The replicability of oncolytic virus: Defining conditions in tumor virotherapy

  • Received: 01 June 2010 Accepted: 29 June 2018 Published: 01 June 2011
  • MSC : Primary: 34C23, 34C10; Secondary: 92B99.

  • The replicability of an oncolytic virus is measured by its burst size. The burst size is the number of new viruses coming out from a lysis of an infected tumor cell. Some clinical evidences show that the burst size of an oncolytic virus is a defining parameter for the success of virotherapy. This article analyzes a basic mathematical model that includes burst size for oncolytic virotherapy. The analysis of the model shows that there are two threshold values of the burst size: below the first threshold, the tumor always grows to its maximum (carrying capacity) size; while passing this threshold, there is a locally stable positive equilibrium solution appearing through transcritical bifurcation; while at or above the second threshold, there exits one or three families of periodic solutions arising from Hopf bifurcations. The study suggests that the tumor load can drop to a undetectable level either during the oscillation or when the burst size is large enough.

    Citation: Jianjun Paul Tian. The replicability of oncolytic virus: Defining conditions in tumor virotherapy[J]. Mathematical Biosciences and Engineering, 2011, 8(3): 841-860. doi: 10.3934/mbe.2011.8.841

    Related Papers:

    [1] Zizi Wang, Zhiming Guo, Hal Smith . A mathematical model of oncolytic virotherapy with time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1836-1860. doi: 10.3934/mbe.2019089
    [2] Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczynski, Avner Friedman . The role of TNF-α inhibitor in glioma virotherapy: A mathematical model. Mathematical Biosciences and Engineering, 2017, 14(1): 305-319. doi: 10.3934/mbe.2017020
    [3] Tuan Anh Phan, Jianjun Paul Tian . Basic stochastic model for tumor virotherapy. Mathematical Biosciences and Engineering, 2020, 17(4): 4271-4294. doi: 10.3934/mbe.2020236
    [4] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066
    [5] Peter S. Kim, Joseph J. Crivelli, Il-Kyu Choi, Chae-Ok Yun, Joanna R. Wares . Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics. Mathematical Biosciences and Engineering, 2015, 12(4): 841-858. doi: 10.3934/mbe.2015.12.841
    [6] Nada Almuallem, Dumitru Trucu, Raluca Eftimie . Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach. Mathematical Biosciences and Engineering, 2021, 18(1): 764-799. doi: 10.3934/mbe.2021041
    [7] Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim . Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. Mathematical Biosciences and Engineering, 2024, 21(3): 3876-3909. doi: 10.3934/mbe.2024173
    [8] Taeyong Lee, Adrianne L. Jenner, Peter S. Kim, Jeehyun Lee . Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy. Mathematical Biosciences and Engineering, 2020, 17(3): 2361-2383. doi: 10.3934/mbe.2020126
    [9] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. Mathematical Biosciences and Engineering, 2022, 19(6): 6157-6185. doi: 10.3934/mbe.2022288
    [10] G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072
  • The replicability of an oncolytic virus is measured by its burst size. The burst size is the number of new viruses coming out from a lysis of an infected tumor cell. Some clinical evidences show that the burst size of an oncolytic virus is a defining parameter for the success of virotherapy. This article analyzes a basic mathematical model that includes burst size for oncolytic virotherapy. The analysis of the model shows that there are two threshold values of the burst size: below the first threshold, the tumor always grows to its maximum (carrying capacity) size; while passing this threshold, there is a locally stable positive equilibrium solution appearing through transcritical bifurcation; while at or above the second threshold, there exits one or three families of periodic solutions arising from Hopf bifurcations. The study suggests that the tumor load can drop to a undetectable level either during the oscillation or when the burst size is large enough.


  • This article has been cited by:

    1. Salma M. Al-Tuwairqi, Najwa O. Al-Johani, Eman A. Simbawa, Modeling dynamics of cancer radiovirotherapy, 2020, 506, 00225193, 110405, 10.1016/j.jtbi.2020.110405
    2. Martial Kabong Nono, Elie Bertrand Megam Ngouonkadi, Samuel Bowong, Hilaire Bertrand Fotsin, Hopf and backward bifurcations induced by immune effectors in a cancer oncolytic virotherapy dynamics, 2020, 2195-268X, 10.1007/s40435-020-00703-1
    3. A.M. Elaiw, A.D. Al Agha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, 2020, 55, 14681218, 103116, 10.1016/j.nonrwa.2020.103116
    4. Konstantin E. Starkov, Anatoly N. Kanatnikov, Giovana Andres, Ultimate tumor dynamics and eradication using oncolytic virotherapy, 2021, 92, 10075704, 105469, 10.1016/j.cnsns.2020.105469
    5. Salma M. Al-Tuwairqi, Najwa O. Al-Johani, Eman A. Simbawa, Modeling dynamics of cancer virotherapy with immune response, 2020, 2020, 1687-1847, 10.1186/s13662-020-02893-6
    6. Yujie Wang, Jianjun Paul Tian, Junjie Wei, Lytic cycle: A defining process in oncolytic virotherapy, 2013, 37, 0307904X, 5962, 10.1016/j.apm.2012.12.004
    7. Tuan Anh Phan, Jianjun Paul Tian, The Role of the Innate Immune System in Oncolytic Virotherapy, 2017, 2017, 1748-670X, 1, 10.1155/2017/6587258
    8. Jiantao Zhao, Jianjun Paul Tian, Spatial Model for Oncolytic Virotherapy with Lytic Cycle Delay, 2019, 81, 0092-8240, 2396, 10.1007/s11538-019-00611-2
    9. Adil El Alami laaroussi, Mohamed El Hia, Mostafa Rachik, Rachid Ghazzali, Analysis of a Multiple Delays Model for Treatment of Cancer with Oncolytic Virotherapy, 2019, 2019, 1748-670X, 1, 10.1155/2019/1732815
    10. Joseph Malinzi, Mathematical Analysis of a Mathematical Model of Chemovirotherapy: Effect of Drug Infusion Method, 2019, 2019, 1748-670X, 1, 10.1155/2019/7576591
    11. A.M. Elaiw, A.D. Hobiny, A.D. Al Agha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, 2020, 367, 00963003, 124758, 10.1016/j.amc.2019.124758
    12. Yuxiao Guo, Ben Niu, Jianjun Paul Tian, Backward Hopf bifurcation in a mathematical model for oncolytic virotherapy with the infection delay and innate immune effects, 2019, 13, 1751-3758, 733, 10.1080/17513758.2019.1667443
    13. Vijayalakshmi Chelliah, Georgia Lazarou, Sumit Bhatnagar, John P. Gibbs, Marjoleen Nijsen, Avijit Ray, Brian Stoll, R. Adam Thompson, Abhishek Gulati, Serguei Soukharev, Akihiro Yamada, Jared Weddell, Hiroyuki Sayama, Masayo Oishi, Sabine Wittemer‐Rump, Chirag Patel, Christoph Niederalt, Rolf Burghaus, Christian Scheerans, Jörg Lippert, Senthil Kabilan, Irina Kareva, Natalya Belousova, Alex Rolfe, Anup Zutshi, Marylore Chenel, Filippo Venezia, Sylvain Fouliard, Heike Oberwittler, Alix Scholer‐Dahirel, Helene Lelievre, Dean Bottino, Sabrina C. Collins, Hoa Q. Nguyen, Haiqing Wang, Tomoki Yoneyama, Andy Z.X. Zhu, Piet H. Graaf, Andrzej M. Kierzek, Quantitative Systems Pharmacology Approaches for Immuno‐Oncology: Adding Virtual Patients to the Development Paradigm, 2021, 109, 0009-9236, 605, 10.1002/cpt.1987
    14. Glorya Marseli Ontah, Isnani Darti, Dynamic Analysis of a Tumor Treatment Model Using Oncolytic Virus and Chemotherapy with Saturated Infection Rate, 2019, 546, 1757-899X, 032025, 10.1088/1757-899X/546/3/032025
    15. Joseph Malinzi, Amina Eladdadi, Precious Sibanda, Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment, 2017, 11, 1751-3758, 244, 10.1080/17513758.2017.1328079
    16. Pantea Pooladvand, Chae-Ok Yun, A.-Rum Yoon, Peter S. Kim, Federico Frascoli, The role of viral infectivity in oncolytic virotherapy outcomes: A mathematical study, 2021, 334, 00255564, 108520, 10.1016/j.mbs.2020.108520
    17. 玉红 李, Dynamic Analysis of the Model of Brain Cancer Treatment by Pulse Infusion of Zika, 2019, 08, 2324-7991, 439, 10.12677/AAM.2019.83050
    18. A. M. Elaiw, A. D. Al Agha, A reaction–diffusion model for oncolytic M1 virotherapy with distributed delays, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00188-z
    19. Yongmei Su, Chen Jia, Ying Chen, Optimal Control Model of Tumor Treatment with Oncolytic Virus and MEK Inhibitor, 2016, 2016, 2314-6133, 1, 10.1155/2016/5621313
    20. Kent Bailey, Amber Kirk, Shruthi Naik, Rebecca Nace, Michael B. Steele, Lukkana Suksanpaisan, Xing Li, Mark J. Federspiel, Kah-Whye Peng, David Kirk, Stephen J. Russell, Brian Lichty, Mathematical Model for Radial Expansion and Conflation of Intratumoral Infectious Centers Predicts Curative Oncolytic Virotherapy Parameters, 2013, 8, 1932-6203, e73759, 10.1371/journal.pone.0073759
    21. Asim Timalsina, Jianjun Paul Tian, Jin Wang, Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity, 2017, 79, 0092-8240, 1736, 10.1007/s11538-017-0304-3
    22. Daniel Santiago, Johannes Heidbuechel, Wendy Kandell, Rachel Walker, Julie Djeu, Christine Engeland, Daniel Abate-Daga, Heiko Enderling, Fighting Cancer with Mathematics and Viruses, 2017, 9, 1999-4915, 239, 10.3390/v9090239
    23. Johannes P. W. Heidbuechel, Daniel Abate-Daga, Christine E. Engeland, Heiko Enderling, 2020, Chapter 21, 978-1-4939-9793-0, 307, 10.1007/978-1-4939-9794-7_21
    24. Mobina Mobaraki, Hamed Moradi, Design of robust control strategy in drug and virus scheduling in nonlinear process of chemovirotherapy, 2021, 00981354, 107318, 10.1016/j.compchemeng.2021.107318
    25. Abdon Atangana, Saima Rashid, Analysis of a deterministic-stochastic oncolytic M1 model involving immune response via crossover behaviour: ergodic stationary distribution and extinction, 2023, 8, 2473-6988, 3236, 10.3934/math.2023167
    26. Tuan Anh Phan, Jianjun Paul Tian, Basic stochastic model for tumor virotherapy, 2020, 17, 1551-0018, 4271, 10.3934/mbe.2020236
    27. Jingnan Wang, Yanqiao Zhang, Dynamics of immunotherapy antitumor models with impulsive control strategy, 2022, 45, 0170-4214, 483, 10.1002/mma.7788
    28. Tuan Anh Phan, Hai Dang Nguyen, Jianjun Paul Tian, Deterministic and stochastic modeling for PDGF-driven gliomas reveals a classification of gliomas, 2021, 83, 0303-6812, 10.1007/s00285-021-01647-6
    29. M. Kabong Nono, E.B. Megam Ngouonkadi, S. Bowong, H.B. Fotsin, Spatiotemporal dynamics and optimal control of glioma virotherapy enhanced by MEK Inhibitors, 2022, 7, 26667207, 100101, 10.1016/j.rico.2022.100101
    30. Qinrui Dai, Mengjie Rong, Ren Zhang, Bifurcations and multistability in a virotherapy model with two time delays, 2022, 198, 03784754, 289, 10.1016/j.matcom.2022.02.028
    31. Tuan Anh Phan, Jianjun Paul Tian, Hopf bifurcation without parameters in deterministic and stochastic modeling of cancer virotherapy, part I, 2022, 514, 0022247X, 126278, 10.1016/j.jmaa.2022.126278
    32. Khaphetsi Joseph Mahasa, Rachid Ouifki, Amina Eladdadi, Lisette de Pillis, A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept, 2022, 19, 1551-0018, 4429, 10.3934/mbe.2022205
    33. Yingmin Guo, XiaoPing Zhao, Wei Wang, 2021, The Dynamics of the PDGF-driven Tumor Growth, 978-1-6654-2624-4, 1, 10.1109/ICSAI53574.2021.9664038
    34. Haicheng Liu, Bin Ge, Qiyuan Liang, Jiaqi Chen, Bifurcation analysis of the cancer virotherapy system with time delay and diffusion, 2022, 15, 1793-5245, 10.1142/S1793524522500565
    35. Tuan Anh Phan, Jianjun Paul Tian, Hopf bifurcation without parameters in deterministic and stochastic modeling of cancer virotherapy, part II, 2022, 515, 0022247X, 126444, 10.1016/j.jmaa.2022.126444
    36. M. Fawad Khan, Ebenezer Bonyah, Fahad Sameer Alshammari, Syed Muhammad Ghufran, Muhammad Sulaiman, Sampath Pradeep, Modelling and Analysis of Virotherapy of Cancer Using an Efficient Hybrid Soft Computing Procedure, 2022, 2022, 1099-0526, 1, 10.1155/2022/9660746
    37. Joseph Malinzi, A mathematical model for oncolytic virus spread using the telegraph equation, 2021, 102, 10075704, 105944, 10.1016/j.cnsns.2021.105944
    38. Chayu Yang, Jin Wang, Modeling and Analyzing Homogeneous Tumor Growth under Virotherapy, 2023, 11, 2227-7390, 360, 10.3390/math11020360
    39. H. Lefraich, 2022, Chapter 16, 978-3-031-12514-0, 287, 10.1007/978-3-031-12515-7_16
    40. Abdullah Abu-Rqayiq, 2021, Chapter 8, 978-1-83968-867-6, 10.5772/intechopen.96963
    41. Dongwook Kim, Dong-Hoon Shin, Chang K. Sung, The Optimal Balance between Oncolytic Viruses and Natural Killer Cells: A Mathematical Approach, 2022, 10, 2227-7390, 3370, 10.3390/math10183370
    42. M. Moksud Alam, S.M.E.K. Chowdhury, J.T. Chowdhury, Mohammad Mahmud Hasan, M.A. Ullah, Shams Forruque Ahmed, Tumor treatment with chemo-virotherapy and MEK inhibitor: A mathematical model of Caputo fractional differential operator, 2023, 71, 11100168, 173, 10.1016/j.aej.2023.03.010
    43. Rim Adenane, Eric Avila-Vales, Florin Avram, Andrei Halanay, Angel G. C. Pérez, On a three-dimensional and two four-dimensional oncolytic viro-therapy models, 2023, 29, 1405-213X, 10.1007/s40590-023-00534-y
    44. Jiayue Sun, Shun Xu, Yang Liu, Huaguang Zhang, 2024, Chapter 7, 978-981-99-5928-0, 115, 10.1007/978-981-99-5929-7_7
    45. Jiayue Sun, Juan Zhang, Huaguang Zhang, Yang Liu, Adaptive Virotherapy Strategy for Organism With Constrained Input Using Medicine Dosage Regulation Mechanism, 2024, 54, 2168-2267, 2505, 10.1109/TCYB.2023.3241344
    46. Arwa Abdulla Baabdulla, Thomas Hillen, Oscillations in a Spatial Oncolytic Virus Model, 2024, 86, 0092-8240, 10.1007/s11538-024-01322-z
    47. Dongwook Kim, Abraham Puig, Faranak Rabiei, Erial J. Hawkins, Talia F. Hernandez, Chang K. Sung, Optimization of SOX2 Expression for Enhanced Glioblastoma Stem Cell Virotherapy, 2024, 16, 2073-8994, 1186, 10.3390/sym16091186
    48. Sunil S. Kumbhar, Sarita Thakar, Galerkin finite element method for oncolytic M1 cancer virotherapy reaction–diffusion model, 2025, 18, 1793-5245, 10.1142/S1793524523500870
    49. Eymard Hernández-López, Jin Wang, A Mathematical Perspective on the Influence of Allee Effects in Oncolytic Virotherapy, 2025, 13, 2227-7390, 744, 10.3390/math13050744
    50. Yan Zhao, Qi Deng, Zhipeng Qiu, Ting Guo, Shigui Ruan, Modeling the Interaction of Cytotoxic T-Lymphocytes and Oncolytic Viruses in a Tumor Microenvironment, 2025, 85, 0036-1399, 983, 10.1137/23M1613608
    51. Arwa Abdulla Baabdulla, Francisca Cristi, Maya Shmulevitz, Thomas Hillen, Vishwanatha R A P Reddy, Mathematical modelling of reoviruses in cancer cell cultures, 2025, 20, 1932-6203, e0318078, 10.1371/journal.pone.0318078
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3668) PDF downloads(710) Cited by(51)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog