Competition for a single resource and coexistence of several species in the chemostat
-
1.
Université de Tunis El Manar, ENIT, LAMSIN, BP 37, Le Belvédère, 1002 Tunis
-
2.
IRSTEA, UMR Itap, 361 rue Jean-François Breton, 34196 Montpellier, France, and Université de Haute Alsace, LMIA, 4 rue des frères Lumière, 68093 Mulhouse
-
Received:
01 April 2015
Accepted:
29 June 2018
Published:
01 May 2016
-
-
MSC :
92D25, 34D20, 34D43.
-
-
We study a model of the chemostat with several species in competition for a single resource.We take into account the intra-specific interactions between individuals of the same population of micro-organisms andwe assume that the growth rates are increasing and the dilution rates are distinct.Using the concept of steady-state characteristics, we present a geometric characterization of the existence and stability of all equilibria.Moreover, we provide necessary and sufficient conditions on the control parameters of the system to have a positive equilibrium.Using a Lyapunov function, we give a global asymptotic stability result for the competition model of several species.The operating diagram describes the asymptotic behavior of this model with respect to control parametersand illustrates the effect of the intra-specific competition on the coexistence region of the species.
Citation: Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
Related Papers:
[1] |
Tetiana Biloborodova, Lukasz Scislo, Inna Skarga-Bandurova, Anatoliy Sachenko, Agnieszka Molga, Oksana Povoroznyuk, Yelyzaveta Yevsieieva .
Fetal ECG signal processing and identification of hypoxic pregnancy conditions in-utero. Mathematical Biosciences and Engineering, 2021, 18(4): 4919-4942.
doi: 10.3934/mbe.2021250
|
[2] |
Dawid Czapla, Sander C. Hille, Katarzyna Horbacz, Hanna Wojewódka-Ściążko .
Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process. Mathematical Biosciences and Engineering, 2020, 17(2): 1059-1073.
doi: 10.3934/mbe.2020056
|
[3] |
Lei Lu, Tingting Zhu, Ying Tan, Jiandong Zhou, Jenny Yang, Lei Clifton, Yuan-Ting Zhang, David A. Clifton .
Refined matrix completion for spectrum estimation of heart rate variability. Mathematical Biosciences and Engineering, 2024, 21(8): 6758-6782.
doi: 10.3934/mbe.2024296
|
[4] |
Mark Kei Fong Wong, Hao Hei, Si Zhou Lim, Eddie Yin-Kwee Ng .
Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset. Mathematical Biosciences and Engineering, 2023, 20(1): 975-997.
doi: 10.3934/mbe.2023045
|
[5] |
Luca Dedè, Francesco Regazzoni, Christian Vergara, Paolo Zunino, Marco Guglielmo, Roberto Scrofani, Laura Fusini, Chiara Cogliati, Gianluca Pontone, Alfio Quarteroni .
Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study. Mathematical Biosciences and Engineering, 2021, 18(4): 3364-3383.
doi: 10.3934/mbe.2021168
|
[6] |
Zhenjun Tang, Yongzheng Yu, Hanyun Zhang, Mengzhu Yu, Chunqiang Yu, Xianquan Zhang .
Robust image hashing via visual attention model and ring partition. Mathematical Biosciences and Engineering, 2019, 16(5): 6103-6120.
doi: 10.3934/mbe.2019305
|
[7] |
Weidong Gao, Yibin Xu, Shengshu Li, Yujun Fu, Dongyang Zheng, Yingjia She .
Obstructive sleep apnea syndrome detection based on ballistocardiogram via machine learning approach. Mathematical Biosciences and Engineering, 2019, 16(5): 5672-5686.
doi: 10.3934/mbe.2019282
|
[8] |
Chunkai Zhang, Yingyang Chen, Ao Yin, Xuan Wang .
Anomaly detection in ECG based on trend symbolic aggregate approximation. Mathematical Biosciences and Engineering, 2019, 16(4): 2154-2167.
doi: 10.3934/mbe.2019105
|
[9] |
Zuzana Chladná .
Optimal time to intervene: The case of measles child immunization. Mathematical Biosciences and Engineering, 2018, 15(1): 323-335.
doi: 10.3934/mbe.2018014
|
[10] |
Fengjuan Liu, Binbin Qu, Lili Wang, Yahui Xu, Xiufa Peng, Chunling Zhang, Dexiang Xu .
Effect of selective sleep deprivation on heart rate variability in post-90s healthy volunteers. Mathematical Biosciences and Engineering, 2022, 19(12): 13851-13860.
doi: 10.3934/mbe.2022645
|
-
Abstract
We study a model of the chemostat with several species in competition for a single resource.We take into account the intra-specific interactions between individuals of the same population of micro-organisms andwe assume that the growth rates are increasing and the dilution rates are distinct.Using the concept of steady-state characteristics, we present a geometric characterization of the existence and stability of all equilibria.Moreover, we provide necessary and sufficient conditions on the control parameters of the system to have a positive equilibrium.Using a Lyapunov function, we give a global asymptotic stability result for the competition model of several species.The operating diagram describes the asymptotic behavior of this model with respect to control parametersand illustrates the effect of the intra-specific competition on the coexistence region of the species.
References
[1]
|
J. Theor. Biol., 139 (1989), 311-326.
|
[2]
|
Process Biochem., 14 (1979), 16-25.
|
[3]
|
Ph.D thesis, University of Montpellier 2 and University of Tunis el Manar, 2013. https://tel.archives-ouvertes.fr/tel-01018600.
|
[4]
|
J. Math. Anal. Appl., 397 (2013), 292-306.
|
[5]
|
ARIMA J., 14 (2011), 15-30.
|
[6]
|
AIChE J., 53 (2007), 535-539.
|
[7]
|
J. Biol. Dyn., 2 (2008), 1-13.
|
[8]
|
J. Math. Biol., 18 (1983), 255-280.
|
[9]
|
Ecol. Modell., 200 (2007), 393-402.
|
[10]
|
J. Math. Biol., 9 (1980), 115-132.
|
[11]
|
J. Math. Anal. Appl., 319 (2006), 48-60.
|
[12]
|
C. R. Biol., 329 (2006), 40-46.
|
[13]
|
Electron. J. Diff. Eqns., 125 (2007), 1-10.
|
[14]
|
C. R. Acad. Sci. Paris, Ser. I, 340 (2005), 199-204.
|
[15]
|
C. R. Biol., 329 (2006), 63-70.
|
[16]
|
Math. Biosci. Eng., 5 (2008), 539-547.
|
[17]
|
C. R. Biol., 330 (2007), 845-854.
|
[18]
|
C. R. Acad. Sci. Paris Ser. I, 348 (2010), 747-751.
|
[19]
|
Acta Appl. Math., 123 (2013), 201-219.
|
[20]
|
Math. Biosci. Eng., 8 (2011), 827-840.
|
[21]
|
Cambridge University Press, 1995.
|
[22]
|
AIChE J., 25 (1979), 863-872.
|
[23]
|
SIAM J. Appl. Math., 52 (1992), 222-233.
|
[24]
|
J. Biomath, 13 (1998), 282-291.
|
[25]
|
Differential Integral Equations, 11 (1998), 465-491.
|
-
-
This article has been cited by:
1.
|
R. Pratt, N. J. C. Stapelberg,
Early warning biomarkers in major depressive disorder: a strategic approach to a testing question,
2018,
23,
1354-750X,
563,
10.1080/1354750X.2018.1463563
|
|
2.
|
N.J.C. Stapelberg, R. Pratt, D.L. Neumann, D.H.K. Shum, S. Brandis, V. Muthukkumarasamy, B. Stantic, M. Blumenstein, J.P. Headrick,
From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression,
2018,
90,
01497634,
1,
10.1016/j.neubiorev.2018.03.005
|
|
-
-