Global dynamics of the chemostat with different removal rates and variable yields

  • Received: 01 April 2010 Accepted: 29 June 2018 Published: 01 June 2011
  • MSC : Primary: 92A15, 92A17; Secondary: 34C15, 34C35.

  • In this paper, we consider a competition model between $n$ species in a chemostat including both monotone and non-monotone growth functions, distinct removal rates and variable yields. We show that only the species with the lowest break-even concentration survives, provided that additional technical conditions on the growth functions and yields are satisfied. We construct a Lyapunov function which reduces to the Lyapunov function used by S. B. Hsu [SIAM J. Appl. Math., 34 (1978), pp. 760-763] in the Monod case when the growth functions are of Michaelis-Menten type and the yields are constant. Various applications are given including linear, quadratic and cubic yields.

    Citation: Tewfik Sari, Frederic Mazenc. Global dynamics of the chemostat with different removal rates and variable yields[J]. Mathematical Biosciences and Engineering, 2011, 8(3): 827-840. doi: 10.3934/mbe.2011.8.827

    Related Papers:

    [1] Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539
    [2] Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari . Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
    [3] Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
    [4] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [5] Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou . A competition model of the chemostat with an external inhibitor. Mathematical Biosciences and Engineering, 2006, 3(1): 111-123. doi: 10.3934/mbe.2006.3.111
    [6] Hal L. Smith, Horst R. Thieme . Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635
    [7] Frédéric Mazenc, Gonzalo Robledo, Daniel Sepúlveda . A stability analysis of a time-varying chemostat with pointwise delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2691-2728. doi: 10.3934/mbe.2024119
    [8] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
    [9] Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319
    [10] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
  • In this paper, we consider a competition model between $n$ species in a chemostat including both monotone and non-monotone growth functions, distinct removal rates and variable yields. We show that only the species with the lowest break-even concentration survives, provided that additional technical conditions on the growth functions and yields are satisfied. We construct a Lyapunov function which reduces to the Lyapunov function used by S. B. Hsu [SIAM J. Appl. Math., 34 (1978), pp. 760-763] in the Monod case when the growth functions are of Michaelis-Menten type and the yields are constant. Various applications are given including linear, quadratic and cubic yields.


  • This article has been cited by:

    1. François Castella, Sten Madec, Yvan Lagadeuc, Global behavior ofNcompeting species with strong diffusion: diffusion leads to exclusion, 2016, 95, 0003-6811, 341, 10.1080/00036811.2015.1004320
    2. Chaoqun Xu, Sanling Yuan, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, 2016, 280, 00255564, 1, 10.1016/j.mbs.2016.07.008
    3. ARNAUD DUCROT, STEN MADEC, SINGULARLY PERTURBED ELLIPTIC SYSTEM MODELING THE COMPETITIVE INTERACTIONS FOR A SINGLE RESOURCE, 2013, 23, 0218-2025, 1939, 10.1142/S021820251350022X
    4. Guihong Fan, Hal L. Smith, Horst R. Thieme, Competition in the Chemostat with Time-Dependent Differential Removal Rates, 2017, 45, 2305-221X, 153, 10.1007/s10013-016-0208-9
    5. Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari, Competition for a single resource and coexistence of several species in the chemostat, 2016, 13, 1551-0018, 631, 10.3934/mbe.2016012
    6. Radhouane Fekih-Salem, Claude Lobry, Tewfik Sari, A density-dependent model of competition for one resource in the chemostat, 2017, 286, 00255564, 104, 10.1016/j.mbs.2017.02.007
    7. 2017, 9781119437215, 217, 10.1002/9781119437215.biblio
    8. Li Wang, Xiaoqiang Wang, Qimin Zhang, Permanence and extinction of a high-dimensional stochastic resource competition model with noise, 2018, 2018, 1687-1847, 10.1186/s13662-018-1891-5
    9. Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635
    10. Tewfik Sari, Competitive Exclusion for Chemostat Equations with Variable Yields, 2013, 123, 0167-8019, 201, 10.1007/s10440-012-9761-8
    11. R. Fekih-Salem, A. Rapaport, T. Sari, Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses, 2016, 40, 0307904X, 7656, 10.1016/j.apm.2016.03.028
    12. Mohamed Dellal, Mustapha Lakrib, Tewfik Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, 2018, 302, 00255564, 27, 10.1016/j.mbs.2018.05.004
    13. Chaoqun Xu, Sanling Yuan, Tonghua Zhang, Stochastic Sensitivity Analysis for a Competitive Turbidostat Model with Inhibitory Nutrients, 2016, 26, 0218-1274, 1650173, 10.1142/S021812741650173X
    14. M. I. NELSON, T. NICHOLLS, N. HAMZAH, A BIOLOGICAL PROCESS SUBJECT TO NONCOMPETITIVE SUBSTRATE INHIBITION IN A GENERALIZED FLOW REACTOR, 2013, 54, 1446-1811, 273, 10.1017/S1446181113000126
    15. Wen Liu, Yanling Li, Positive solution and stability of the unstirred chemostat with variable yield, 2021, 0170-4214, 10.1002/mma.7376
    16. Mohamed Dellala, Bachir Bar, Mustapha Lakrib, A competition model in the chemostat with allelopathy and substrate inhibition, 2021, 0, 1553-524X, 0, 10.3934/dcdsb.2021120
    17. Alejandro Rincón, Fredy E. Hoyos, Gloria Restrepo, Global stability of a continuous bioreactor model under persistent variation of the dilution rate, 2022, 20, 1551-0018, 3396, 10.3934/mbe.2023160
    18. Ningning Ye, Zengyun Hu, Zhidong Teng, Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth, 2022, 21, 1534-0392, 1361, 10.3934/cpaa.2022022
    19. Alejandro Rincón, Gloria María Restrepo, Óscar J. Sánchez, An Improved Robust Adaptive Controller for a Fed-Batch Bioreactor with Input Saturation and Unknown Varying Control Gain via Dead-Zone Quadratic Forms, 2021, 9, 2079-3197, 100, 10.3390/computation9090100
    20. Manel Dali-Youcef, Alain Rapaport, Tewfik Sari, Performance Study of Two Serial Interconnected Chemostats with Mortality, 2022, 84, 0092-8240, 10.1007/s11538-022-01068-6
    21. Alejandro Rincón, Fredy E. Hoyos, John E. Candelo-Becerra, Global Stability Analysis of the Model of Series/Parallel Connected CSTRs with Flow Exchange Subject to Persistent Perturbation on the Input Concentration, 2021, 11, 2076-3417, 4178, 10.3390/app11094178
    22. Ningning Ye, Long Zhang, Zhidong Teng, THE DYNAMICAL BEHAVIOR AND PERIODIC SOLUTION IN DELAYED NONAUTONOMOUS CHEMOSTAT MODELS, 2023, 13, 2156-907X, 156, 10.11948/20210452
    23. Nour El Houda Zitouni, Mohamed Dellal, Mustapha Lakrib, Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy, 2023, 87, 0303-6812, 10.1007/s00285-023-01943-3
    24. Auguste Caen, Jean-Denis Mathias, Delphine Latour, How do seasonal temperature variations influence interplay between toxic and non-toxic cyanobacterial blooms? Evidence from modeling and experimental data., 2024, 15689883, 102606, 10.1016/j.hal.2024.102606
    25. NABIL HAMIDI, MOHAMED DELLAL, MUSTAPHA LAKRIB, COMPETITION BETWEEN PLASMID-BEARING AND PLASMID-FREE ORGANISMS IN A CHEMOSTAT WITH DISTINCT REMOVAL RATES AND AN EXTERNAL INHIBITOR, 2024, 32, 0218-3390, 1069, 10.1142/S0218339024500359
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3456) PDF downloads(600) Cited by(25)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog