1.
|
Global dynamics of the chemostat with different removal rates and variable yields,
2011,
8,
1551-0018,
827,
10.3934/mbe.2011.8.827
|
|
2.
|
Alain Rapaport,
Some non-intuitive properties of simple extensions of the chemostat model,
2018,
34,
1476945X,
111,
10.1016/j.ecocom.2017.02.003
|
|
3.
|
Neli S. Dimitrova, Mikhail I. Krastanov,
2013,
Chapter 25,
978-3-642-41514-2,
239,
10.1007/978-3-642-41515-9_25
|
|
4.
|
Francis Mairet, Jean-Luc Gouzé,
2014,
Chapter 5,
978-3-319-10397-6,
47,
10.1007/978-3-319-10398-3_5
|
|
5.
|
Emna Krichen, Alain Rapaport, Emilie Le Floc’h, Eric Fouilland,
Demonstration of facilitation between microalgae to face environmental stress,
2019,
9,
2045-2322,
10.1038/s41598-019-52450-9
|
|
6.
|
Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari,
Competition for a single resource and coexistence of several species in the chemostat,
2016,
13,
1551-0018,
631,
10.3934/mbe.2016012
|
|
7.
|
Tewfik Sari,
Competitive Exclusion for Chemostat Equations with Variable Yields,
2013,
123,
0167-8019,
201,
10.1007/s10440-012-9761-8
|
|
8.
|
A. Rapaport, I. Haidar, J. Harmand,
The buffered chemostat with non-monotonic response functions,
2013,
46,
14746670,
181,
10.3182/20130904-3-FR-2041.00039
|
|
9.
|
Miaomiao Gao, Daqing Jiang, Tasawar Hayat,
The threshold of a chemostat model with single-species growth on two nutrients under telegraph noise,
2019,
75,
10075704,
160,
10.1016/j.cnsns.2019.03.027
|
|
10.
|
Jérôme Harmand, Alain Rapaport, Denis Dochain, Claude Lobry,
Microbial ecology and bioprocess control: Opportunities and challenges,
2008,
18,
09591524,
865,
10.1016/j.jprocont.2008.06.017
|
|
11.
|
Alain Rapaport, Ihab Haidar, Jérôme Harmand,
Global dynamics of the buffered chemostat for a general class of response functions,
2015,
71,
0303-6812,
69,
10.1007/s00285-014-0814-7
|
|
12.
|
J. Harmand, A. Rapaport, T. Nidelet,
About overyielding with mixed cultures in batch processes,
2019,
52,
24058963,
163,
10.1016/j.ifacol.2019.12.252
|
|
13.
|
Tomás Caraballo, Javier López-de-la-Cruz,
Bounded random fluctuations on the input flow in chemostat models with wall growth and non-monotonic kinetics,
2021,
6,
2473-6988,
4025,
10.3934/math.2021239
|
|
14.
|
2017,
9781119437215,
217,
10.1002/9781119437215.biblio
|
|
15.
|
Mieczyslaw Metzger, Piotr Skupin,
Concept of food-chain control in the bioreactor fed with a mixture of substrates,
2017,
467,
00448486,
127,
10.1016/j.aquaculture.2016.04.027
|
|
16.
|
Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad,
DYNAMICS OF A STOCHASTIC CHEMOSTAT COMPETITION MODEL WITH PLASMID-BEARING AND PLASMID-FREE ORGANISMS,
2020,
10,
2156-907X,
1464,
10.11948/20190236
|
|
17.
|
Neli S. Dimitrova, Mikhail I. Krastanov,
New result on the model-based biological control of the chemostat,
2014,
237,
00963003,
686,
10.1016/j.amc.2014.03.127
|
|
18.
|
Miaomiao Gao, Daqing Jiang, Xiangdan Wen,
Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion,
2022,
35,
1009-6124,
931,
10.1007/s11424-021-0170-9
|
|
19.
|
Manel Dali-Youcef, Alain Rapaport, Tewfik Sari,
Performance Study of Two Serial Interconnected Chemostats with Mortality,
2022,
84,
0092-8240,
10.1007/s11538-022-01068-6
|
|
20.
|
Yassine Sabbar, José Luis Diaz Palencia, Mouhcine Tilioua, Abraham Otero, Anwar Zeb, Salih Djilali,
A general chemostat model with second-order Poisson jumps: asymptotic properties and application to industrial waste-water treatment,
2023,
8,
2473-6988,
13024,
10.3934/math.2023656
|
|
21.
|
Bingtao Han, Daqing Jiang,
Threshold dynamics and probability density functions of a stochastic predator–prey model with general distributed delay,
2024,
128,
10075704,
107596,
10.1016/j.cnsns.2023.107596
|
|
22.
|
Miaomiao Gao, Daqing Jiang, Jieyu Ding,
Dynamics of a chemostat model with Ornstein–Uhlenbeck process and general response function,
2024,
184,
09600779,
114950,
10.1016/j.chaos.2024.114950
|
|