Chemostats and epidemics: Competition for nutrients/hosts

  • Received: 01 February 2013 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 92D15, 92D25, 92D30; Secondary: 34D23, 37B25, 93D30.

  • In a chemostat, several species compete for the same nutrient, whilein an epidemic, several strains of the same pathogen may competefor the same susceptible hosts. As winner, chemostat models predict the specieswith the lowest break-even concentration, while epidemicmodels predict the strain with the largest basic reproduction number.We show that these predictions amount to the same if the per capitafunctional responses of consumer species to the nutrient concentration or ofinfective individuals to the density of susceptibles are proportional to eachother but that they are different if the functional responses are nonproportional.In the second case, the correct prediction is given by the break-even concentrations.In the case of nonproportional functional responses, we add a class for which the prediction does not only rely on local stability and instability of one-species (strain) equilibriabut on the global outcome of the competition. We also review some results fornonautonomous models.

    Citation: Hal L. Smith, Horst R. Thieme. Chemostats and epidemics: Competition for nutrients/hosts[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635

    Related Papers:

    [1] Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718
    [2] Vanessa Steindorf, Sergio Oliva, Jianhong Wu . Cross immunity protection and antibody-dependent enhancement in a distributed delay dynamic model. Mathematical Biosciences and Engineering, 2022, 19(3): 2950-2984. doi: 10.3934/mbe.2022136
    [3] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [4] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [5] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [6] Tewfik Sari, Frederic Mazenc . Global dynamics of the chemostat with different removal rates and variable yields. Mathematical Biosciences and Engineering, 2011, 8(3): 827-840. doi: 10.3934/mbe.2011.8.827
    [7] Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari . Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
    [8] Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
    [9] Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1
    [10] Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218
  • In a chemostat, several species compete for the same nutrient, whilein an epidemic, several strains of the same pathogen may competefor the same susceptible hosts. As winner, chemostat models predict the specieswith the lowest break-even concentration, while epidemicmodels predict the strain with the largest basic reproduction number.We show that these predictions amount to the same if the per capitafunctional responses of consumer species to the nutrient concentration or ofinfective individuals to the density of susceptibles are proportional to eachother but that they are different if the functional responses are nonproportional.In the second case, the correct prediction is given by the break-even concentrations.In the case of nonproportional functional responses, we add a class for which the prediction does not only rely on local stability and instability of one-species (strain) equilibriabut on the global outcome of the competition. We also review some results fornonautonomous models.


    [1] J. Math. Biol., 47 (2003), 153-168.
    [2] Discrete and Continuous Dynamical Systems Series B, 5 (2005), 175-188.
    [3] Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1-17.
    [4] Parasitology, 85 (1982), 411-426.
    [5] Can. Appl. Math. Q., 11 (2003), 107-142.
    [6] Amer. Natur., 115 (1980), 151-170.
    [7] in "Microbial Population Dynamics" (ed. M. J. Bazin), CRC Series in Mathematical Models in Microbiology, CRC Press, Boca Raton, FL, (1982), 1-32.
    [8] J. Math. Biol., 51 (2005), 458-490.
    [9] Math. Biosci., 118 (1993), 127-180.
    [10] Nonlinear Analysis, 47 (2001), 4107-4115.
    [11] Ann. Bot. London, 19 (1905), 281-295.
    [12] Amer. Nat., 145 (1995), 855-887.
    [13] J. Math. Biol., 27 (1989), 179-190.
    [14] SIAM J. Appl. Math., 45 (1985), 138-151.
    [15] Lecture Notes in Biomathematics, 97, Springer-Verlag, Berlin, 1993.
    [16] Math. Biosci., 42 (1978), 43-61.
    [17] in "Mathematical Population Dynamics. Analysis of Heterogeneity. Vol. One. Theory of Epidemics" (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Wuerz, Winnipeg, (1995), 33-50.
    [18] J. Math. Biol., 10 (1980), 385-400.
    [19] J. Math. Biol., 11 (1981), 319-335.
    [20] J. Biol. Systems, 5 (1997), 325-339.
    [21] in "Mathematical Modelling of Population Dynamics," Banach Center Publications, 63, Polish Acad. Sci., (2004), 47-86.
    [22] Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2013.
    [23] in "Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management" (eds. U. Dieckmann, J. A. J. Metz, M. W. Sabelis and K. Sigmund), International Institute for Applied Systems Analysis, Cambridge University Press, Cambridge, (2002), 10-25.
    [24] Math. Model. Nat. Phenom., 2 (2007), 55-73.
    [25] J. Math. Biol., 31 (1993), 513-527.
    [26] SIAM J. Appl. Math., 67 (2006/07), 337-353.
    [27] Amer. Nat., 111 (1977), 135-142.
    [28] Math. Biosci. Engin., 3 (2006), 513-525.
    [29] Proc. Amer. Math. Soc., 136 (2008), 2793-2802.
    [30] in "Modeling and Dynamics of Infectious Diseases" (eds. Z. Ma, Y. Zhou and J. Wu), Ser. Contemp. Appl. Math. CAM, 11, Higher Ed. Press, Beijing, (2009), 268-288.
    [31] Comm. Pure Appl. Math., 38 (1985), 733-753.
    [32] SIAM J. Appl. Math., 34 (1978), 760-763.
    [33] SIAM J. App. Math., 32 (1977), 366-383.
    [34] J. Math. Biol., 9 (1980), 115-132.
    [35] Taiwanese J. Math., 9 (2005), 151-173.
    [36] SIAM J. Appl. Math., 67 (2006), 260-278.
    [37] Math. Biosci., 209 (2007), 51-75.
    [38] Yale University Press, New Haven, 1955.
    [39] Math. Med. Biol., 21 (2004), 75-83.
    [40] Bull. Math. Biol., 68 (2006), 615-626.
    [41] Bull. Math. Biol., 69 (2007), 1871-1886.
    [42] Math. Med. Biol., 26 (2009), 225-239.
    [43] MMB IMA, 22 (2005), 113-128.
    [44] Appl. Math. Letters, 15 (2002), 955-960.
    [45] SIAM J. Appl. Math., 59 (1999), 411-422.
    [46] SIAM J. Appl. Math., 70 (2010), 2434-2448.
    [47] J. Differential Eqns., 248 (2010), 1-20.
    [48] J. Math. Anal. Appl., 361 (2010), 38-47.
    [49] J. Austral. Math. Soc. Ser. B, 34 (1993), 282-295.
    [50] Math. Biosci. Eng., 7 (2010), 675-685.
    [51] Applicable Analysis, 89 (2010), 1109-1140.
    [52] J. Biol. Dyn., 3 (2009), 235-251.
    [53] Math. Biosci., 207 (2007), 58-77.
    [54] Math. Biosci. Eng., 3 (2006), 603-614.
    [55] J. Math. Anal. Appl., 338 (2008), 518-535.
    [56] Math. Biosci. Engin., 6 (2009), 603-610.
    [57] Nonlinear Anal. RWA, 11 (2010), 55-59.
    [58] Nonlinear Anal. RWA, 11 (2010), 3106-3109.
    [59] Math. Biosci. Engin., 7 (2010), 837-850.
    [60] IMA J. Math. Appl. Med. Biol., 16 (1999), 307-317.
    [61] Evolutionary Ecology Research, 10 (2008), 629-654.
    [62] Discr. Contin. Dyn. Syst. B, 6 (2006), 225-235.
    [63] Macmillan, New York, 1979.
    [64] SIAM J. Appl. Math., 58 (1998), 170-192.
    [65] Math. Biosci. Eng., 8 (2011), 827-840.
    [66] SIAM J. Appl. Math., 40 (1981), 498-522.
    [67] Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995.
    [68] in "Mathematical Studies on Human Disease Dynamics" (eds. Abba B. Gumel, Carlos Castillo-Chavez, Ronald E. Mickens and Dominic P. Clemence), Contemporary Mathematics, 410, Amer. Math. Soc., Providence, RI, (2006), 367-389.
    [69] Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.
    [70] J. Differential Eqns., 250 (2011), 3772-3801.
    [71] in "Mathematics for Life Sciences and Medicine" (eds. Y. Takeuchi, Y. Iwasa and K. Sato), Biol. Med. Phys. Biomed. Eng., Springer, Berlin, (2007), 123-153.
    [72] Gauthier-Villars, Paris, 1931.
    [73] Proc. Nat. Acad. Sci., 31 (1945), 24-34; Part II, Proc. Nat. Acad. Sci., 31 (1945), 109-116.
    [74] Math. Biosci., 93 (1989), 249-268.
    [75] Rocky Mountain Journal of Mathematics, 25 (1995), 515-543.
    [76] SIAM J. Appl. Math., 52 (1992), 222-233.
    [77] SIAM J. Appl. Math., 57 (1997), 1019-1043.
    [78] Differential Integral Equations, 11 (1998), 465-491.
  • This article has been cited by:

    1. Mostafa Fazly, Mark Lewis, Hao Wang, Analysis of Propagation for Impulsive Reaction-Diffusion Models, 2020, 80, 0036-1399, 521, 10.1137/19M1246481
    2. Teresa Faria, Permanence for Nonautonomous Differential Systems with Delays in the Linear and Nonlinear Terms, 2021, 9, 2227-7390, 263, 10.3390/math9030263
    3. Guihong Fan, Hal L. Smith, Horst R. Thieme, Competition in the Chemostat with Time-Dependent Differential Removal Rates, 2017, 45, 2305-221X, 153, 10.1007/s10013-016-0208-9
    4. Azmy S. Ackleh, John Cleveland, Horst R. Thieme, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, 2016, 261, 00220396, 1472, 10.1016/j.jde.2016.04.008
    5. Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad, DYNAMICS OF A STOCHASTIC CHEMOSTAT COMPETITION MODEL WITH PLASMID-BEARING AND PLASMID-FREE ORGANISMS, 2020, 10, 2156-907X, 1464, 10.11948/20190236
    6. J.M. Cushing, Odo Diekmann, The many guises of R0 (a didactic note), 2016, 404, 00225193, 295, 10.1016/j.jtbi.2016.06.017
    7. Carles Barril, Àngel Calsina, Stability analysis of an enteropathogen population growing within a heterogeneous group of animals, 2017, 22, 1553-524X, 1231, 10.3934/dcdsb.2017060
    8. Quentin Richard, Jacek Banasiak, Global stability in a competitive infection-age structured model, 2020, 15, 0973-5348, 54, 10.1051/mmnp/2020007
    9. Mostafa Fazly, Mark Lewis, Hao Wang, On Impulsive Reaction-Diffusion Models in Higher Dimensions, 2017, 77, 0036-1399, 224, 10.1137/15M1046666
    10. Chaoqun Xu, Sanling Yuan, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, 2016, 280, 00255564, 1, 10.1016/j.mbs.2016.07.008
    11. Mostafa Fazly, Critical domain sizes of a discrete-map hybrid and reaction-diffusion model on hostile exterior domains, 2021, 86, 0272-4960, 739, 10.1093/imamat/hxab019
    12. Abdulrahman Ali Alsolami, Miled El Hajji, Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus, 2023, 11, 2227-7390, 883, 10.3390/math11040883
    13. Teresa Faria, On permanence and extinction for a nonautonomous chemostat model with delays, 2024, 150, 08939659, 108953, 10.1016/j.aml.2023.108953
    14. Paul‐Erik Haacker, Iasson Karafyllis, Miroslav Krstić, Mamadou Diagne, Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics, 2024, 1049-8923, 10.1002/rnc.7181
    15. Hanan H. Almuashi, Nada A. Almuallem, Miled El Hajji, The Effect of Leachate Recycling on the Dynamics of Two Competing Bacteria with an Obligate One-Way Beneficial Relationship in a Chemostat, 2024, 12, 2227-7390, 3819, 10.3390/math12233819
    16. Carina Veil, Eckhard Arnold, Oliver Sawodny, 2024, Steady-State Analysis of a Competitive Age-Structured Population System with Two Inputs, 978-1-6654-1020-5, 759, 10.1109/SMC54092.2024.10831439
    17. Teresa Faria, Periodic solutions for a delayed competitive chemostat model with periodic nutrient input and rate, 2025, 38, 0951-7715, 055023, 10.1088/1361-6544/adcfe7
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2287) PDF downloads(578) Cited by(17)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog