Loading [MathJax]/jax/output/SVG/jax.js
Editorial Special Issues

Beyond “#endpjparalysis”, tackling sedentary behaviour in health care

  • Reducing Sedentary Behaviour after hospitalization starts with reducing sedentary behaviour whilst in hospital. Although we have eradicated immobilisation as a therapeutic tool due to its potent detrimental effects, it is still in systemic use within health care systems and hospitals. Evidence shows that when in hospital, patients spend most of their time sedentary. In this editorial, we explore the determinants of, and a system-based approach to, reducing sedentary behaviour in health care.

    Citation: Sebastien FM Chastin, Juliet A Harvey, Philippa M Dall, Lianne McInally, Alexandra Mavroeidi, Dawn A Skelton. Beyond “#endpjparalysis”, tackling sedentary behaviour in health care[J]. AIMS Medical Science, 2019, 6(1): 67-75. doi: 10.3934/medsci.2019.1.67

    Related Papers:

    [1] Nina Huo, Bing Li, Yongkun Li . Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays. AIMS Mathematics, 2022, 7(3): 3653-3679. doi: 10.3934/math.2022202
    [2] Qinghua Zhou, Li Wan, Hongbo Fu, Qunjiao Zhang . Exponential stability of stochastic Hopfield neural network with mixed multiple delays. AIMS Mathematics, 2021, 6(4): 4142-4155. doi: 10.3934/math.2021245
    [3] Li Wan, Qinghua Zhou, Hongbo Fu, Qunjiao Zhang . Exponential stability of Hopfield neural networks of neutral type with multiple time-varying delays. AIMS Mathematics, 2021, 6(8): 8030-8043. doi: 10.3934/math.2021466
    [4] Ravi P. Agarwal, Snezhana Hristova . Stability of delay Hopfield neural networks with generalized proportional Riemann-Liouville fractional derivative. AIMS Mathematics, 2023, 8(11): 26801-26820. doi: 10.3934/math.20231372
    [5] Yijia Zhang, Tao Xie, Yunlong Ma . Robustness analysis of exponential stability of Cohen-Grossberg neural network with neutral terms. AIMS Mathematics, 2025, 10(3): 4938-4954. doi: 10.3934/math.2025226
    [6] Yuwei Cao, Bing Li . Existence and global exponential stability of compact almost automorphic solutions for Clifford-valued high-order Hopfield neutral neural networks with $ D $ operator. AIMS Mathematics, 2022, 7(4): 6182-6203. doi: 10.3934/math.2022344
    [7] Tian Xu, Ailong Wu . Stabilization of nonlinear hybrid stochastic time-delay neural networks with Lévy noise using discrete-time feedback control. AIMS Mathematics, 2024, 9(10): 27080-27101. doi: 10.3934/math.20241317
    [8] Zhigang Zhou, Li Wan, Qunjiao Zhang, Hongbo Fu, Huizhen Li, Qinghua Zhou . Exponential stability of periodic solution for stochastic neural networks involving multiple time-varying delays. AIMS Mathematics, 2024, 9(6): 14932-14948. doi: 10.3934/math.2024723
    [9] Jin Gao, Lihua Dai . Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays. AIMS Mathematics, 2022, 7(8): 14051-14075. doi: 10.3934/math.2022775
    [10] Chantapish Zamart, Thongchai Botmart, Wajaree Weera, Prem Junsawang . Finite-time decentralized event-triggered feedback control for generalized neural networks with mixed interval time-varying delays and cyber-attacks. AIMS Mathematics, 2023, 8(9): 22274-22300. doi: 10.3934/math.20231136
  • Reducing Sedentary Behaviour after hospitalization starts with reducing sedentary behaviour whilst in hospital. Although we have eradicated immobilisation as a therapeutic tool due to its potent detrimental effects, it is still in systemic use within health care systems and hospitals. Evidence shows that when in hospital, patients spend most of their time sedentary. In this editorial, we explore the determinants of, and a system-based approach to, reducing sedentary behaviour in health care.


    Hopfield neural networks have recently sparked significant interest, due to their versatile applications in various domains including associative memory [1], image restoration [2], and pattern recognition [3]. In neural networks, time delays often arise due to the restricted switching speed of amplifiers [4]. Additionally, when examining long-term dynamic behavior, nonautonomous characteristics become apparent, with system coefficients evolving over time [5]. Moreover, in biological nervous systems, synaptic transmission introduces stochastic perturbations, adding an element of randomness [6]. As we know that time delays, nonautonomous behavior, and stochastic perturbations can induce oscillations and instability in neural networks. Hence, it becomes imperative to investigate the stability of stochastic delay Hopfield neural networks (SDHNNs) with variable coefficients.

    The Lyapunov technique stands out as a powerful approach for examining the stability of SDHNNs. Wang et al. [7,8] and Chen et al. [9] employed the Lyapunov-Krasovskii functional to investigate the (global) asymptotic stability of SHNNs characterized by constant coefficients and bounded delay, respectively. Zhou and Wan [10] and Hu et al. [11] utilized the Lyapunov technique and some analysis techniques to investigate the stability of SHNNs with constant coefficients and bounded delay, respectively. Liu and Deng [12] used the vector Lyapunov function to investigate the stability of SHNNs with bounded variable coefficients and bounded delay. It is important to note that establishing a suitable Lyapunov function or functional can pose significant challenges, especially when dealing with infinite delay nonautonomous stochastic systems.

    Meanwhile, the fixed point technique presents itself as another potent tool for stability analysis, offering the advantage of not necessitating the construction of a Lyapunov function or functional. Luo used this technique to consider the stability of several stochastic delay systems in earlier research [13,14,15]. More recently, Chen et al. [16] and Song et al. [17] explored the stability of SDNNs characterized by constant coefficients and bounded variable coefficients using the fixed point technique, yielding intriguing results. However, the fixed point technique has a limitation in the stability analysis of stochastic systems, stemming from the inappropriate application of the Hölder inequality.

    Furthermore, integral or differential inequalities are also powerful techniques for stability analysis. Hou et al. [18], and Zhao and Wu [19] used the differential inequalities to consider stability of NNs, Wan and Sun [20], Sun and Cao [21], as well as Li and Deng [22] harnessed variation parameters and integral inequalities to explore the exponential stability of various SDHNNs with constant coefficients. In a similar vein, Ruan et al. [23] and Zhang et al. [24] utilized integral and differential inequalities to probe the $ p $th moment exponential stability of SDHNNs characterized by bounded variable coefficients.

    It is worth highlighting that the literature mentioned previously exclusively focused on investigating the exponential stability of SDHNNs, without addressing other decay modes. Generalized exponential stability was introduced in [25] for cellular neural networks without stochastic perturbations, and is a more general concept of stability which contains the usual exponential stability, polynomial stability, and logarithmical stability. It provides some new insights into the stability of dynamic systems. Motivated by the above discussion, we are prompted to explore the $ p $th moment generalized exponential stability of SHNNs characterized by variable coefficients and infinite delay.

    $ {dzi(t)=[ci(t)zi(t)+nj=1aij(t)fj(zj(t))+nj=1bij(t)gj(zj(tδij(t)))]dt+nj=1σij(t,zj(t),zj(tδij(t)))dwj(t),tt0,zi(t)=ϕi(t),tt0,i=1,2,...,n. $ (1.1)

    It is important to note that the models presented in [20,21,25,26,27,28] are specific instances of system (1.1). System (1.1) incorporates several complex factors, including unbounded time-varying coefficients and infinite delay functions. As a result, discussing the stability and its decay rate for (1.1) becomes more complicated and challenging.

    The contributions of this paper can be summarized as follows: (ⅰ) A new concept of stability is utilized for SDHNNs, namely the generalized exponential stability in $ p $th moment. (ⅱ) We establish a set of multidimensional integral inequalities that encompass unbounded variable coefficients and infinite delay, which extends the works in [23]. (ⅲ) Leveraging these derived inequalities, we delve into the $ p $th moment generalized exponential stability of SDHNNs with variable coefficients, and the work in [10,11,20,21,26,27] are improved and extended.

    The structure of the paper is as follows: Section 2 covers preliminaries and provides a model description. In Section 3, we present the primary inequalities along with their corresponding proofs. Section 4 is dedicated to the application of these derived inequalities in assessing the $ p $th moment generalized exponential stability of SDHNNs with variable coefficients. In Section 5, we present three simulation examples that effectively illustrate the practical applicability of the main results. Finally, Section 6 concludes our paper.

    Let $ \mathbb{N}_n = \{1, 2, ..., n\} $. $ |\cdot| $ is the norm of $ \mathbb{R}^{n} $. For any sets $ A $ and $ B $, $ A-B: = \{x|x\in A, \ x\notin B\} $. For two matrixes $ C, D\in\mathbb{R}^{n\times m} $, $ C\geq D $, $ C\leq D $, and $ C < D $ mean that every pair of corresponding parameters of $ C $ and $ D $ satisfy inequalities $ \geq $, $ \leq $, and $ < $, respectively. $ E^T $ and $ E^{-1} $ represent the transpose and inverse of the matrix $ E $, respectively. The space of bounded continuous $ \mathbb{R}^n $-valued functions is denoted by $ \mathcal{BC}: = \mathcal{BC}((-\infty, t_0];\mathbb{R}^n) $, for $ \varphi\in\mathcal{BC} $, and its norm is given by

    $ \|\varphi\|_{\infty} = \sup\limits_{\theta\in(-\infty,t_0]}|\varphi(\theta)| < \infty. $

    $ (\Omega, \mathscr{F}, \mathcal \{\mathscr{F}_t\}_{t\geq t_0}, \mathbb{P}) $ stands for the complete probability space with a right continuous normal filtration $ \{\mathscr{F}_t\}_{t\geq t_0} $ and $ \mathscr{F}_{t_0} $ contains all $ \mathbb{P} $-null sets. For $ p > 0 $, let $ \mathcal{L}^p_{\mathscr{F}_t}((-\infty, t_0];\mathbb{R}^n): = \mathcal{L}^p_{\mathscr{F}_t} $ be the space of $ \{\mathscr{F}_t\} $-measurable stochastic processes $ \phi = \{\phi(\theta):\theta\in(-\infty, t_0]\} $ which take value in $ \mathcal{BC} $ satisfying

    $ \|\phi\|^p_{\mathcal{L}^p} = \sup\limits_{\theta\in (-\infty,t_0]}\mathbb{E}|\phi(\theta)|^p < \infty, $

    where $ \mathbb{E} $ represents the expectation operator.

    In system (1.1), $ z_i(t) $ represents the $ i $th neural state at time $ t $; $ c_i(t) $ is the self-feedback connection weight at time $ t $; $ a_{ij}(t) $ and $ b_{ij}(t) $ denote the connection weight at time $ t $ of the $ j $th unit on the $ i $th unit; $ f_j $ and $ g_j $ represent the activation functions; $ \sigma_{ij}(t, z_j(t), z_j(t-\delta_{ij}(t))) $ stands for the stochastic effect, and $ \delta_{ij}(t)\geq 0 $ denotes the delay function. Moreover, $ \{\omega_j(t)\}_{j\in \mathbb{N}_n} $ is a set of Wiener processes mutually independent on the space $ (\Omega, \mathscr{F}, \mathcal \{\mathscr{F}_t\}_{t\geq 0}, \mathbb{P}) $; $ z_i(t, \phi) $ $ (i\in\mathbb{N}_n) $ represents the solution of (1.1) with an initial condition $ \phi = (\phi_1, \phi_2, ..., \phi_n)\in\mathcal{L}^p_{\mathscr{F}_t} $, sometimes written as $ z_i(t) $ for short. Now, we introduce the definition of generalized exponentially stable in $ p $th ($ p\geq2 $) moment.

    Definition 2.1. System (1.1) is $ p $th ($ p\geq2 $) moment generalized exponentially stable, if for any $ \phi\in \mathcal{L}^p_{\mathscr{F}_t} $, there are $ \kappa > 0 $ and $ c(u)\geq0 $ such that $ \lim\limits_{t\rightarrow +\infty}\int^{t}_{t_0}c(u)du\rightarrow +\infty $ and

    $ E|zi(t,ϕ)|pκmaxjNn{ϕjpLp}ett0c(u)du,iNn,tt0, $

    where $ -\int^{t}_{t_0}c(u)du $ is the general decay rate.

    Remark 2.1. Lu et al. [25] proposed the generalized exponential stability for neural networks without stochastic perturbations, we extend it to the SDHNNs.

    Remark 2.2. We replace $ \int^{t}_{t_0}c(u)du $ by $ \lambda (t-t_0) $, $ \lambda \ln(t-t_0+1), $ and $ \lambda\ln(\ln(t-t_0+e)) $ ($ \lambda > 0 $), respectively. Then (1.1) is exponentially, polynomially, and logarithmically stable in $ p $th moment, respectively.

    Lemma 2.1. [29] For a square matrix $ \Lambda\geq0 $, if $ \rho(\Lambda) < 1 $, then $ (I-\Lambda)^{-1}\geq0 $, where $ \rho(\cdot) $ is the spectral radius, and $ I $ and $ 0 $ are the identity and zero matrices, respectively.

    Consider the following inequalities

    $ {yi(t)ψi(0)ett0γi(u)du+nj=1αijtt0etsγi(u)duγi(s)supsηij(s)vsyj(v)ds,tt0,yi(t)=ψi(t)BC,t(,t0],iNn, $ (3.1)

    where $ y_i(t) $, $ \gamma_i(t) $, and $ \eta_{ij}(t) $ are non-negative functions and $ \alpha_{ij}\geq0 $, $ i, j\in \mathbb{N}_n $.

    Lemma 3.1. Regrading system (3.1), let the following hypotheses hold:

    $(\mathbf{H.1})$ For $ i, j\in \mathbb{N}_n $, there exist $ \gamma(t) $ and $ \gamma_i > 0 $ such that

    $ 0γiγ(t)γi(t)fortt0,limt+tt0γ(u)du+,suptt0{ttηij(t)γ(u)du}:=ηij<+, $

    where $ \gamma^*(t) = \gamma(t) $, for $ t\geq t_0 $, and $ \gamma^*(t) = 0 $, for $ t < t_0 $.

    $(\mathbf{H.2})$ $ \rho\big(\alpha\big) < 1, $ where $ \alpha = (\alpha_{ij})_{n\times n} $.

    Then, there is a $ \kappa > 0 $ such that

    $ yi(t)κmaxjNn{ψj}eλtt0γ(u)du,iNn,tt0. $

    Proof. For $ t\geq t_0 $, multiply $ e^{\lambda\int^t_{t_0}\gamma(u)du} $ on both sides of (3.1), and one has

    $ eλtt0γ(u)duyi(t)ψi(t0)eλtt0γ(u)duett0γi(u)du+nj=1eλtt0γ(s)dsαijtt0etsγi(u)duγi(s)supsηij(s)vsyj(v)ds:=Ii1(t)+Ii2(t),iNn, $ (3.2)

    where $ \lambda\in(0, \min\limits_{i\in \mathbb{N}_n}\{\gamma_i\}) $ is a sufficiently small constant which will be explained later. Define

    $ H_i(t): = \sup\limits_{\xi\leq t}\bigg\{e^{\lambda\int^\xi_{t_0}\gamma^*(u)du}y_i(\xi) \bigg\}, $

    $ i\in \mathbb{N}_n $ and $ t\geq t_0 $. Obviously,

    $ Ii1(t)=ψi(t0)eλtt0γ(u)duett0γi(u)due(λγi)tt0γ(u)duψi(t0)ψi(t0),iNn,tt0. $ (3.3)

    Further, it follows from $ (\mathbf{H.1}) $ that

    $ Ii2(t)nj=1αijtt0etsγi(u)duγi(s)eλssηij(s)γ(u)dusupsηij(s)vs{yj(v)}eλsηij(s)t0γ(u)dueλtsγ(u)dudsnj=1αijeληijtt0ets(γi(u)λγ(u))duγi(s)supsηij(s)vs{yj(v)eλvt0γ(u)du}dsnj=1αijeληijHj(t)tt0ets(γi(u)λγ(u))duγi(s)dsnj=1αijeληijHj(t)tt0ets(γi(u)λγiγi(u))duγi(s)dsγiγiλnj=1αijeληijHj(t),iNn,tt0. $ (3.4)

    By (3.2)–(3.4), we have

    $ eλtt0γ(s)dsyi(t)ψi(t0)+γiγiλnj=1αijeληijHj(t),iNn,tt0. $

    By the definition of $ H_i(t) $, we get

    $ Hi(t)ψi(t0)+γiγiλnj=1αijeληijHj(t),iNn,tt0, $

    i.e.,

    $ H(t)ψ(t0)+ΓαeληH(t)ΓλI,tt0, $ (3.5)

    where $ H(t) = (H_1(t), ..., H_n(t))^T $, $ \psi(t_0) = (\psi_1(t_0), ..., \psi_n(t_0))^T $, $ \Gamma = diag(\gamma_1, ..., \gamma_n) $, and $ \alpha e^{\lambda\eta} = (\alpha_{ij}e^{\lambda\eta_{ij}})_{n\times n} $. Since $ \rho(\alpha) < 1 $ and $ \alpha\geq0 $, then there is a small enough $ \lambda > 0 $ such that

    $ ρ(ΓαeληΓλI)<1 and ΓαeληΓλI0. $

    From Lemma 2.1, we get

    $ (IΓαeληΓλI)10. $

    Denote

    $ N(\lambda) = \bigg(I-\frac{\Gamma\alpha e^{\lambda\eta}}{\Gamma-\lambda I}\bigg)^{-1} = (N_{ij}(\lambda))_{n\times n}. $

    From (3.5), we have

    $ H(t)N(λ)ψ(t0),tt0. $

    Therefore, for $ i\in \mathbb{N}_n $, we get

    $ yi(t)ni=1Nij(λ)ψi(t0)eλtt0γ(u)dunj=1Nij(λ)ψjeλtt0γ(u)du,tt0, $

    and then there exists a $ \kappa > 0 $ such that

    $ yi(t)κmaxiNn{ψi}eλtt0γ(u)du,iNn,tt0. $

    This completes the proof.

    Consider the following differential inequalities

    $ {D+yi(t)γi(t)yi(t)+nj=1αijγi(t)suptηij(t)styj(s),tt0,yi(t)=ψi(t)BC,t(,t0],iNn, $ (3.6)

    where $ D^+ $ is the Dini-derivative, $ y_i(t) $, $ \gamma_i(t) $, and $ \eta_{ij}(t) $ are non-negative functions, and $ \alpha_{ij}\geq0 $, $ i, j\in \mathbb{N}_n $.

    Lemma 3.2. For system (3.6), under hypotheses $ (\mathbf{H.1}) $ and $ (\mathbf{H.2}) $, there are $ \kappa > 0 $ and $ \lambda > 0 $ such that

    $ yi(t)κmaxiNn{ψi}eλtt0γ(u)du,iNn,tt0. $

    Proof. For $ t > t_0 $, multiply $ e^{\int^{t}_{t_0}\gamma_i(u)du} $ $ (i\in \mathbb{N}_n) $ on both sides of (3.6) and perform the integration from $ t_0 $ to $ t $. We have

    $ yi(t)ψi(0)ett0γi(u)du+nj=1tt0etsγi(u)duαijγi(s)supsηij(s)vsyj(v)ds,iNn. $

    The proof is deduced from Lemma 3.1.

    Remark 3.1. For a given matrix $ M = (m_{ij})_{n\times n} $, we have $ \rho(M)\leq\|M\| $, where $ \|\cdot\| $ is an arbitrary norm, and then we can obtain some conditions for generalized exponential stability. In addition, for any nonsingular matrix $ S $, define the responding norm by $ \|M\|_S = \|S^{-1}MS\| $. Let $ S = diag\{\xi_1, \xi_2, ..., \xi_n\} $, then for the row, column, and the Frobenius norm, the following conditions imply $ \|M\|_S < 1 $:

    (1) $ \sum\limits_{j = 1}^{n}\bigg(\frac{\xi_i}{\xi_j}|m_{ij}|\bigg) < 1 $ for $ i\in \mathbb{N}_n $;

    (2) $ \sum\limits_{i = 1}^{n}\bigg(\frac{\xi_i}{\xi_j}|m_{ij}|\bigg) < 1 $ for $ i\in \mathbb{N}_n $;

    (3) $ \sum\limits_{i = 1}^{n}\sum\limits_{j = 1}^{n}\bigg(\frac{\xi_i}{\xi_j}|m_{ij}|\bigg)^2 < 1. $

    Remark 3.2. Ruan et al. [23] investigated the special case of inequalities (3.6), i.e., $ \gamma_i(t) = \gamma_i $ and $ \eta_{ij}(t) = \eta_{ij} $. They obtained that system (3.6) is exponentially stable provided

    $ γi>nj=1αij,iNn. $ (3.7)

    From Remark 3.1, we know condition $ \rho(\alpha) < 1 $ $ (\alpha = \big(\frac{\alpha_{ij}}{\gamma_i}\big)_{n\times n}) $ is weaker than (3.7). Moreover, we discuss the generalized exponential stability which contains the normal exponential stability. This means that our result improves and extends the result in [23].

    This section considers the $ p $th moment generalized exponential stability of (1.1) by applying Lemma 3.1. To obtain the $ p $th moment generalized exponential stability, we need the following conditions.

    $(\mathbf{C.1})$ For $ i, j\in \mathbb{N}_n $, there are $ c(t) $ and $ c_i > 0 $ such that

    $ 0cic(t)ci(t) for tt0,limt+tt0c(s)ds+,suptt0{ttδij(t)c(s)ds}:=δij<+, $

    where $ c^*(t) = c(t) $, for $ t\geq t_0 $, and $ c(t) = 0 $, for $ t < t_0 $.

    $(\mathbf{C.2})$ The mappings $ f_j $ and $ g_j $ satisfy $ f_j(0) = g_j(0) = 0 $ and the Lipchitz condition with Lipchitz constants $ F_j > 0 $ and $ G_j > 0 $ such that

    $ |fj(v1)fj(v2)|Fj|v1v2|,|gj(v1)gj(v2)|Gj|v1v2|,jNn,v1,v2R. $

    $(\mathbf{C.3})$ The mapping $ \sigma_{ij} $ satisfies $ \sigma_{ij}(t, 0, 0)\equiv0 $ and $ \forall u_1, u_2, v_1, v_2\in\mathbb{R} $, and there are $ \mu_{ij}(t)\geq0 $ and $ \nu_{ij}(t)\geq0 $ such that

    $ |σij(t,u1,v1)σij(t,u2,v2)|2μij(t)|u1u2|2+νij(t)|v1v2|2,i,jNn,tt0. $

    $(\mathbf{C.4})$ For $ i, j\in \mathbb{N}_n $,

    $ sup{t|tt0}{t|ci(t)=|aij(t)|Fj+|bij(t)|Gj=0}{|aij(t)|Fj+|bij(t)|Gjci(t)}:=ρ(1)ij,sup{t|tt0}{t|ci(t)=μij(t)+νij(t)}{μij(t)+νij(t)ci(t)}:=ρ(2)ij. $

    $(\mathbf{C.5})$

    $ ρ(M+Ω(1)p+(p1)Ω(2)p)<1, $

    where $ M = diag(m_1, m_2, ..., m_n) $, $ m_i = \frac{(p-1)\sum^{n}\limits_{j = 1}\rho^{(1)}_{ij}}{p}+\frac{(p-1)(p-2)\sum^{n}\limits_{j = 1}\rho^{(2)}_{ij}}{2p} $, $ \Omega^{(k)} = (\rho_{ij}^{(k)})_{n\times n } $, $ k\in \mathbb{N}_2 $, and $ p\geq2 $.

    Conditions $ (\mathbf{C.1}) $–$ (\mathbf{C.4}) $ guarantee the existence and uniqueness of (1.1) [30].

    Theorem 4.1. Under conditions $ (\mathbf{C.1}) $–$ (\mathbf{C.5}) $, system (1.1) is $ p $th moment generalized exponentially stable with decay rate $ -\lambda\int^t_{t_0}c(s)ds $, $ \lambda > 0 $.

    Proof. By the Itô formula, one can obtain

    $ dzpi(t)=[pci(t)zpi(t)+nj=1paij(t)fj(zj(t))zp1i(t)+nj=1pbij(t)gj(zj(tδij(t)))zp1i(t)+nj=1p(p1)2|σij(t,zj(t),zj(tδij(t)))|2zp2i(t)]dt+nj=1pσij(t,zj(t),zj(tδij(t)))zp1i(t)dwj(t),iNn,tt0. $

    So we get

    $ zpi(t)=ϕpi(t0)+tt0[pci(s)zpi(s)+nj=1paij(s)fj(zj(s))zp1i(s)+nj=1pbij(s)gj(zj(sδij(s)))zp1i(s)+nj=1p(p1)2|σij(s,zj(s),zj(sδij(s)))|2zp2i(s)]ds+nj=1tt0pσij(s,zj(s),zj(sδij(s)))zp1i(s)dwj(s),iNn,tt0. $

    Since $ \mathbb{E}\bigg[\int^t_{t_0}p\sigma_{ij}(s, z_j(s), z_j(s-\delta_{ij}(s)))z^{p-1}_i(s)dw_j(s)\bigg] = 0 $ for $ i\in \mathbb{N}_n $ and $ t\geq t_0 $, we have

    $ E[zpi(t)]=E[ϕpi(t0)]+tt0E[pci(s)zpi(s)+nj=1paij(s)fj(zj(s))zp1i(s)+nj=1pbij(s)gj(zj(sδij(s)))zp1i(s)+nj=1|σij(s,zj(s),zj(tδij(s)))|2p(p1)2zp2i(s)]ds,iNn,tt0, $

    i.e.,

    $ dE[zpi(t)]=pci(t)E[zpi(t)]dt+E[nj=1paij(t)fj(zj(t))zp1i(t)+nj=1pbij(t)gj(zj(tδij(t)))zp1i(t)+nj=1p(p1)2|σij(t,zj(t),zj(tδij(t)))|2zp2i(t)]dt,iNn,tt0. $

    For $ i\in\mathbb{N}_n $ and $ t\geq t_0 $, using the variation parameter approach, we get

    $ E[zpi(t)]=E[ϕpi(t0)]ett0pci(s)ds+tt0etspci(u)duE[nj=1paij(s)fj(zj(s))zp1i(s)+nj=1pbij(s)gj(zj(sδij(s)))zp1i(s)+nj=1p(p1)2|σij(s,zj(s),zj(sδij(s)))|2zp2i(s)]ds. $

    For $ i\in \mathbb{N}_n $ and $ t\geq t_0 $, conditions $ (\mathbf{C.2}) $–$ (\mathbf{C.4}) $ and the Young inequality yield

    $ E|zi(t)|pE|ϕi(t0)|pett0pci(u)du+nj=1tt0etspci(u)dup|aij(s)|FjE|zj(s)zp1i(s)|ds+nj=1tt0etspci(u)dup|bij(s)|GjE|zj(sδij(s))zp1i(s)|ds+nj=1tt0etspci(u)dup(p1)2μij(s)E|z2j(s)zp2i(s)|ds+nj=1tt0etspci(u)dup(p1)2νij(s)E|z2j(sδij(s))zp2i(s)|dsE|ϕi(t0)|pett0pci(u)du+nj=1tt0etspci(u)du|aij(s)|Fj(E|zj(s)|p+(p1)E|zi(s)|p)ds+nj=1tt0etspci(u)du|bij(s)|Gj(E|zj(sδij(s))|p+(p1)E|zi(s)|p)ds+nj=1tt0etspci(u)duμij(s)((p1)E|zj(s)|p+(p1)(p2)2E|zi(s)|p)ds+nj=1tt0etspci(u)duνij(s)((p1)E|zj(sδij(s))|p+(p1)(p2)2E|zi(s)|p)dsE|ϕi(t0)|pett0pci(u)du+nj=1tt0etspci(u)du(ρ(1)ij+(p1)ρ(2)ij)ci(s)supsδij(s)vsE|zj(v)|pds+nj=1tt0etspci(u)du((p1)ρ(1)ij+(p1)(p2)2ρ(2)ij)ci(s)supsδij(s)vsE|zi(v)|pds. $

    Then, all of the hypotheses of Lemma 3.1 are satisfied. So there exists $ \kappa > 0 $ and $ \lambda > 0 $ such that

    $ E|zi(t)|pκmaxjNn{ϕjpLp}eλtt0c(u)du,iNn,tt0. $

    This completes the proof.

    Remark 4.1. Huang et al.[27] and Sun and Cao [21] considered the special case of (1.1), i.e., $ a_{ij}(t)\equiv a_{ij} $, $ b_{ij}(t)\equiv b_{ij} $, $ c_i(t)\equiv c_i $, $ \mu_{ij}(t)\equiv \mu_{j} $, $ \nu_{ij}(t)\equiv \nu_{j} $, and $ \delta_{ij}(t)\equiv\delta_{j}(t) $ is a bounded delay function. [27] showed that system (1.1) is $ p $th moment exponentially stable provided that there are positive constants $ \xi_i, ..., \xi_n $ such that $ N_1 > N_2 > 0 $, where

    $ N1=miniNn{pcinj=1(p1)|aij|(Fj+Gj)+nj=1ξjξi(|aji|Fi+(p1)μi)+nj=1(p1)(p2)2(μi+νi)} $

    and

    $ N2=maxiNn{nj=1ξjξi(|bji|Gi+(p1)νi)}. $

    The above conditions imply that for each $ i\in\mathbb{N}_n $,

    $ pcinj=1(p1)|aij|(Fj+Gj)+nj=1ξjξi(|aji|Fi+|bji|Gi+(p1)(μi+νj))+nj=1(p1)(p2)2(μi+νi)>0. $

    Then

    $ 0nj=1(p1)|aij|(Fj+Gj)pci+nj=1ξjξi(|aji|Fi+|bji|Gi+(p1)(μi+νj)pci)+nj=1(p1)(p2)2pci(μi+νi)<1. $ (4.1)

    From Remark 3.1, we know condition (4.1) implies

    $ \rho\bigg(M+\frac{\Omega^{(1)}}{p}+\frac{(p-1)\Omega^{(2)}}{p}\bigg) < 1, $

    and this means that this paper improves and enhances the results in [27]. Similarly, our results also improve and enhance the results in [10,11,26]. Besides, the results in [21] required the following conditions to guarantee the $ p $th moment exponential stability, i.e.,

    $ ρ(C1(MM1I+MM2I+NN1+NN2))<1, $

    where

    $ C = diag(c_1,c_2,...,c_n),\; \; M^* = diag((4c_1)^{p-1},(4c_2)^{p-1},...,(4c_n)^{p-1}), $
    $ N_1 = (d_{ij})_{n\times n},\; \; d_{ij} = \mu^{p/2}_j,\; \; N_2 = (e_{ij})_{n\times n},\; \; e_{ij} = \nu^{p/2}_j, $
    $ M_1 = diag\bigg((\sum\limits^n_{j = 1}|a_{1j}F_j|^{\frac{p}{p-1}})^{p-1},(\sum\limits^n_{j = 1}|a_{2j}F_j|^{\frac{p}{p-1}})^{p-1},...,(\sum\limits^n_{j = 1}|a_{nj}F_j|^{\frac{p}{p-1}})^{p-1}\bigg), $
    $ M_2 = diag\bigg((\sum\limits^n_{j = 1}|b_{1j}G_j|^{\frac{p}{p-1}})^{p-1},(\sum\limits^n_{j = 1}|b_{2j}G_j|^{\frac{p}{p-1}})^{p-1},...,(\sum\limits^n_{j = 1}|b_{nj}G_j|^{\frac{p}{p-1}})^{p-1}\bigg), $
    $ N = diag(4^{p-1}C_pn^{p-1}c_1^{1-p/2},4^{p-1}C_pn^{p-1}c_2^{1-p/2},...,4^{p-1}C_pn^{p-1}c_n^{1-p/2})\; (C_p\geq1). $

    From the matrix spectral analysis [29], we can get

    $ ρ(M+Ω(1)p+(p1)Ω(2)p)<ρ(C1(MM1I+MM2I+NN1+NN2). $

    The above discussion shows that our results improve and extend the works in [21]. Similarly, our results also improve and broaden the results in [20].

    Remark 4.2. When $ c_i(t)\equiv c_i $, $ a_{ij}(t)\equiv a_{ij} $, $ b_{ij}(t)\equiv b_{ij} $, $ \delta_{ij}(t)\equiv\delta_{j} $, and $ \sigma_{ij}(t, z_j(t), z_j(t-\delta_{ij}(t)))\equiv0 $, then (1.1) turns to be the following HNNs

    $ dzi(t)=[cizi(t)+nj=1aijfj(zj(t))+nj=1bijgj(zj(tδj))]dt,iNn,tt0, $ (4.2)

    or

    $ dz(t)=[Cz(t)+Af(z(t))+Bg(zδ(t))]dt,tt0, $ (4.3)

    where $ z(t) = (z_1(t), ..., z_n(t))^T $, $ C = diag(c_1, ..., c_n) > 0 $, $ A = (a_{ij})_{n\times n} $, $ B = (b_{ij})_{n\times n} $, $ f(x(t)) = (f_1(z_1(t)), ..., f_n(z_n(t)))^T $, and $ g(z_{\delta}(t)) = (g_1(z_1(t-\delta_1)), ..., g_n(z_n(t-\delta_n)))^T $. This model was discussed in [16,28]. For (4.3), using our approach can get the subsequent corollary.

    Corollary 4.1. Under condition $ (\mathbf{C.2}) $, if $ \rho(C^{-1}D) < 1 $, then (4.3) is exponentially stable, where $ D = (|a_{ij}F_j|+|b_{ij}G_j|)_{n\times n} $.

    Note that Lai and Zhang [28] (Theorem 4.1) and Chen et al. [16] (Corollary 5.2) required the following conditions

    $ maxiNn[1cinj=1|aijFj|+1cinj=1|bijGj|]<1n $

    and

    $ nj=11cimaxiNn|aijFj|+nj=11cimaxiNn|bijGj|<1 $

    to ensure the exponential stability, respectively. From Remark 3.1, we know that Corollary 4.1 is weaker than Theorem 4.1 in [28] and Corollary 5.2 in [16]. This improves and extends the results in [16,28].

    Now, we give three examples to illustrate the effectiveness of the main result.

    Example 5.1. Consider the following SDHNNs:

    $ {dzi(t)=[ci(t)zi(t)+2j=1aij(t)fj(zj(t))+2j=1bij(t)gj(zj(0.5t))]dt+2j=1σij(t,zj(t),zj(0.5t))dwj(t),t0,zi(0)=ϕi(0),iN2, $ (5.1)

    where $ c_1(t) = 10(t+1) $, $ c_2(t) = 20(t+2) $, $ a_{11}(t) = b_{11}(t) = 0.5(t+1) $, $ a_{12}(t) = b_{12}(t) = t+1 $, $ a_{21}(t) = b_{21}(t) = 2(t+2) $, $ a_{22}(t) = b_{22}(t) = 2.5(t+2) $, $ f_1(u) = f_2(u) = arctanu $, $ g_1(u) = g_2(u) = 0.5(|u+1|-|u-1|) $, $ \sigma_{11}(t, u, v) = \frac{\sqrt{2(t+1)}(u-v)}{2} $, $ \sigma_{12}(t, u, v) = 2\sqrt{(t+1)}(u-v) $, $ \sigma_{21}(t, u, v) = \sqrt{(t+1)}(u-v) $, $ \sigma_{22}(t, u, v) = \frac{\sqrt{10(t+2)}(u-v)}{2} $, $ \delta_{11}(t) = \delta_{21}(t) = \delta_{12}(t) = \delta_{22}(t) = 0.5t $, and $ \phi(0) = (40, 20) $.

    Choose $ c(t) = \frac{1}{t+1} $, and then $ \sup\limits_{t\geq0}\bigg\{\int^t_{0.5t}\frac{1}{s+1}ds\bigg\} = \ln2 $. We can find $ F_1 = F_2 = G_1 = G_2 = 1 $, $ \rho^{(1)}_{11} = 0.1 $, $ \rho^{(1)}_{12} = 0.2 $, $ \rho^{(1)}_{21} = 0.2 $, $ \rho^{(1)}_{22} = 0.25 $, $ \rho^{(2)}_{11} = 0.2 $, $ \rho^{(2)}_{12} = 1.6 $, $ \rho^{(2)}_{21} = 0.2 $, and $ \rho^{(2)}_{22} = 0.5 $. Then

    $ ρ(ρ(1)11+0.5ρ(1)12+0.5ρ(2)110.5ρ(1)12+0.5ρ(2)120.5ρ(1)21+0.5ρ(2)21ρ(1)22+0.5ρ(1)21+0.5ρ(2)22)=ρ(0.30.90.20.6)=0.9<1. $

    Then $ (\mathbf{C.1}) $–$ (\mathbf{C.5}) $ are satisfied $ (p = 2) $. So (5.1) is generalized exponentially stable in mean square with a decay rate $ -\lambda\int^t_0\frac{1}{1+s}ds = -\lambda ln(1+t) $, $ \lambda > 0 $ (see Figure 1).

    Figure 1.  States $ z_1(t) $ and $ z_2(t) $ of Example 5.1.

    Remark 5.1. It is noteworthy that all variable coefficients and delay functions in Example 5.1 are unbounded, and then the results in [12,23] are not applicable in this example.

    Example 5.2. Consider the following SDHNNs:

    $ {dzi(t)=[ci(t)zi(t)+2j=1aij(t)fj(zj(t))+2j=1bij(t)gj(zj(tδij(t)))]dt+2j=1σij(t,zj(t),zj(tδij(t)))dwj(t),t0,zi(t)=ϕi(t),t[π,0],iN2, $ (5.2)

    where $ c_1(t) = 20(1-sint) $, $ c_2(t) = 10(1-sint) $, $ a_{11}(t) = b_{11}(t) = 2(1-sint) $, $ a_{12}(t) = b_{12}(t) = 4(1-sint) $, $ a_{21}(t) = b_{21}(t) = 0.5(1-sint) $, $ a_{22}(t) = b_{22}(t) = 1.5(1-sint) $, $ f_1(u) = f_2(u) = arctanu $, $ g_1(u) = g_2(u) = 0.5(|u+1|-|u-1|) $, $ \sigma_{11}(t, u, v) = \sqrt{2(1-sint)}(u-v) $, $ \sigma_{12}(t, u, v) = \sqrt{6(1-sint)}(u-v) $, $ \sigma_{21}(t, u, v) = \frac{\sqrt{(1-sint)}(u-v)}{2} $, $ \sigma_{22}(t, u, v) = \frac{\sqrt{(1-sint)}(u-v)}{2} $, $ \delta_{11}(t) = \delta_{21}(t) = \delta_{12}(t) = \delta_{22}(t) = \pi|\cos t| $, and $ \phi(t) = (40, 20) $ for $ t\in[-\pi, 0] $.

    Choose $ c(t) = 1-\sin t $, and then $ \sup\limits_{t\geq0}\int^t_{t-\pi|\cos t|}\big(1-\sin s\big)^*ds = \pi+2 $. We can find $ F_1 = F_2 = G_1 = G_2 = 1 $, $ \rho^{(1)}_{11} = 0.2 $, $ \rho^{(1)}_{12} = 0.4 $, $ \rho^{(1)}_{21} = 0.1 $, $ \rho^{(1)}_{22} = 0.3 $, $ \rho^{(2)}_{11} = 0.4 $, $ \rho^{(2)}_{12} = 1.2 $, $ \rho^{(2)}_{21} = 0.1 $, and $ \rho^{(2)}_{22} = 0.1 $. Then

    $ ρ(ρ(1)11+0.5ρ(1)12+0.5ρ(2)110.5ρ(1)12+0.5ρ(2)120.5ρ(1)21+0.5ρ(2)21ρ(1)22+0.5ρ(1)21+0.5ρ(2)22)=ρ(0.60.80.10.4)=0.8<1. $

    Then $ (\mathbf{C.1}) $–$ (\mathbf{C.5}) $ are satisfied $ (p = 2) $. So (5.2) is generalized exponentially stable in mean square with a decay rate $ -\lambda\int^t_0 (1-sins)ds = -\lambda(t-cost+1) $, $ \lambda > 0 $ (see Figure 2).

    Figure 2.  States $ z_1(t) $ and $ z_2(t) $ of Example 5.2.

    Remark 5.2. It should be pointed out that in Example 5.2 the variable coefficients $ c_i(t) = 0 $ for $ t = \frac{\pi}{2}+2k\pi $, $ k\in \mathbb{N} $. This means that the results in [12,23] cannot solve this case.

    To compare to some known results, we consider the following SDHNNs which are the special case of [12,16,20,21,22,23].

    Example 5.3.

    $ {dzi(t)=[cizi(t)+2j=1aijfj(zj(t))+2j=1bijgj(zj(tδij(t)))]dt+σi(zi(t))dwi(t),t0,zi(t)=ϕi(t),t[1,0],iN2, $ (5.3)

    where $ c_1 = 2 $, $ c_2 = 4 $, $ a_{11} = 0.5 $, $ a_{12} = 1 $, $ b_{11} = 0.25 $, $ b_{12} = 0.5 $, $ a_{21} = \frac{1}{3} $, $ a_{22} = \frac{2}{3} $, $ b_{21} = \frac{1}{3} $, $ b_{22} = \frac{2}{3} $, $ f_1(u) = f_2(u) = arctanu $, $ g_1(u) = g_2(u) = 0.5(|u+1|-|u-1|) $, $ \sigma_{1}(u) = 0.5u $, $ \sigma_{2}(u) = 0.5u $, $ \delta_{11}(t) = \delta_{21}(t) = \delta_{12}(t) = \delta_{22}(t) = 1 $, and $ \phi(t) = (40, 20) $ for $ t\in[-1, 0] $.

    Choose $ c(t) = 1 $, and then $ \sup\limits_{t\geq0}\int^t_{t-1}\big(1)^*ds = 1 $. We can find $ F_1 = F_2 = G_1 = G_2 = 1 $, $ \rho^{(1)}_{11} = \frac{3}{8} $, $ \rho^{(1)}_{12} = \frac{3}{4} $, $ \rho^{(1)}_{21} = \frac{1}{6} $, $ \rho^{(1)}_{22} = \frac{1}{3} $, $ \rho^{(2)}_{11} = \frac{1}{8} $, $ \rho^{(2)}_{12} = \rho^{(2)}_{21} = 0 $, and $ \rho^{(2)}_{22} = \frac{1}{16} $. Then

    $ ρ(ρ(1)11+0.5ρ(1)12+0.5ρ(2)110.5ρ(1)12+0.5ρ(2)120.5ρ(1)21+0.5ρ(2)21ρ(1)22+0.5ρ(1)21+0.5ρ(2)22)=ρ(78381124396)<1. $

    Then $ (\mathbf{C.1}) $–$ (\mathbf{C.5}) $ are satisfied $ (p = 2) $. So (5.3) is exponentially stable in mean square (see Figure 3).

    Figure 3.  States $ z_1(t) $ and $ z_2(t) $ of Example 5.3.

    Remark 5.3. It is noteworthy that in Example 5.3,

    $ ρ(4(a211F21+a212F22+b211G21+b212G22)c21+4μ11c1004(a221F21+a222F22+b221G21+b222G22)c22+4μ22c2)=ρ(3316001936)=3316>1, $

    which makes the result in [20,21,22] invalid. In addition,

    $ 4(a211F21+a212F22+b211G21+b212G22)c21+4(a221F21+a222F22+b221G21+b222G22)c22>1, $

    which makes the result in [16] not applicable in this example. Moreover

    $ c1+(a11F1+a12F2+b11G1+b11F2+12μ11)>0, $

    which makes the results in [12,23] inapplicable in this example.

    In this paper, we have addressed the issue of $ p $th moment generalized exponential stability concerning SHNNs characterized by variable coefficients and infinite delay. Our approach involves the utilization of various inequalities and stochastic analysis techniques. Notably, we have extended and enhanced some existing results. Lastly, we have provided three numerical examples to showcase the practical utility and effectiveness of our results.

    Dehao Ruan: Writing and original draft. Yao Lu: Review and editing. Both of the authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was funded by the Talent Special Project of Guangdong Polytechnic Normal University (2021SDKYA053 and 2021SDKYA068), and Guangzhou Basic and Applied Basic Research Foundation (2023A04J0031 and 2023A04J0032).

    The authors declare that they have no competing interests.



    Conflict of interest



    The authors declare no conflict of interest.

    [1] Baldwin C, van Kessel G, Phillips A, et al. (2017) Accelerometry shows inpatients with acute medical or surgical conditions spend little time upright and are highly sedentary: Systematic review. Phys Ther 97: 1044–1065.
    [2] Tremblay MS, Aubert S, Barnes JD, et al. (2017) Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act 14: 75. doi: 10.1186/s12966-017-0525-8
    [3] Chastin SFM, Scwartz U, Skelton DA (2013) Development of a consensus taxonomy of sedentary behaviors (SIT): Report of Delphi Round 1. PLoS One 8: e82313. doi: 10.1371/journal.pone.0082313
    [4] Grant PM, Granat MH, Thow MK, et al. (2010) Analyzing free-living physical activity of older adults in different environments using body-worn activity monitors. J Aging Phys Act 18: 171–184. doi: 10.1123/japa.18.2.171
    [5] Sjöholm A, Skarin M, Churilov L, et al. (2014) Sedentary behaviour and physical activity of people with stroke in rehabilitation hospitals. Stroke Res Treat 2014: 591897.
    [6] Karbiener M, Pisani DF, Frontini A, et al. (2014) MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells 32: 1578–1590. doi: 10.1002/stem.1603
    [7] Taraldsen K, Thingstad P, Sletvold O, et al. (2015) The long-term effect of being treated in a geriatric ward compared to an orthopaedic ward on six measures of free-living physical behavior 4 and 12 months after a hip fracture - A randomised controlled trial. BMC Geriatr 15: 160. doi: 10.1186/s12877-015-0153-6
    [8] Egerton T, Maxwell DJ, Granat MH (2006) Mobility activity of stroke patients during inpatient rehabilitation. Hong Kong Physiother J 24: 8–15. doi: 10.1016/S1013-7025(07)70003-9
    [9] Harvey JA, Chastin SFM, Skelton DA (2018) What happened to my legs when I broke my arm? Aims Med Sci 5: 252–258. doi: 10.3934/medsci.2018.3.252
    [10] Chastin SFM, Egerton T, Leask C, et al. (2015) Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity 23: 1800–1810. doi: 10.1002/oby.21180
    [11] Matthews CE, Keadle SK, Troiano RP, et al. (2016) Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am J Clin Nutr 104: 1424–1432. doi: 10.3945/ajcn.116.135129
    [12] Biswas A, Oh PI, Faulkner GE, et al. (2015) Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann Intern Med 162: 123–132. doi: 10.7326/M14-1651
    [13] Ekegren CL, Beck B, Climie RE, et al. (2018) Physical activity and sedentary behavior subsequent to serious orthopedic injury: A systematic review. Arch Phys Med Rehabil 99: 164–177. doi: 10.1016/j.apmr.2017.05.014
    [14] Zusman EZ, Dawes MG, Edwards N, et al. (2018) A systematic review of evidence for older adults' sedentary behavior and physical activity after hip fracture. Clin Rehabil 32: 679–691. doi: 10.1177/0269215517741665
    [15] Tieges Z, Mead G, Allerhand M, et al. (2015) Sedentary behavior in the first year after stroke: A longitudinal cohort study with objective measures. Arch Phys Med Rehabil 96: 15–23. doi: 10.1016/j.apmr.2014.08.015
    [16] Kronborg L, Bandholm T, Palm H, et al. (2016) Physical activity in the acute ward following hip fracture surgery is associated with less fear of falling. J Aging Phys Act 24: 525–532. doi: 10.1123/japa.2015-0071
    [17] Krumholz HM (2013) Post-hospital syndrome-an acquired, transient condition of generalized risk. N Engl J Med 368: 100–102. doi: 10.1056/NEJMp1212324
    [18] Hodgson CL, Capell E, Tipping CJ (2018) Early mobilization of patients in intensive care: Organization, communication and safety factors that influence translation into clinical practice. Crit Care 22: 77. doi: 10.1186/s13054-018-1998-9
    [19] Dogra S, Ashe MC, Biddle SJH, et al. (2017) Sedentary time in older men and women: an international consensus statement and research priorities. Br J Sports Med 51: 1526–1532. doi: 10.1136/bjsports-2016-097209
    [20] Kortebein P (2009) Rehabilitation for hospital-associated deconditioning. Am J Phys Med Rehabil 88: 66–77. doi: 10.1097/PHM.0b013e3181838f70
    [21] Skelton D, Van Wijck F, Grant M, et al. (2014) Are physiotherapists contributing to patient harm? Are your patients FIT TO SIT? Agility 20.
    [22] Boltz M, Resnick B, Capezuti E, et al. (2014) Activity restriction vs. self-direction: hospitalised older adults' response to fear of falling. Int J Older People Nurs 9: 44–53.
    [23] Resnick B, Galik E, Wells CL, et al. (2015) Optimizing physical activity among older adults post trauma: Overcoming system and patient challenges. Int J Orthop Trauma Nurs 19: 194–206. doi: 10.1016/j.ijotn.2015.03.007
    [24] Owen N, Sugiyama T, Eakin EE, et al. (2011) Adults' sedentary behavior determinants and interventions. Am J Prev Med 41: 189–196. doi: 10.1016/j.amepre.2011.05.013
    [25] Chastin SFM, De Craemer M, Lien N, et al. (2016) The SOS-framework (Systems of Sedentary behaviours): An international transdisciplinary consensus framework for the study of determinants, research priorities and policy on sedentary behaviour across the life course: A DEDIPAC-study. Int J Behav Nutr Phys Act 13: 83. doi: 10.1186/s12966-016-0409-3
    [26] Organisation for Economic and Cooperation Development (2009) Applications of Complexity Science for Public Policy.
    [27] Finegood DT, Karanfil O, Matteson CL (2008) Getting from analysis to action: framing obesity research, policy and practice with a solution-oriented complex systems lens. Healthc Pap 9: 36–41. doi: 10.12927/hcpap.2008.20184
    [28] Greenhalgh T, Jackson C, Shaw S, et al. (2016) Achieving research impact through co-creation in community-based health services: Literature review and case study. Milbank Q 94: 392–429. doi: 10.1111/1468-0009.12197
    [29] Boltz M, Resnick B, Capezuti E, et al. (2012) Functional decline in hospitalized older adults: Can nursing make a difference? Geriatr Nurs 33: 272–279. doi: 10.1016/j.gerinurse.2012.01.008
    [30] Langley GJ, Moen R, Nolan KM, et al. (2009) The improvement guide: A practical approach to enhancing organizational performance. 2nd Edition.
    [31] Hartley PJ, Keevil VL, Alushi L, et al. (2017) Earlier physical therapy input is associated with a reduced length of hospital stay and reduced care needs on discharge in frail older inpatients: An observational study. J Geriatr Phys Ther doi: 10.1519/JPT.0000000000000134.
    [32] Dall P, Coulter EH, Fitzsimons C, et al. (2017) The TAxonomy of Self-reported Sedentary behaviour Tools (TASST) framework for development, comparison and evaluation of self-report tools: Content analysis and systematic review. BMJ Open 7: e013844. doi: 10.1136/bmjopen-2016-013844
    [33] Chastin SFM, Dontje ML, Skelton DA, et al. (2018) Systematic comparative validation of self-report measures of sedentary time against an objective measure of postural sitting (activPAL). Int J Behav Nutr Phys Act 15: 21. doi: 10.1186/s12966-018-0652-x
    [34] Crouter SE, Clowers KG, Bassett DR Jr (2006) A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 100: 1324–1331. doi: 10.1152/japplphysiol.00818.2005
    [35] Sellers C, Dall P, Grant M, et al. (2016) Validity and reliability of the activPAL3 for measuring posture and stepping in adults and young people. Gait Posture 43: 42–47. doi: 10.1016/j.gaitpost.2015.10.020
    [36] Fortune E, Lugade VA, Amin S, et al. (2015) Step detection using multi- versus single tri-axial accelerometer-based systems. Physiol Meas 36: 2519–2535. doi: 10.1088/0967-3334/36/12/2519
    [37] Cook DJ, Thompson JE, Prinsen SK, et al. (2013) Functional recovery in the elderly after major surgery: Assessment of mobility recovery using wireless technology. Ann Thorac Surg 96: 1057–1061. doi: 10.1016/j.athoracsur.2013.05.092
    [38] Ryan CG, Grant PM, Tigbe WW, et al. (2006) The validity and reliability of a novel activity monitor as a measure of walking. Br J Sports Med 40: 779–784. doi: 10.1136/bjsm.2006.027276
    [39] Loveday A, Sherar LB, Sanders JP, et al. (2015) Technologies that assess the location of physical activity and sedentary behavior: A systematic review. J Med Internet Res 17: e192. doi: 10.2196/jmir.4761
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9850) PDF downloads(2063) Cited by(13)

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog