisfies

    $ A_1 < \underline{x}_1 \le x_1(k) \le \overline{x}_1 \le B_1 $

    and

    $ A_2 < \underline{x}_2 \le x_2(k) \le \overline{x}_1 \le B_2 $

    for $ k \in \mathbb{Z}^+\! $. The proof is complete.

    Suppose that $ X $ is a Banach space and $ L\!: {\rm{Dom}}\ L \subset X \to X $ is a linear operator. The operator $ L $ is called a Fredholm operator of index zero if

    $ ({\rm{i}}) $ $ {\rm{dim}}\ {\rm{Ker}}\ L = {\rm{codim}}\ {\rm{Im}}\ L < +\infty, $

    $ ({\rm{ii}}) $ $ {\rm{Im}}\ L $ is closed in $ X. $

    If $ L $ is a Fredholm operator of index zero and $ P $, $ Q\!: X \to X $ are continuous projectors satisfying

    $ Im P=Ker LandKer Q=Im L=Im (IQ),
    $

    where $ I $ is the identity operator from $ X $ to $ X $, then the restriction $ L_P\!: {\rm{Dom}}\ L\cap{\rm{Ker}}\ P \to {\rm{Im}}\ L $ is invertible and has the inverse $ K_P\!: {\rm{Im}}\ L \to {\rm{Dom}}\ L\cap{\rm{Ker}}\ P $.

    Let $ N\!: X \to X $ be a continuous operator and $ \Omega $ an open bounded subset of $ X $. The operator $ N $ is $ L $-compact on $ \overline{\Omega} $ if

    $ ({\rm{i}}) $ $ QN(\overline{\Omega}) $ is bounded,

    $ ({\rm{ii}}) $ $ K_P(I-Q)N\!: \overline{\Omega} \to X $ is compact.

    We present the continuation theorem of coincidence degree theory (for example, see [29,30]) as follows:

    Lemma 2.2. Let $ L\!: {\rm{Dom}}\ L \subset X \to X $ be a Fredholm operator of index zero and let $ N\!: X \to X $ be $ L $-compact on $ \overline{\Omega}. $ Suppose that

    $ \rm (i) $ every solution $ x $ of $ Lx = \lambda Nx $ satisfies $ x \not\in \partial\Omega $ for $ \lambda \in (0, 1) $;

    $ \rm (ii) $ $ QNx \not = 0 $ for $ x \in \partial\Omega\cap{\rm{Ker}}\ L $ and

    $ \deg\big\{QN, \, \Omega\cap{\rm{Ker}}\ L, \, 0\big\} \not = 0. $

    Then, $ Lx = Nx $ has at least one solution in $ X \cap\, \overline\Omega. $

    Theorem 3.1. Suppose that (2.2) and (2.3) hold. If

    $ ωk=1nj=1(cij(k)ωk=1(ai(k)bi(k))>1fori=1,2,
    $
    (3.1)

    then system (1.1) has at least one positive $ \omega $-periodic solution $ x^* $.

    Proof. Let $ X $ be a set of $ \omega $-periodic functions $ x = (x_1, x_2)^T $ defined on $ \mathbb{Z}^+ $ and denote the maximum norm $ ||x|| = \max\{\max_{1 \le k \le \omega}|x_1(k)|, \max_{1 \le k \le \omega}|x_2(k)|\} $ for any $ x \in X $. Then, $ X $ is a Banach space. Moreover, we define

    $ Lx = \left((Lx)1(k)(Lx)2(k)
    \right) = \left(x1(k+1)x1(k)x2(k+1)x2(k)
    \right), $

    and

    $ Nx = \left((Nx)1(k)(Nx)2(k)
    \right) = \left( a1(k)x1(k)+b1(k)x2(k)+nj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k)) a2(k)x2(k)+b2(k)x1(k)+nj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k))
    \right). $

    It is not difficult to show that $ L $ is a linear operator from $ X $ to $ X $ and $ N $ is a continuous operator from $ X $ to $ X $.

    From the definition of $ L $, we see that

    $                 Ker L={xX:(x1(k),x2(k))T(c1,c2)TR2}and                Im L={xX:ωk=1x1(k)=ωk=1x2(k)=0}.
    $

    It turns out that $ {\rm{dim}}\ {\rm{Ker}}\ L = 2 = {\rm{codim}}\ {\rm{Im}}\ L < +\infty $ and $ {\rm{Im}}\ L $ is closed in $ X $. Thus, $ L $ is a Fredholm operator of index zero.

    We define $ P\!: X \to X $ by

    $ Px = \left((Px)1(Px)2
    \right) = \left(1ωωk=1x1(k)1ωωk=1x2(k)
    \right) $

    and let $ Q = P $. Then, $ P $ and $ Q $ are two continuous projectors such that $ {\rm{Im}}\ P = {\rm{Ker}}\ L $ and $ {\rm{Ker}}\ Q = {\rm{Im}}\ L = {\rm{Im}}\ (I-Q) $.

    It can be shown that the restriction $ L_P\!\!: {\rm{Dom}}\ L\cap{\rm{Ker}}\ P \to {\rm{Im}}\ L $ has the inverse $ K_P\!\!: {\rm{Im}}\ L \to {\rm{Dom}}\ L\cap{\rm{Ker}}\ P $ given by

    $ K_Px = \left((KPx)1(KPx)2
    \right) = \left(k1s=0x1(s)1ωω1s=0sr=0x1(r)k1s=0x2(s)1ωω1s=0sr=0x2(r)
    \right) $

    for $ x = (x_1, x_2)^T \in {\rm{Im}}\ L $. In fact, for $ i = 1, 2 $, since

    $ (KPx)i(k+ω)(KPx)i(k)=k+ω1s=0xi(s)1ωω1s=0sr=0xi(r)k1s=0xi(s)+1ωω1s=0sr=0xi(r)=k+ω1s=kxi(s)=ω1s=0xi(s)=0
    $

    for all $ k \in \mathbb{Z}^+\! $, we see that $ K_P x\in {\rm{Dom}}\ L $. Moreover, it follows that

    $ (PKPx)i=1ωωk=1KPxi(k)=1ωωk=1(k1s=0xi(s)1ωω1s=0sr=0xi(r))=1ω(ωk=1k1s=0xi(s)ωωω1s=0sr=0xi(r))=1ω(ωk=1k1s=0xi(s)ωk=1k1r=0xi(r))=0.
    $

    Hence, $ K_Px \in {\rm{Ker}}\ P $.

    For any $ x \in {\rm{Im}}\ L $, one has

    $ (LPKPx)i=(KPx)i(k+1)(KPx)i(k)=ks=0xi(s)1ωω1s=0sr=0xi(r)k1s=0xi(s)+1ωω1s=0sr=0xi(r)=xi(k)=(Ix)i.
    $

    Furthermore, for any $ x \in {\rm{Dom}}\ L\cap{\rm{Ker}}\ P $, one has

    $ (KPLPx)i=KP(xi(k+1)xi(k))=k1s=0(xi(s+1)xi(s))1ωω1s=0sr=0(xi(r+1)xi(r))=xi(k)xi(0)1ωω1s=0(xi(s+1)xi(0))=xi(k)1ωωs=1xi(s).
    $

    Since $ x \in {\rm{Ker}}\ P = {\rm{Ker}}\ Q = {\rm{Im}}\ L $, we see that $ \sum_{s = 1}^{\omega}x_i(s) = 0 $. Hence, $ (K_PL_Px)_i = x_i(k) = (Ix)_i $. We therefore conclude that $ K_P = L_P^{-1} $.

    We define

    $ \Omega = \left\{x = (x_1, x_2)^T\!\!\in X\!: A_1 < x_1(k) < B_1+1, \, \, \, A_2 < x_2(k) < B_2+1\right\} $

    and prove that the operator $ N $ defined above is $ L $-compact on $ \overline{\Omega} $. We first check that $ QN(\overline{\Omega}) $ is bounded.

    Since $ x_1(k) < B_1+1 $ and $ x_2(k) < B_2+1 $ for $ k \in \mathbb{Z}^+ $, we obtain

    $ (QNx)1=1ωωk=1( a1(k)x1(k)+b1(k)x2(k)+nj=1c1j(k)x1(kτ1j(k))eγ1j(k)x1(kτ1j(k)))<1ωωk=1(¯b1(B2+1)+1enj=1¯c1jγ_1j)=(¯b1(B2+1)+1enj=1¯c1jγ_1j),
    $

    and

    $ (QNx)2=1ωωk=1( a2(k)x2(k)+b2(k)x1(k)+nj=1c2j(k)x2(kτ2j(k))eγ2j(k)x2(kτ2j(k)))<1ωωk=1(¯b2(B1+1)+1enj=1¯c2jγ_2j)=(¯b2(B1+1)+1enj=1¯c2jγ_2j)
    $

    for $ x\in \overline{\Omega} $. Hence, the operator $ QN $ is bounded on $ \overline{\Omega} $.

    We next show that $ K_P(I-Q)N\!: \overline{\Omega} \to X $ is compact. From the definitions of $ N $, $ QN $ and $ K_p $, we obtain

    $ (Kp(IQ)Nx)1=k1s=0( a1(s)x1(s)+b1(s)x2(s))+k1s=0(nj=1c1j(s)x1(sτ1j(s))eγ1j(s)x1(sτ1j(s)))(kωω+12ω)ωs=1( a1(s)x1(s)+b1(s)x2(s))(kωω+12ω)ωs=1(nj=1c1j(s)x1(sτ1j(s))eγ1j(s)x1(sτ1j(s)))1ωω1s=0sr=0( a1(r)x1(r)+b1(r)x2(r))1ωω1s=0sr=0(nj=1c1j(r)x1(rτ1j(r))eγ1j(r)x1(rτ1j(r))).
    $

    Meanwhile, we have

    $ (Kp(IQ)Nx)2=k1s=0( a2(s)x2(s)+b2(s)x1(s))+k1s=0(nj=1c2j(s)x2(sτ2j(s))eγ2j(s)x2(sτ2j(s)))(kωω+12ω)ωs=1( a2(s)x2(s)+b2(s)x1(s))(kωω+12ω)ωs=1(nj=1c2j(s)x2(sτ2j(s))eγ2j(s)x2(sτ2j(s)))1ωω1s=0sr=0( a2(r)x2(r)+b2(r)x1(r))1ωω1s=0sr=0(nj=1c2j(r)x2(rτ2j(r))eγ2j(r)x2(rτ2j(r)))
    $

    for $ x \in X $. For any bounded subset $ E\subset \overline{\Omega}\subset X $, it is a subspace of a finite dimensional Banach space $ X $. Hence, $ E $ is closed, and therefore $ E $ is compact. By a straightforward calculation, it can be proven that $ K_P(I-Q)N(E) $ is relatively compact.

    An arbitrary $ \omega $-periodic solution of (2.1) corresponds one-to-one to a solution of $ Lx = \lambda Nx $ with parameter $ \lambda \in (0, 1) $. Proposition 2.1 displays that each positive solution $ x = (x_1, x_2)^T $ of $ Lx = \lambda Nx $ satisfies that $ A_1 < x_1 \le B_1 $ and $ A_2 < x_2 \le B_2 $. It is obvious that if $ y = (y_1, y_2)^T\in\partial\Omega $, then $ y $ is never a solution of $ Lx = \lambda Nx $. Hence, the condition (i) of Lemma 2.2 holds. If $ x = (x_1, x_2)^T \in \partial\Omega\cap{\rm{Ker}}\ L $, then there are four cases to be considered: (1) $ x = (A_1, x_2)^T $, (2) $ x = (B_1+1, x_2)^T $, (3) $ x = (x_1, A_2)^T $, (4) $ x = (x_1, B_2+1)^T $.

    Case (1): It follows from $ x_1 \equiv A_1 $ that

    $ (QNx)1=1ωωk=1(A1a1(k)+b1(k)x2(k)+nj=1cij(k)A1eγ1j(k)A1)A1ωωk=1(a1(k)+1eA1¯γ1nj=1cij(k))>A1ωωk=1(a1(k)+γeA1¯γ1a1(k))=A1ω(γeA1¯γ11)ωk=1a1(k).
    $

    Since $ A_1 \le \ln\gamma/\overline{\gamma}_1 $, we see that $ e^{A_1\overline{\gamma}_1}\le\gamma $. Hence, $ (QNx)_{1} > 0 $.

    Case (2): Because of $ x_1 \equiv B_1 + 1 $, we have

    $ (QNx)1=1ωωk=1((B1+1)a1(k)+b1(k)x2(k)+nj=1cij(k)(B1+1)eγ1j(k)(B1+1))1ωωk=1(a_1(B1+1)+¯b1B2+nj=1¯c1jeγ_1j)=a_1(B1+1)+¯b1B2+1enj=1¯c1jγ_1j=a_1a_1a_2(a_1a_2¯b1¯b2)e(nj=1¯c1jγ_1j+¯b1a_2nj=1¯c2jγ_2j)+a_1¯b1(a_1a_2¯b1¯b2)e(nj=1¯c2jγ_2j+¯b2a_1nj=1¯c1jγ_1j)+1enj=1¯c1jγ_1j=a_1<0.
    $

    Similarly, we can show that $ (QNx)_{2} > 0 $ in Case (3) and $ (QNx)_{2} < 0 $ in Case (4). We therefore conclude that $ QNx = ((QNx)_{1}, (QNx)_{2})^T\not = 0 $ for each $ x\in \partial\Omega\cap{\rm{Ker}}\ L $.

    Define a continuous operator $ H\!: \Omega\cap{\rm{Ker}}\ L\times[0, 1] \to X $ by

    $ H(x, \mu) = \left(H1(x,μ)H2(x,μ)
    \right) = \left(μ(Ix1A1+B12)+(1μ)(QNx)1μ(Ix2A2+B22)+(1μ)(QNx)2
    \right). $

    Recall that the elements of $ \partial\Omega\cap{\rm{Ker}}\ L $ are vectors satisfying $ x = (A_1, x_2)^T $, $ y = (B_1+1, y_2)^T $, $ z = (z_1, A_2)^T $ and $ w = (w_1, B_2+1)^T $. For $ x = (A_1, x_2)^T $, we can check that

    $ H_1(x, \mu) = -\, \mu\left(A_1-\frac{A_1+B_1}{2}\right) + (1-\mu)(QNx)_1 = -\, \mu\left(\frac{A_1-B_1}{2}\right) + (1-\mu)(QNx)_1 > 0. $

    Moreover,

    $ H_1(y, \mu) = -\, \mu\left(B_1+1-\frac{A_1+B_1}{2}\right) + (1-\mu)(QNy)_1 = -\, \mu\left(\frac{A_1-B_1+2}{2}\right) + (1-\mu)(QNy)_1 < 0 $

    for $ y = (B_1+1, y_2)^T $. Hence, $ H(x, \mu) \not = 0 $ and $ H(y, \mu) \not = 0 $. By similar computations, we have $ H(z, \mu) \not = 0 $ and $ H(w, \mu) \not = 0 $. Therefore, we see that $ H(x, \mu) \not = 0 $ for $ (x, \mu) \in \partial\Omega\cap{\rm{Ker}}\ L\times[0, 1] $. Thus, $ H $ is a homotopic mapping. Using the homotopy invariance, we have

    $ \deg\big\{QN, \, \Omega\cap{\rm{Ker}}\ L, \, 0\big\} = \deg\left\{ \left(Ix1+A1+B12Ix2+A2+B22
    \right), \, \Omega\cap{\rm{Ker}}\ L, \, 0\right\} = 1 \not = 0. $

    Hence, the condition (ⅱ) of Lemma 2.2 holds. Therefore, the equation $ Lx = Nx $ has at least one solution located in $ X \cap\, \overline\Omega $. Thus, from Lemma 2.2, we obtain that there is a positive $ \omega $-periodic solution of system (1.1). The proof is now complete.

    Consider the delay difference system

    $ {Δx1(k)=a1(k)x1(k)+b1(k)x2(k)+c11(k)x1(k1)eγ11(k)x1(k1)+c12(k)x1(k1)eγ12(k)x1(k1),Δx2(k)=a2(k)x2(k)+b2(k)x1(k)+c21(k)x2(k4)eγ21(k)x2(k4)+c22(k)x2(k4)eγ22(k)x2(k4).
    $

    Here, we assume that

    $ a1(k)={1/2ifk=1,2/5ifk=2,1/4ifk=3,1/5ifk=4,a2(k)={3/4ifk=1,3/5ifk=2,1/2ifk=3,5/6ifk=4,
    $
    $ b1(k)={1/5ifk=1,1/4ifk=2,1/7ifk=3,1/6ifk=4,b2(k)={1/20ifk=1,1/12ifk=2,1/24ifk=3,1/18ifk=4,
    $
    $ c11(k)={1/2ifk=1,3/4ifk=2,1/3ifk=3,2/3ifk=4,c12(k)={5/6ifk=1,4/5ifk=2,2/5ifk=3,1/6ifk=4,c21(k)={7/8ifk=1,4/5ifk=2,2/3ifk=3,6/7ifk=4,c22(k)={1/4ifk=1,1/2ifk=2,1/10ifk=3,20/21ifk=4,
    $
    $ γ11(k)={3ifk=1,1ifk=2,1.5ifk=3,2ifk=4,γ12(k)={10ifk=1,4ifk=2,3ifk=3,5ifk=4,γ21(k)={5ifk=1,2ifk=2,1ifk=3,2.5ifk=4,γ22(k)={2ifk=1,1.5ifk=2,8ifk=3,3ifk=4.
    $

    In addition, $ a_i(k) = a_i(k+4) $, $ b_i(k) = b_i(k+4) $, $ c_{ij}(k) = c_{ij}(k+4) $ and $ \gamma_{ij}(k) = \gamma_{ij}(k+4) $ for $ k \in \mathbb{Z} $, $ i = 1, 2 $ and $ j = 1, 2 $. Theorem 3.1 shows that the system has at least one positive $ 4 $-periodic solution.

    It is clear that $ \omega = 4 $, $ a_i $, $ b_i $, $ c_{ij} $, $ \gamma_{ij} $ and $ \tau_{ij} $ $ (1 \le i \le 2, \, 1 \le j \le 2) $ are $ \omega $-periodic discrete functions satisfying $ 0 < a_i(k) < 1 $, $ 0 < b_i(k) < 1 $, $ c_{ij}(k) > 0 $ and $ \gamma_{ij}(k) > 0 $ for $ k\in\mathbb{Z}^+ $. Since $ \underline{a}_1 = 1/5 $, $ \underline{a}_1 = 1/2 $, $ \overline{b}_1 = 1/4 $ and $ \overline{b}_2 = 1/12 $, we see that

    $ \underline{a}_1\underline{a}_1-\overline{b}_1\overline{b}_2 = \frac15\times\frac12-\frac14\times\frac{1}{12} = \frac{19}{240} > 0. $

    Hence, condition (2.2) is satisfied. Let $ \gamma = 11/10 > 1 $. Then, we can easily check condition (2.3)

    $ (c_{11}(k)+c_{12}(k)) > \gamma a_1(k) \quad\text{and}\quad (c_{21}(k)+c_{22}(k)) > \gamma a_2(k) $

    for $ k = 1, 2, 3, 4 $. Moreover, it can be calculated that

    $ \frac{\sum\limits_{k = 1}^4 (c_{11}(k)+c_{12}(k))}{\sum\limits_{k = 1}^4(a_1(k)-b_1(k))} = \frac{1869}{248} > 1 \quad\text{and}\quad \frac{\sum\limits_{k = 1}^4 (c_{21}(k)+c_{22}(k))}{\sum\limits_{k = 1}^4(a_2(k)-b_2(k))} = \frac{22110}{6181} > 1. $

    Namely, condition (3.1) holds. Therefore, from Theorem 3.1, it turns out that the system has at least one positive $ 4 $-periodic solution.

    Figure 1.  Graphs of three arbitrary positive solutions of system. The numerical simulations show that there is a positive $4$-periodic solution and this positive $4$-periodic solution is locally asymptotically stable.

    A discrete Nicholson system that describles the dynamics of two fly species is studied in this paper. The system considers the mutualism effect between fly species. Continuation theorem of coincidence degree theory is used effectively to seek sufficient conditions for the existence of a positive periodic solution. It is easy to check whether these sufficient conditions hold or not by using coefficients. The positive periodic solution indicates a cycle change in the adult fly populations. From the obtained result, we found that mutualistic interactions between species plays an important role in adult flies populations. But the increase in the flies populations resulting from maximum cumulative mutualism effect only should be less than the death of the flies populations because there is the natural generation of flies populations. Moreover, to avoid species extinction and maintain the coexistence of two fly species in a mutually beneficial environment, we see that (ⅰ) the adult fly population produced by maximum daily spawning should exceed a constant multiple of dead fly population for each fly species, and the multiple is greater than constant 1 and (ⅱ) the total population growth must be maintained more than the population loss for each fly species. In fact, the third sufficient condition (3.1) of Theorem 3.1 can be rewritten into the form

    $ \sum\limits_{k = 1}^{\omega}\left(\sum\limits_{j = 1}^{n}(c_{1j}(k)+b_1(k)\right) > \sum\limits_{k = 1}^{\omega}a_1(k)\quad\text{and}\quad \sum\limits_{k = 1}^{\omega}\left(\sum\limits_{j = 1}^{n}(c_{2j}(k)+b_2(k)\right) > \sum\limits_{k = 1}^{\omega}a_2(k). $

    The left side of each inequality represents the production of one fly species in a period under the mutualism influence of another, and the right side represents the death of that species in a period. Hence, statement (ⅱ).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The paper is supported by College Students Innovations Special Project funded by Northeast Forestry University of China (Grant No. 202210225156) and Fundamental Research Funds for the Central Universities of China (Grant No. 41422003).

    The authors declare that there is no conflicts of interest.



    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] Buchanan TA, Xiang AH (2005) Gestational diabetes mellitus. J Clin Invest 115: 485–491. doi: 10.1172/JCI200524531
    [2] Konstanze M, Holger S, Mathias F (2012) Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin Endocrinol 76: 2–11. doi: 10.1111/j.1365-2265.2011.04234.x
    [3] Bellamy L, Casas JP, Hingorani AD, et al. (2009) Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373: 1773–1779. doi: 10.1016/S0140-6736(09)60731-5
    [4] Bener A, Saleh NM, Al-Hamaq A (2011) Prevalence of gestational diabetes and associated maternal and neonatal complications in a fast-developing community: global comparisons. Int J Women's Health 3: 367–373.
    [5] Reece EA, Leguizamón G, Wiznitzer A (2009) Gestational diabetes: the need for a common ground. Lancet 373: 1789–1797. doi: 10.1016/S0140-6736(09)60515-8
    [6] Hod M, Kapur A, Sacks DA, et al. (2015) The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int J Gynecol Obstet 131: S173–S211. doi: 10.1016/S0020-7292(15)30033-3
    [7] Craig WJ (2010) Nutrition Concerns and Health Effects of Vegetarian Diets. Nutr Clin Pract 25: 613–620. doi: 10.1177/0884533610385707
    [8] De Silva DD, Rapior S, Hyde KD, et al. (2012) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers 56: 1–29. doi: 10.1007/s13225-012-0187-4
    [9] Martel J, Ojcius DM, Chang CJ, et al. (2017) Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol 13: 149–160. doi: 10.1038/nrendo.2016.142
    [10] Royse DJ, Singh M (2014) A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina, 1–6.
    [11] Valverde ME, Hernndez-Prez T, Paredes-Lopez O (2015) Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int J Microbiol 2015: 376387.
    [12] Horowitz S (2011) Medicinal Mushrooms: Research Support for Modern Applications of Traditional Uses. Altern Complem Ther 17: 323–329. doi: 10.1089/act.2011.17602
    [13] Mohamed M, Nassef D, Waly E, et al. (2012) Earliness, Biological efficiency and basidiocarp yield of Pleurotus ostreatus and P. columbinus oyster mushrooms in response to different sole and mixed substrates. Assiut J Agric Sci 43: 91–114.
    [14] Gargano ML, van Griensven LJ, Isikhuemhen OS, et al. (2017) Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosys 151: 548–565. doi: 10.1080/11263504.2017.1301590
    [15] Deepalakshmi K, Mirunalini S (2011) Therapeutic properties and current medical usage of medicinal mushroom: Ganoderma lucidum. Inter J Pharm Sci Res 2: 1922–1929.
    [16] Klupp NL, Kiat H, Bensoussan A, et al. (2016) A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep 6: 29540. doi: 10.1038/srep29540
    [17] Holliday JC, Cleaver MP (2008) Medicinal Value of the Caterpillar Fungi Species of the Genus Cordyceps (Fr.) Link (Ascomycetes). A Review. Int J Med Mushrooms 10: 219–234. doi: 10.1615/IntJMedMushr.v10.i3.30
    [18] Firenzuoli F, Gori L, Lombardo G (2008) The Medicinal Mushroom Agaricus blazei Murrill: Review of Literature and Pharmaco-Toxicological Problems. Evid Based Complement Alternat Med 5: 3–15. doi: 10.1093/ecam/nem007
    [19] Vitak T, Yurkiv B, Wasser S, et al. (2017) Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes 8: 187–201. doi: 10.4239/wjd.v8.i5.187
    [20] Lei H, Guo S, Han J, et al. (2012) Hypoglycemic and hypolipidemic activities of MT-α-glucan and its effect on immune function of diabetic mice. Carbohydr Polym 89: 245–250. doi: 10.1016/j.carbpol.2012.03.003
    [21] Khan MA, Tania M (2012) Nutritional and medicinal importance of Pleurotus mushrooms: An overview. Food Rev Int 28: 313–329. doi: 10.1080/87559129.2011.637267
    [22] Vitak TY, Wasser SP, Nevo E, et al. (2015) Structural Changes of Erythrocyte Surface Glycoconjugates after Treatment with Medicinal Mushrooms. Int J Med Mushrooms 17: 867–878. doi: 10.1615/IntJMedMushrooms.v17.i9.70
    [23] Maschio BH, Gentil BC, Caetano ELA, et al. (2017) Characterization of the Effects of the Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), on Severe Gestational Diabetes Mellitus in Rats. Int J Med Mushrooms 19: 991–1000. doi: 10.1615/IntJMedMushrooms.2017024498
    [24] Chen YH, Lee CH, Hsu TH, et al. (2015) Submerged-Culture Mycelia and Broth of the Maitake Medicinal Mushroom Grifola frondosa (Higher Basidiomycetes) Alleviate Type 2 Diabetes-Induced Alterations in Immunocytic Function. Int J Med Mushrooms 17: 541–556. doi: 10.1615/IntJMedMushrooms.v17.i6.50
    [25] Rony KA, Ajith TA, Janardhanan KK (2015) Hypoglycemic and Hypolipidemic Effects of the Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) in Streptozotocin-Induced Diabetic Rats. Int J Med Mushrooms 17: 521–531. doi: 10.1615/IntJMedMushrooms.v17.i6.30
    [26] Yurkiv B, Wasser SP, Nevo E, et al. (2015) The Effect of Agaricus brasiliensis and Ganoderma lucidum Medicinal Mushroom Administration on the L-arginine/Nitric Oxide System and Rat Leukocyte Apoptosis in Experimental Type 1 Diabetes Mellitus. Int J Med Mushrooms 17: 339–350. doi: 10.1615/IntJMedMushrooms.v17.i4.30
    [27] Jayasuriya WJ, Suresh TS, Abeytunga D, et al. (2012) Oral hypoglycemic activity of culinary-medicinal mushrooms Pleurotus ostreatus and P. cystidiosus (higher basidiomycetes) in normal and alloxan-induced diabetic Wistar rats. Int J Med Mushrooms 14: 347–355.
    [28] Ganeshpurkar A, Kohli S, Rai G (2014) Antidiabetic potential of polysaccharides from the white oyster culinary-medicinal mushroom Pleurotus florida (higher Basidiomycetes). Int J Med Mushrooms 16: 207–217. doi: 10.1615/IntJMedMushr.v16.i3.10
    [29] Lei H, Guo S, Han J, et al. (2012) Hypoglycemic and hypolipidemic activities of MT-alpha-glucan and its effect on immune function of diabetic mice. Carbohydr Polym 89: 245–250. doi: 10.1016/j.carbpol.2012.03.003
    [30] Zhang Y, Hu T, Zhou H, et al. (2016) Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. Int J Biol Macromol 83: 126–132. doi: 10.1016/j.ijbiomac.2015.11.045
    [31] Zhou S, Liu Y, Yang Y, et al. (2015) Hypoglycemic Activity of Polysaccharide from Fruiting Bodies of the Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Higher Basidiomycetes), on Mice Induced by Alloxan and Its Potential Mechanism. Int J Med Mushrooms 17: 957–964. doi: 10.1615/IntJMedMushrooms.v17.i10.50
    [32] Jeong SC, Jeong YT, Yang BK, et al. (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30: 49–56. doi: 10.1016/j.nutres.2009.12.003
    [33] Kiho T, Sobue S, Ukai S (1994) Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of Agrocybe cylindracea. Carbohydr Res 251: 81–87. doi: 10.1016/0008-6215(94)84277-9
    [34] Gray AM, Flatt PR (1998) Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J Endocrinol 157: 259–266. doi: 10.1677/joe.0.1570259
    [35] Wisitrassameewong K, Karunarathna SC, Thongklang N, et al. (2012) Agaricus subrufescens: A review. Saudi J Biol Sci 19: 131–146. doi: 10.1016/j.sjbs.2012.01.003
    [36] Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97: 12–24. doi: 10.1080/15572536.2006.11832834
    [37] Niwa A, Tajiri T, Higashino H (2011) Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 48: 194–202. doi: 10.3164/jcbn.10-78
    [38] Vincent HK, Innes KE, Vincent KR (2007) Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab 9: 813–839. doi: 10.1111/j.1463-1326.2007.00692.x
    [39] Hu XY, Liu CG, Wang X, et al. (2017) Hpyerglycemic and anti-diabetic nephritis activities of polysaccharides separated from Auricularia auricular in diet-streptozotocin-induced diabetic rats. Exp Ther Med 13: 352–358. doi: 10.3892/etm.2016.3943
    [40] Ding ZY, Lu YJ, Lu ZX, et al. (2010) Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem 121: 39–43. doi: 10.1016/j.foodchem.2009.12.001
    [41] Lv YT, Han LN, Yuan C, et al. (2009) Comparison of Hypoglycemic Activity of Trace Elements Absorbed in Fermented Mushroom of Coprinus comatus. Biol Trace Elem Res 131: 177–185. doi: 10.1007/s12011-009-8352-7
    [42] Guo JY, Han CC, Liu YM (2010) A Contemporary Treatment Approach to Both Diabetes and Depression by Cordyceps sinensis, Rich in Vanadium. Evid Based Complement Alternat Med: 7: 387–389. doi: 10.1093/ecam/nep201
    [43] Nie S, Cui SW, Xie MY, et al. (2013) Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioact Carbohydrates Dietary Fibre 1: 38–52. doi: 10.1016/j.bcdf.2012.12.002
    [44] Pan D, Zhang D, Wu JS, et al. (2013) Antidiabetic, Antihyperlipidemic and Antioxidant Activities of a Novel Proteoglycan from Ganoderma Lucidum Fruiting Bodies on db/db Mice and the Possible Mechanism. PLoS One 8: e68332. doi: 10.1371/journal.pone.0068332
    [45] Hong L, Xun M, Wutong W (2007) Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 59: 575–582. doi: 10.1211/jpp.59.4.0013
    [46] Chaiyasut C, Sivamaruthi BS (2017) Anti-hyperglycemic property of Hericium erinaceus – A mini review. Asian Pac J Trop Biomed 7: 1036–1040. doi: 10.1016/j.apjtb.2017.09.024
    [47] Liang B, Guo ZD, Xie F, et al. (2013) Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. BMC Complement Altern Med 13: 253. doi: 10.1186/1472-6882-13-253
    [48] Geng Y, Lu ZM, Huang W, et al. (2013) Bioassay-Guided Isolation of DPP-4 Inhibitory Fractions from Extracts of Submerged Cultured of Inonotus obliquus. Molecules 18: 1150–1161. doi: 10.3390/molecules18011150
    [49] Wang J, Wang C, Li S, et al. (2017) Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother 95: 1669–1677. doi: 10.1016/j.biopha.2017.09.104
    [50] Bisen P, Baghel RK, Sanodiya BS, et al. (2010) Lentinus edodes: A macrofungus with pharmacological activities. Curr Med Chem 17: 2419–2430. doi: 10.2174/092986710791698495
    [51] Wahab NAA, Abdullah N, Aminudin N (2014) Characterisation of Potential Antidiabetic-Related Proteins from Pleurotus pulmonarius (Fr.) Quél. (Grey Oyster Mushroom) by MALDI-TOF/TOF Mass Spectrometry. Biomed Res Int 2014: 131607.
    [52] Badole SL, Patel NM, Thakurdesai PA, et al. (2008) Interaction of Aqueous Extract of Pleurotus pulmonarius (Fr.) Quel-Champ. with Glyburide in Alloxan Induced Diabetic Mice. Evid Based Complement Alternat Med 5: 159–164.
    [53] Kiho T, Morimoto H, Kobayashi T, et al. (2000) Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Biosci Biotechnol Biochem 64: 417–419. doi: 10.1271/bbb.64.417
    [54] Kiho T, Kochi M, Usui S, et al. (2001) Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H). Biol Pharm Bull 24: 1400–1403. doi: 10.1248/bpb.24.1400
    [55] Cho EJ, Hwang HJ, Kim SW, et al. (2007) Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 75: 1257–1265. doi: 10.1007/s00253-007-0972-2
    [56] Fu M, Wang L, Wang XY, et al. (2018) Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos. Molecules 23: 1839. doi: 10.3390/molecules23081839
    [57] Esteban CI (2009) Medicinal interest of Poria cocos (Wolfiporia extensa). Rev Iberoam Micol 26: 103–107. doi: 10.1016/S1130-1406(09)70019-1
    [58] Li Y, Zhang J, Li T, et al. (2016) A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography. PLoS One 11: e0168998. doi: 10.1371/journal.pone.0168998
    [59] Shafrir E, Spielman S, Nachliel I, et al. (2001) Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev 17: 55–66. doi: 10.1002/1520-7560(2000)9999:9999<::AID-DMRR165>3.0.CO;2-J
    [60] Clark TA, Deniset JF, Heyliger CE, et al. (2014) Alternative therapies for diabetes and its cardiac complications: role of vanadium. Heart Fail Rev 19: 123–132. doi: 10.1007/s10741-013-9380-0
    [61] Gruzewska K, Michno A, Pawelczyk T, et al. (2014) Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol 65: 603–611.
    [62] Halberstam M, Cohen N, Shlimovich P, et al. (1996) Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 45: 659–666. doi: 10.2337/diab.45.5.659
    [63] Huang HY, Korivi M, Chaing YY, et al. (2012) Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats. Evid Based Complement Alternat Med 2012: 856381.
    [64] Huang HY, Korivi M, Yang HT, et al. (2014) Effect of Pleurotus tuber-regium polysaccharides supplementation on the progression of diabetes complications in obese-diabetic rats. Chin J Physiol 57: 198–208. doi: 10.4077/CJP.2014.BAC245
    [65] Kobayashi M, Kawashima H, Takemori K, et al. (2012) Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice. Biochem Biophys Res Commun 427: 299–304. doi: 10.1016/j.bbrc.2012.09.045
    [66] Laurino LF, Viroel FJM, Pickler TB, et al. (2017) Functional foods in gestational diabetes: Evaluation of the oral glucose tolerance test (OGTT) in pregnant rats treated with mushrooms. Reprod Toxicol 72: 36.
    [67] Jayasuriya WJ, Wanigatunge CA, Fernando GH, et al. (2015) Hypoglycaemic activity of culinary Pleurotus ostreatus and P. cystidiosus mushrooms in healthy volunteers and type 2 diabetic patients on diet control and the possible mechanisms of action. Phytother Res 29: 303–309.
    [68] Gao Y, Lan J, Dai X, et al. (2004) A Phase I/II Study of Ling Zhi Mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) Extract in Patients with Type II Diabetes Mellitus. Int J Med Mushrooms 6: 327-334.
    [69] Friedman M (2016) Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5: 80. doi: 10.3390/foods5040080
    [70] Lo HC, Wasser SP (2011) Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int J Med Mushrooms 13: 401–426. doi: 10.1615/IntJMedMushr.v13.i5.10
  • This article has been cited by:

    1. Jennifer L. Lemacks, Tammy Greer, Sermin Aras, Shantoni Holbrook, June Gipson, Multiphase optimization strategy to establish optimal delivery of nutrition-related services in healthcare settings: A step towards clinical trial, 2024, 146, 15517144, 107683, 10.1016/j.cct.2024.107683
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10735) PDF downloads(2753) Cited by(11)

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog