Loading [Contrib]/a11y/accessibility-menu.js

Biological control of the chemostat with nonmonotonic response and different removal rates

  • Received: 01 October 2007 Accepted: 29 June 2018 Published: 01 June 2008
  • MSC : Primary: 34D05, 34D23, 92D25; Secondary: 93C15.

  • We show the global stabilization of the chemostat with nonmonotonic growth, adding a new species as a ''biological'' control, in presence of different removal rates for each species. This result is obtained by an extension of the Competitive Exclusion Principle in the chemostat, for the case of two species with different removal rates and at least one nonmonotonic response.

    Citation: Alain Rapaport, Jérôme Harmand. Biological control of the chemostat with nonmonotonic response and different removal rates[J]. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539

    Related Papers:

    [1] Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari . Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
    [2] Hal L. Smith, Horst R. Thieme . Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635
    [3] Tewfik Sari, Frederic Mazenc . Global dynamics of the chemostat with different removal rates and variable yields. Mathematical Biosciences and Engineering, 2011, 8(3): 827-840. doi: 10.3934/mbe.2011.8.827
    [4] Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
    [5] Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou . A competition model of the chemostat with an external inhibitor. Mathematical Biosciences and Engineering, 2006, 3(1): 111-123. doi: 10.3934/mbe.2006.3.111
    [6] Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332
    [7] Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319
    [8] Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629
    [9] Tomás Caraballo, Renato Colucci, Javier López-de-la-Cruz, Alain Rapaport . Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate. Mathematical Biosciences and Engineering, 2020, 17(6): 7480-7501. doi: 10.3934/mbe.2020382
    [10] Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218
  • We show the global stabilization of the chemostat with nonmonotonic growth, adding a new species as a ''biological'' control, in presence of different removal rates for each species. This result is obtained by an extension of the Competitive Exclusion Principle in the chemostat, for the case of two species with different removal rates and at least one nonmonotonic response.


  • This article has been cited by:

    1. Global dynamics of the chemostat with different removal rates and variable yields, 2011, 8, 1551-0018, 827, 10.3934/mbe.2011.8.827
    2. Alain Rapaport, Some non-intuitive properties of simple extensions of the chemostat model, 2018, 34, 1476945X, 111, 10.1016/j.ecocom.2017.02.003
    3. Neli S. Dimitrova, Mikhail I. Krastanov, 2013, Chapter 25, 978-3-642-41514-2, 239, 10.1007/978-3-642-41515-9_25
    4. Francis Mairet, Jean-Luc Gouzé, 2014, Chapter 5, 978-3-319-10397-6, 47, 10.1007/978-3-319-10398-3_5
    5. Emna Krichen, Alain Rapaport, Emilie Le Floc’h, Eric Fouilland, Demonstration of facilitation between microalgae to face environmental stress, 2019, 9, 2045-2322, 10.1038/s41598-019-52450-9
    6. Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari, Competition for a single resource and coexistence of several species in the chemostat, 2016, 13, 1551-0018, 631, 10.3934/mbe.2016012
    7. Tewfik Sari, Competitive Exclusion for Chemostat Equations with Variable Yields, 2013, 123, 0167-8019, 201, 10.1007/s10440-012-9761-8
    8. A. Rapaport, I. Haidar, J. Harmand, The buffered chemostat with non-monotonic response functions, 2013, 46, 14746670, 181, 10.3182/20130904-3-FR-2041.00039
    9. Miaomiao Gao, Daqing Jiang, Tasawar Hayat, The threshold of a chemostat model with single-species growth on two nutrients under telegraph noise, 2019, 75, 10075704, 160, 10.1016/j.cnsns.2019.03.027
    10. Jérôme Harmand, Alain Rapaport, Denis Dochain, Claude Lobry, Microbial ecology and bioprocess control: Opportunities and challenges, 2008, 18, 09591524, 865, 10.1016/j.jprocont.2008.06.017
    11. Alain Rapaport, Ihab Haidar, Jérôme Harmand, Global dynamics of the buffered chemostat for a general class of response functions, 2015, 71, 0303-6812, 69, 10.1007/s00285-014-0814-7
    12. J. Harmand, A. Rapaport, T. Nidelet, About overyielding with mixed cultures in batch processes, 2019, 52, 24058963, 163, 10.1016/j.ifacol.2019.12.252
    13. Tomás Caraballo, Javier López-de-la-Cruz, Bounded random fluctuations on the input flow in chemostat models with wall growth and non-monotonic kinetics, 2021, 6, 2473-6988, 4025, 10.3934/math.2021239
    14. 2017, 9781119437215, 217, 10.1002/9781119437215.biblio
    15. Mieczyslaw Metzger, Piotr Skupin, Concept of food-chain control in the bioreactor fed with a mixture of substrates, 2017, 467, 00448486, 127, 10.1016/j.aquaculture.2016.04.027
    16. Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad, DYNAMICS OF A STOCHASTIC CHEMOSTAT COMPETITION MODEL WITH PLASMID-BEARING AND PLASMID-FREE ORGANISMS, 2020, 10, 2156-907X, 1464, 10.11948/20190236
    17. Neli S. Dimitrova, Mikhail I. Krastanov, New result on the model-based biological control of the chemostat, 2014, 237, 00963003, 686, 10.1016/j.amc.2014.03.127
    18. Miaomiao Gao, Daqing Jiang, Xiangdan Wen, Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion, 2022, 35, 1009-6124, 931, 10.1007/s11424-021-0170-9
    19. Manel Dali-Youcef, Alain Rapaport, Tewfik Sari, Performance Study of Two Serial Interconnected Chemostats with Mortality, 2022, 84, 0092-8240, 10.1007/s11538-022-01068-6
    20. Yassine Sabbar, José Luis Diaz Palencia, Mouhcine Tilioua, Abraham Otero, Anwar Zeb, Salih Djilali, A general chemostat model with second-order Poisson jumps: asymptotic properties and application to industrial waste-water treatment, 2023, 8, 2473-6988, 13024, 10.3934/math.2023656
    21. Bingtao Han, Daqing Jiang, Threshold dynamics and probability density functions of a stochastic predator–prey model with general distributed delay, 2024, 128, 10075704, 107596, 10.1016/j.cnsns.2023.107596
    22. Miaomiao Gao, Daqing Jiang, Jieyu Ding, Dynamics of a chemostat model with Ornstein–Uhlenbeck process and general response function, 2024, 184, 09600779, 114950, 10.1016/j.chaos.2024.114950
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2653) PDF downloads(452) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog