Citation: Hal L. Smith, Horst R. Thieme. Chemostats and epidemics: Competition for nutrients/hosts[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635
[1] | Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718 |
[2] | Vanessa Steindorf, Sergio Oliva, Jianhong Wu . Cross immunity protection and antibody-dependent enhancement in a distributed delay dynamic model. Mathematical Biosciences and Engineering, 2022, 19(3): 2950-2984. doi: 10.3934/mbe.2022136 |
[3] | Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123 |
[4] | Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048 |
[5] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[6] | Tewfik Sari, Frederic Mazenc . Global dynamics of the chemostat with different removal rates and variable yields. Mathematical Biosciences and Engineering, 2011, 8(3): 827-840. doi: 10.3934/mbe.2011.8.827 |
[7] | Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari . Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012 |
[8] | Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329 |
[9] | Azmy S. Ackleh, Keng Deng, Yixiang Wu . Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences and Engineering, 2016, 13(1): 1-18. doi: 10.3934/mbe.2016.13.1 |
[10] | Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218 |
[1] | J. Math. Biol., 47 (2003), 153-168. |
[2] | Discrete and Continuous Dynamical Systems Series B, 5 (2005), 175-188. |
[3] | Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1-17. |
[4] | Parasitology, 85 (1982), 411-426. |
[5] | Can. Appl. Math. Q., 11 (2003), 107-142. |
[6] | Amer. Natur., 115 (1980), 151-170. |
[7] | in "Microbial Population Dynamics" (ed. M. J. Bazin), CRC Series in Mathematical Models in Microbiology, CRC Press, Boca Raton, FL, (1982), 1-32. |
[8] | J. Math. Biol., 51 (2005), 458-490. |
[9] | Math. Biosci., 118 (1993), 127-180. |
[10] | Nonlinear Analysis, 47 (2001), 4107-4115. |
[11] | Ann. Bot. London, 19 (1905), 281-295. |
[12] | Amer. Nat., 145 (1995), 855-887. |
[13] | J. Math. Biol., 27 (1989), 179-190. |
[14] | SIAM J. Appl. Math., 45 (1985), 138-151. |
[15] | Lecture Notes in Biomathematics, 97, Springer-Verlag, Berlin, 1993. |
[16] | Math. Biosci., 42 (1978), 43-61. |
[17] | in "Mathematical Population Dynamics. Analysis of Heterogeneity. Vol. One. Theory of Epidemics" (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Wuerz, Winnipeg, (1995), 33-50. |
[18] | J. Math. Biol., 10 (1980), 385-400. |
[19] | J. Math. Biol., 11 (1981), 319-335. |
[20] | J. Biol. Systems, 5 (1997), 325-339. |
[21] | in "Mathematical Modelling of Population Dynamics," Banach Center Publications, 63, Polish Acad. Sci., (2004), 47-86. |
[22] | Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2013. |
[23] | in "Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management" (eds. U. Dieckmann, J. A. J. Metz, M. W. Sabelis and K. Sigmund), International Institute for Applied Systems Analysis, Cambridge University Press, Cambridge, (2002), 10-25. |
[24] | Math. Model. Nat. Phenom., 2 (2007), 55-73. |
[25] | J. Math. Biol., 31 (1993), 513-527. |
[26] | SIAM J. Appl. Math., 67 (2006/07), 337-353. |
[27] | Amer. Nat., 111 (1977), 135-142. |
[28] | Math. Biosci. Engin., 3 (2006), 513-525. |
[29] | Proc. Amer. Math. Soc., 136 (2008), 2793-2802. |
[30] | in "Modeling and Dynamics of Infectious Diseases" (eds. Z. Ma, Y. Zhou and J. Wu), Ser. Contemp. Appl. Math. CAM, 11, Higher Ed. Press, Beijing, (2009), 268-288. |
[31] | Comm. Pure Appl. Math., 38 (1985), 733-753. |
[32] | SIAM J. Appl. Math., 34 (1978), 760-763. |
[33] | SIAM J. App. Math., 32 (1977), 366-383. |
[34] | J. Math. Biol., 9 (1980), 115-132. |
[35] | Taiwanese J. Math., 9 (2005), 151-173. |
[36] | SIAM J. Appl. Math., 67 (2006), 260-278. |
[37] | Math. Biosci., 209 (2007), 51-75. |
[38] | Yale University Press, New Haven, 1955. |
[39] | Math. Med. Biol., 21 (2004), 75-83. |
[40] | Bull. Math. Biol., 68 (2006), 615-626. |
[41] | Bull. Math. Biol., 69 (2007), 1871-1886. |
[42] | Math. Med. Biol., 26 (2009), 225-239. |
[43] | MMB IMA, 22 (2005), 113-128. |
[44] | Appl. Math. Letters, 15 (2002), 955-960. |
[45] | SIAM J. Appl. Math., 59 (1999), 411-422. |
[46] | SIAM J. Appl. Math., 70 (2010), 2434-2448. |
[47] | J. Differential Eqns., 248 (2010), 1-20. |
[48] | J. Math. Anal. Appl., 361 (2010), 38-47. |
[49] | J. Austral. Math. Soc. Ser. B, 34 (1993), 282-295. |
[50] | Math. Biosci. Eng., 7 (2010), 675-685. |
[51] | Applicable Analysis, 89 (2010), 1109-1140. |
[52] | J. Biol. Dyn., 3 (2009), 235-251. |
[53] | Math. Biosci., 207 (2007), 58-77. |
[54] | Math. Biosci. Eng., 3 (2006), 603-614. |
[55] | J. Math. Anal. Appl., 338 (2008), 518-535. |
[56] | Math. Biosci. Engin., 6 (2009), 603-610. |
[57] | Nonlinear Anal. RWA, 11 (2010), 55-59. |
[58] | Nonlinear Anal. RWA, 11 (2010), 3106-3109. |
[59] | Math. Biosci. Engin., 7 (2010), 837-850. |
[60] | IMA J. Math. Appl. Med. Biol., 16 (1999), 307-317. |
[61] | Evolutionary Ecology Research, 10 (2008), 629-654. |
[62] | Discr. Contin. Dyn. Syst. B, 6 (2006), 225-235. |
[63] | Macmillan, New York, 1979. |
[64] | SIAM J. Appl. Math., 58 (1998), 170-192. |
[65] | Math. Biosci. Eng., 8 (2011), 827-840. |
[66] | SIAM J. Appl. Math., 40 (1981), 498-522. |
[67] | Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995. |
[68] | in "Mathematical Studies on Human Disease Dynamics" (eds. Abba B. Gumel, Carlos Castillo-Chavez, Ronald E. Mickens and Dominic P. Clemence), Contemporary Mathematics, 410, Amer. Math. Soc., Providence, RI, (2006), 367-389. |
[69] | Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. |
[70] | J. Differential Eqns., 250 (2011), 3772-3801. |
[71] | in "Mathematics for Life Sciences and Medicine" (eds. Y. Takeuchi, Y. Iwasa and K. Sato), Biol. Med. Phys. Biomed. Eng., Springer, Berlin, (2007), 123-153. |
[72] | Gauthier-Villars, Paris, 1931. |
[73] | Proc. Nat. Acad. Sci., 31 (1945), 24-34; Part II, Proc. Nat. Acad. Sci., 31 (1945), 109-116. |
[74] | Math. Biosci., 93 (1989), 249-268. |
[75] | Rocky Mountain Journal of Mathematics, 25 (1995), 515-543. |
[76] | SIAM J. Appl. Math., 52 (1992), 222-233. |
[77] | SIAM J. Appl. Math., 57 (1997), 1019-1043. |
[78] | Differential Integral Equations, 11 (1998), 465-491. |
1. | Mostafa Fazly, Mark Lewis, Hao Wang, Analysis of Propagation for Impulsive Reaction-Diffusion Models, 2020, 80, 0036-1399, 521, 10.1137/19M1246481 | |
2. | Teresa Faria, Permanence for Nonautonomous Differential Systems with Delays in the Linear and Nonlinear Terms, 2021, 9, 2227-7390, 263, 10.3390/math9030263 | |
3. | Guihong Fan, Hal L. Smith, Horst R. Thieme, Competition in the Chemostat with Time-Dependent Differential Removal Rates, 2017, 45, 2305-221X, 153, 10.1007/s10013-016-0208-9 | |
4. | Azmy S. Ackleh, John Cleveland, Horst R. Thieme, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, 2016, 261, 00220396, 1472, 10.1016/j.jde.2016.04.008 | |
5. | Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad, DYNAMICS OF A STOCHASTIC CHEMOSTAT COMPETITION MODEL WITH PLASMID-BEARING AND PLASMID-FREE ORGANISMS, 2020, 10, 2156-907X, 1464, 10.11948/20190236 | |
6. | J.M. Cushing, Odo Diekmann, The many guises of R0 (a didactic note), 2016, 404, 00225193, 295, 10.1016/j.jtbi.2016.06.017 | |
7. | Carles Barril, Àngel Calsina, Stability analysis of an enteropathogen population growing within a heterogeneous group of animals, 2017, 22, 1553-524X, 1231, 10.3934/dcdsb.2017060 | |
8. | Quentin Richard, Jacek Banasiak, Global stability in a competitive infection-age structured model, 2020, 15, 0973-5348, 54, 10.1051/mmnp/2020007 | |
9. | Mostafa Fazly, Mark Lewis, Hao Wang, On Impulsive Reaction-Diffusion Models in Higher Dimensions, 2017, 77, 0036-1399, 224, 10.1137/15M1046666 | |
10. | Chaoqun Xu, Sanling Yuan, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, 2016, 280, 00255564, 1, 10.1016/j.mbs.2016.07.008 | |
11. | Mostafa Fazly, Critical domain sizes of a discrete-map hybrid and reaction-diffusion model on hostile exterior domains, 2021, 86, 0272-4960, 739, 10.1093/imamat/hxab019 | |
12. | Abdulrahman Ali Alsolami, Miled El Hajji, Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus, 2023, 11, 2227-7390, 883, 10.3390/math11040883 | |
13. | Teresa Faria, On permanence and extinction for a nonautonomous chemostat model with delays, 2024, 150, 08939659, 108953, 10.1016/j.aml.2023.108953 | |
14. | Paul‐Erik Haacker, Iasson Karafyllis, Miroslav Krstić, Mamadou Diagne, Stabilization of age‐structured chemostat hyperbolic PDE with actuator dynamics, 2024, 1049-8923, 10.1002/rnc.7181 | |
15. | Hanan H. Almuashi, Nada A. Almuallem, Miled El Hajji, The Effect of Leachate Recycling on the Dynamics of Two Competing Bacteria with an Obligate One-Way Beneficial Relationship in a Chemostat, 2024, 12, 2227-7390, 3819, 10.3390/math12233819 | |
16. | Carina Veil, Eckhard Arnold, Oliver Sawodny, 2024, Steady-State Analysis of a Competitive Age-Structured Population System with Two Inputs, 978-1-6654-1020-5, 759, 10.1109/SMC54092.2024.10831439 | |
17. | Teresa Faria, Periodic solutions for a delayed competitive chemostat model with periodic nutrient input and rate, 2025, 38, 0951-7715, 055023, 10.1088/1361-6544/adcfe7 |