Loading [MathJax]/jax/output/SVG/jax.js
Review

Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future

  • Received: 09 October 2018 Accepted: 16 January 2019 Published: 24 January 2019
  • Phospholipids (PLs) are amphiphilic molecules that are in charge of controlling what goes in or out of the cell, keeping up the structure and numerous associated functions. These primary molecules are not only the integral part but also a vastly diverse group of molecules present in microorganisms, plants, and animals. PLs provide rigidity, signal transduction, energy to cells. PLs such as lecithins are molecules of future food, medicine and cosmetic industry. PLs are used in fat and oil refining and these are also used as carriers in drug and drug delivery system. Of course, challenges are there in the assay of phospholipids because of their availability of hydrophobic and hydrophilic components in the same environment. This review is mainly focused to unveil the function, characteristics, features and applications of PLs in various fields.

    Citation: Manikandan Alagumuthu, Divakar Dahiya, Poonam Singh Nigam. Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future[J]. AIMS Molecular Science, 2019, 6(1): 1-19. doi: 10.3934/molsci.2019.1.1

    Related Papers:

    [1] Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028
    [2] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [3] Shi Jin, Min Tang, Houde Han . A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks and Heterogeneous Media, 2009, 4(1): 35-65. doi: 10.3934/nhm.2009.4.35
    [4] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [5] Sara Monsurrò, Carmen Perugia . Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017
    [6] Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009
    [7] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [8] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
    [9] F. R. Guarguaglini, R. Natalini . Nonlinear transmission problems for quasilinear diffusion systems. Networks and Heterogeneous Media, 2007, 2(2): 359-381. doi: 10.3934/nhm.2007.2.359
    [10] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
  • Phospholipids (PLs) are amphiphilic molecules that are in charge of controlling what goes in or out of the cell, keeping up the structure and numerous associated functions. These primary molecules are not only the integral part but also a vastly diverse group of molecules present in microorganisms, plants, and animals. PLs provide rigidity, signal transduction, energy to cells. PLs such as lecithins are molecules of future food, medicine and cosmetic industry. PLs are used in fat and oil refining and these are also used as carriers in drug and drug delivery system. Of course, challenges are there in the assay of phospholipids because of their availability of hydrophobic and hydrophilic components in the same environment. This review is mainly focused to unveil the function, characteristics, features and applications of PLs in various fields.


    Throughout this article, we shall consider the following Dirichlet integro-differential problem

    $ {(Δ)su+|u|p=fin Ωu=0 in RNΩ $ (1.1)

    for $ s \in (1/2, 1) $, $ \Omega \subset \mathbb{R}^{N} $, $ p > 1 $ and $ f $ a non-negative measurable function. When the nonlinear term appears in the righthand side the model (1.1) may be seen as a Kardar-Parisi-Zhang stationary problem driving by fractional diffusion (see [20] for the model in the local setting and [1] in the nonlocal case). The problem with the nonlinear term in the left hand side is the stationary counterpart of a Hamilton-Jacobi equation with a viscosity term, the principal nonlocal operator. See [30] and the references therein.

    The fractional Laplacian operator $ (-\Delta)^{s} $, and more general pseudo-differential operators, have been a classic topic in Harmonic Analysis and PDEs. Moreover, these is a renovated interest in these kind of operators. Non-local operators arise naturally in continuum mechanics, image processing, crystal dislocation, phase transition phenomena, population dynamics, optimal control and theory of games as pointed out in [6,10,11,12,18] and the references therein. For instance, the fractional heat equation may appear in probabilistic random-walk procedures and, in turn, the stationary case may do so in pay-off models (see [10] and the references therein). In the works [25] and [26] the description of anomalous diffusion via fractional dynamics is investigated and various fractional partial differential equations are derived from Lévy random walk models, extending Brownian walk models in a natural way. Fractional operators are also involved in financial mathematics, since Lèvy processes with jumps revealed as more appropriate models of stock pricing. The bounday condition

    $ u = 0 \, \, \text{ in } \, \mathbb{R}^{N}\setminus \Omega $

    which is given in the whole complement may be interpreted from the stochastic point of view as the fact that a Lèvy process can exit the domain $ \Omega $ for the first time jumping to any point in its complement.

    Regarding the integro-differential problem that we discuss in the present manuscript, the main results of our research may be summarized as follows

    ● In the sub-critical scenario $ 1 < p < p_{*}: = \frac{N}{N-2s+1} $, there is a unique non-negative distributional solution $ u \in W^{1, q}_0(\Omega) $ of (1.1) for any $ 1\leq q < p_{*} $.

    ● Now, for $ x\in \Omega $, setting $ \delta (x) = \text{dist}(x, \partial\Omega) = \text{dist}(x, \Omega^{c}) $ (since $ \Omega $ is a bounded regular domain), then if $ 1 < p < p_{*} $, with similar arguments to those in [1] and [15], we have

    - If $ m < \frac{N}{2s-1} $, then $ |\nabla u|\delta ^{1-s} \in L^{q}(\Omega) $ for all $ 1\leq q < \frac{mN}{N-m(2s-1)} $.

    - If $ m = \frac{N}{2s-1} $, then $ |\nabla u|\delta ^{1-s} \in L^{q}(\Omega) $ for all $ 1\leq q < \infty $.

    - If $ m > \frac{N}{2s-1} $, then $ |\nabla u| \in \mathcal{C}^{\alpha}(\Omega) $ for some $ \alpha \in (0, 1) $.

    In the interval $ 1 < p < p_{*} $ the result lies on the estimates for the Green function by Bogdan and Jakubowski in [8].

    ● For any $ 1 < p < \infty $, $ u $ is $ \mathcal{C}^{1, \alpha} $ provided the source is sufficiently small.

    ● Any solution $ u \in \mathcal{C}^{1, \alpha}(\Omega) $ with Hölder continuous source is a viscosity solution, and conversely.

    Notice that in the local case $ s = 1 $, the main existing results can be summarized into two points: If $ p\le 2 $, then the existence of solution is obtained for all $ f\in L^1(\Omega) $ using approximation arguments and suitable test function, see [7] and the references therein. However the truncating arguments are not applicable for $ p > 2 $ including for $ L^\infty $ data. In the case of Lipschitz data, the author in [23] was able to get the existence and the uniqueness of a regular solution for all $ p $. However this last argument is not applicable for $ L^m $ data including for $ p $ close to two.

    For the non local case, the first existence result was obtained in [15]. Indeed, they consider the problem

    $ {(Δ)su+ϵg(|u|)=ν in Ωu=0 in RNΩ,s(1/2,1), $ (1.2)

    with $ \epsilon \in \left\lbrace -1, 1 \right\rbrace $, for a continuous and non-negative function $ g $ satisfying $ g(0) = 0 $ and a non-negative Radon measure $ \nu $ so that $ \int_\Omega \delta^{\beta}d\nu < \infty $ with $ \beta \in [0, 2s-1) $.

    In [15,Thm. 1.1], they show that for $ \epsilon = 1 $ and under the integrability assumption

    $ \int_{1}^{\infty}g(s)s^{-1-p^{*}}ds \lt \infty, $

    problem (1.2) admits a non-negative distributional solution $ u \in W^{1, q}_0(\Omega) $, for all $ 1 \leq q < p_{*, \beta} $ where

    $ p_{*, \beta}: = \frac{N}{N-2s+1+\beta}. $

    In particular, this result implies that the Dirichlet problem (1.1) admits a solution $ u $ in $ W^{1, q}_0(\Omega) $ for all $ q \in [1, p_{*}) $ and for $ 1 < p < p_{*} $. Moreover, for $ g $ Hölder continuous and bounded in $ \mathbb{R} $, solutions to (1.2) becomes strong for a Hölder continuous source.

    The regularity of solutions to (1.1) is strongly related to the corresponding issue for problems

    $ {(Δ)sv=f in Ωv=0 in RNΩ, $ (1.3)

    As a by-product of the results in [1,15,16], we have the following result which will be largely used throughout our paper.

    Theorem 1.1. Suppose that $ f\in L^m(\Omega) $ with $ m\ge 1 $ and define $ v $ to be the unique solution to problem (1.3) with $ s > \frac12 $. Then for all $ 1\leq p < \frac{m N}{N-m(2s-1)} $, there exists a positive constant $ C\equiv \hat{C}(\Omega, N, s, p) $ such that

    $ |v|δ1sLp(Ω)ˆC||f||Lm(Ω). $ (1.4)

    Moreover,

    1) If $ m = \frac{N}{2s-1} $, then $ |\nabla v|\delta ^{1-s}\in L^p(\Omega) $ for all $ 1\leq p < \infty $.

    2) If $ m > \frac{N}{2s-1} $, then $ v\in \mathcal{C}^{1, \sigma}(\Omega) $ for some $ \sigma\in (0, 1) $, and

    $ \bigg\| |\nabla v|\delta ^{1-s}\bigg\|_{L^\infty(\Omega )}\le C||f||_{L^m(\Omega )}. $

    In the case where $ f\in L^1(\Omega)\cap L^m_{loc}(\Omega) $ where $ m > 1 $, then as it was proved in [1], the above regularity results hold locally in $ \Omega $. More precisely we have

    Proposition 1.2. Assume that $ f\in L^1(\Omega)\cap L^m_{loc}(\Omega) $ with $ m > 1 $. Let $ v $ the unique solution to problem (1.3). Suppose that $ m < \frac{N}{2s-1} $, then for any $ \Omega _1\subset\subset \Omega '_1\subset \subset \Omega $ and for all $ 1\leq p\le \frac{m N}{N-m(2s-1)} $, there exists $ \tilde{C}: = \tilde{C}(\Omega, \Omega _1, \Omega '_1, N, s, p) $ such that

    $ ||v||Lp(Ω1)˜C(||f||L1(Ω)+||f||Lm(Ω1)). $ (1.5)

    Moreover,

    1) If $ m = \frac{N}{2s-1} $, then $ |\nabla v|\in L^p_{loc}(\Omega) $ for all $ 1 \leq p < \infty $.

    2) If $ m > \frac{N}{2s-1} $, then $ v\in \mathcal{C}^{1, \sigma}(\Omega) $ for some $ \sigma\in (0, 1) $.

    As a consequence we conclude that, if $ f\in L^m(\Omega) $ with $ m > 1 $, then

    $ 1) $ If $ m\ge\frac{N}{2s-1} $, then $ \int\limits_\Omega\, |\nabla v|^a dx < \infty $ for all $ a < \frac{1}{1-s} $.

    $ 2) $ If $ 1 < m < \frac{N+2s}{2s-1} $, then $ \int\limits_\Omega\, |\nabla v|^a dx < \infty $ for all $ a < \check{P}: = \frac{m N}{N(m(1-s)+1)-m(2s-1)} $.

    Remark 1.3. It is clear that $ a < a_0 = \frac{1}{1-s} $ is optimal. Before proving the optimality of $ a_0 $, let us recall the next Hardy inequality that will be used systematically in what follows.

    Proposition 1.4. (Hardy inequality) Assume that $ \Omega $ is a bounded regular domain of $ {I\!\!R}^N $ and $ 1 < p < N $. Then there exists a positive constant $ C(\Omega) $ such that for all $ \phi\in W^{1, p}_0(\Omega) $, we have

    $ C(Ω)Ω|ϕ|pδpdxΩ|ϕ|pdx<+. $ (1.6)

    We prove now the optimality of $ a_0 $. We argue by contradiction. Assume that, for $ 0\lneqq f\in L^\infty(\Omega) $, there exists a solution $ v $ to (1.3) such that $ v\in W^{1, p}_0(\Omega) $ with $ p > \frac{1}{1-s} $.

    By using the classical Hardy inequality we obtain that

    $ \int_\Omega \frac{v^p}{\delta ^p}dx\le \int_\Omega |\nabla v|^pdx \lt +\infty. $

    By the results in [27] the solution behaves as $ v\backsimeq \delta ^s $, therefore, as a consequence, $ \dfrac{1}{\delta ^{p(1-s)}}\in L^1(\Omega) $, that is, $ p < \frac{1}{1-s} $, a contradiction.

    Hence, the bound for the exponent of the gradient seems to be natural if we impose that the solution lies in the Sobolev space $ W^{1, p}_0(\Omega) $ for the problem with reaction gradient term.

    In the case of absorption gradient term, this affirmation seems to be difficult to prove, however, in Theorem 2.9, we will show that the non existence result holds, at least, for large values of $ p $ and for all bounded non negative data.

    In the case of gradient reaction term and for $ 2s\le p < \dfrac{s}{1-s} $, the authors in [1] proved the existence of a solution $ u $ with $ |\nabla u|\in L^p_{loc}(\Omega) $ using a fixed point argument. In the present paper we will use the same approach to get the existence of a solution for $ p\ge 2s $. However, in addition to the regularity condition of $ f $, smallness condition on the source term $ ||f||_{L^m(\Omega)} $ is also needed.

    The paper is organized as follows. In Section 2, we introduce the functional setting and we precise the notion of solutions that we will use throughout this work as the weak sense and the viscosity sense. We give also some useful estimates for weak solutions and the general comparison principle. A non existence result is proved using suitable estimates on the Green function for the fractional Laplacian with drift term.

    The existence of a solution is proved in Section 3. In the Subsection 3.1 we treat the case of natural growth behavior in the gradient term, namely the case $ 1 < p < 2s $. In this case existence of a solution is obtained for all $ L^1 $ datum. As a complement of the result proved in [15], we prove that if $ p > p_* $, the existence of a solution for general measure data $ \nu $ is not true and additional hypotheses on $ \nu $ related to a fractional capacity are needed.

    Problem with a linear zero order reaction term is also analyzed. In such a case we are able to show existence for data in $ L^1 $ and then a breaking of resonance occurs under natural hypotheses on the zero order term and $ p $.

    Some additional regularity results are obtained in the subcritical case $ 1 < p < p_* $.

    The general case, $ p\ge 2s $, is treated in Subsection 3.3. Here and since we will use fixed point theorem, we need to impose some additional condition on the regularity and the size of $ f $. The existence result is obtained in a suitable weighted Sobolev space under additional hypotheses on $ p $. The above existence result holds trivially for the case $ s = 1 $ and then can be seen as an extension of the existence result obtained in [23] in the framework of $ L^m $ datum.

    The analysis of the viscosity solution is done is Section 4 where it is also proved that weak solution is a viscosity solution and viceversa if the data $ f $ is sufficiently regular and $ s $ is close to 1, compare with [28].

    Some related open problems are given in the last section.

    In what follows, $ \Omega $ will denote a bounded, open and $ \mathcal{C}^{2} $ domain in $ \mathbb{R}^{N} $ with bounded boundary, $ N \geq 1 $. We introduce some functional-space notation. By $ USC(\Omega) $, $ LSC(\Omega) $ and $ \mathcal{C}(\Omega) $, we denote the spaces of upper semi-continuous, lower semi continuous and continuous real-valued functions in $ \Omega $, respectively. Moreover, the space $ \mathcal{C}^{k}(\Omega) $, $ k \geq 1 $, is defined as the set of functions which derivatives of orders $ \leq k $ are continuous in $ \Omega $. Also, the Hölder space $ \mathcal{C}^{k, \alpha}(\Omega) $ is the set of $ \mathcal{C}^{k}(\Omega) $ whose $ k- $th order partial derivatives are locally Hölder continuous with exponent $ \alpha $ in $ \Omega $.

    For $ \sigma \in \mathbb{R} $, we define the truncation operator as follows

    $ T_k(\sigma): = \max(-k, \min(k, \sigma)). $

    Finally, for any $ u $, we denote by

    $ u_+ = \max\left\lbrace 0, u \right\rbrace \quad \text{ and } \quad u_{-} = \max\left\lbrace 0, -u \right\rbrace. $

    In order to introduce the notion of distributional solutions, we give some definitions. For $ s \in (\frac12, 1) $ and $ u\in\mathcal{S}(\mathbb{R}^{N}) $, the fractional Laplacian $ (-\Delta)^{s} $ is given by

    $ (-\Delta)^{s}u(x): = \lim\limits_{\epsilon \to 0}(-\Delta)^{s}_{\epsilon}u(x) $

    where

    $ (-\Delta)^{s}_\epsilon u(x): = \int_{\mathbb{R}^{N}}\frac{u(x)-u(y)}{|x-y|^{N+2s}}\chi_{\epsilon}(|x-y|)dy $

    with:

    $ χt(|x|):={0,|x|<t1,|x|t. $

    For larger class of functions the fractional Laplacian can be defined by density. See [17] or [29] for instance.

    Definition 2.1. We say that a function $ \phi \in \mathcal{C}(\mathbb{R}^{N}) $ belongs to $ \mathbb{X}_s(\Omega) $ if and only if the following holds

    supp$ (\phi) \subset \overline{\Omega} $.

    The fractional Laplacian $ (-\Delta)^{s}\phi(x) $ exists for all $ x \in \Omega $ and there is $ C > 0 $ so that $ |(-\Delta)^{s}\phi(x)|\leq C $.

    There is $ \varphi \in L(\Omega, \delta^{s}dx) $ and $ \epsilon_0 > 0 $ so that

    $ |(-\Delta)^{s}_\epsilon \phi(x)|\leq \varphi(x), $

    a.e. in $ \Omega $ and for all $ \epsilon \in (0, \epsilon_0) $.

    Before staring the sense for which solutions are defined, let us recall the definition of the fractional Sobolev space and some of its properties.

    Assume that $ s\in (0, 1) $ and $ p > 1 $. Let $ \Omega \subset {I\!\!R}^N $, then the fractional Sobolev Space $ W^{s, p}(\Omega) $ is defined by

    $ W^{s, p}(\Omega)\equiv \Big\{ \phi\in L^p(\Omega ):\iint_{\Omega \times \Omega }|\phi(x)-\phi(y)|^pd\nu \lt +\infty\Big\}, $

    where $ d\nu = \frac{dxdy}{|x-y|^{N+ps}} $.

    Notice that $ W^{s, p}(\Omega) $ is a Banach Space endowed with the norm

    $ \|\phi\|_{W^{s, p}(\Omega )} = \Big( \int_{\Omega }|\phi(x)|^pdx\Big)^{\frac 1p} +\Big(\iint_{\Omega \times\Omega }|\phi(x)-\phi(y)|^pd\nu\Big)^{\frac 1p}. $

    The space $ W^{s, p}_{0} (\Omega) $ is defined as the completion of $ \mathcal{C}^\infty_0(\Omega) $ with respect to the previous norm.

    If $ \Omega $ is a bounded regular domain, we can endow $ W^{s, p}_{0}(\Omega) $ with the equivalent norm

    $ ||\phi||_{W^{s, p}_{0}(\Omega )} = \Big(\iint_{\Omega \times \Omega }|\phi(x)-\phi(y)|^pd\nu\Big)^{\frac 1p}. $

    Notice that if $ ps < N $, then we have the next Sobolev inequality, for all $ v\in C_{0}^{\infty}({I\!\!R}^N) $,

    $ \iint_{ {I\!\!R}^{2N}} \dfrac{|v(x)-v(y)|^{p}}{|x-y|^{N+ps}}\, dxdy\geq S \Big( \int_{\mathbb{R}^{N}}|v(x)|^{p_{s}^{*}}dx\Big)^{\frac{p}{p^{*}_{s}}}, $

    where $ p^{*}_{s} = \dfrac{pN}{N-ps} $ and $ S\equiv S(N, s, p) $.

    In the following definition, we introduce the class of distributional solutions.

    Assume that $ \nu $ is a bounded Radon measure and consider the problem

    $ {(Δ)sv=ν in Ω,v=0 in RNΩ, $ (2.1)

    Let us begin by precising the sense in which solutions are defined for general class of data.

    Definition 2.2. We say that $ u $ is a weak solution to problem (2.1) if $ u\in L^1(\Omega) $, and for all $ \phi\in \mathbb{X}_s $, we have

    $ \int\limits_\Omega\, u(-\Delta )^s\phi dx = \int\limits_\Omega\, \phi d\nu, $

    where $ \mathbb{X}_s $ is given in Definition 2.1.

    As a consequence of the properties of the Green function, the authors in [16] obtain the following regularity result.

    Theorem 2.3. Suppose that $ s\in (\frac 12, 1) $ and let $ \nu \in \mathfrak{M}(\Omega) $, be a Radon measure such that

    $ \int_\Omega \delta^{\beta}d\nu \lt \infty, \qquad \delta(x): = \text{dist}(x, \Omega^{c}), $

    with $ \beta \in [0, 2s-1) $. Then the problem (2.1) has a unique weak solution $ u $ in the sense of Definition 2.2 such that $ u \in W^{1, q}_0(\Omega) $, for all $ 1\leq q < p^{*}_{\beta} $ where $ p_{*, \beta}: = \frac{N}{N-2s+1+\beta}. $ Moreover

    $ ||u||W1,q0(Ω)C(N,q,Ω)Ωδβdν. $ (2.2)

    For $ \nu \in L^1(\Omega) $, setting $ T: L^1(\Omega)\to W^{1, \theta}_0(\Omega) $, with $ T(f) = u $, then $ T $ is a compact operator.

    Related to $ T_k(u) $ and for $ s > \frac 12 $, we have the next regularity result obtained in [1].

    Theorem 2.4. Assume that $ f\in L^1(\Omega) $ and define $ u $ to be the unique weak solution to problem (2.1), then $ T_k(u)\in W^{1, \alpha }_0(\Omega)\cap H^s_0(\Omega) $ for any $ \alpha < 2s $, moreover

    $ \int\limits_\Omega\, |\nabla T_k(u)|^{ \alpha }\, dx\le Ck^{ \alpha -1}||f||_{L^1(\Omega )}. $

    We recall also the next comparison principle proved in [1]

    Theorem 2.5. (Comparison Principle). Let $ g\in L^1(\Omega) $ and suppose that $ w_1, w_2\in W^{1, q}_0(\Omega) $ for all $ 1 \leq q < \frac{N}{N-2s+1} $ are such that $ (- \Delta)^s w_1, (- \Delta)^s w_2\in L^1(\Omega) $ with

    $ {(Δ)sw1H1(x,w1,w1)+g in Ω,w10 in RNΩ,{(Δ)sw2H1(x,w2,w2)+g in Ω,w20 in RNΩ, $

    where $ H: \Omega \times {I\!\!R}\times {I\!\!R}^N\to {I\!\!R} $ is a Carathéodoty function satisfying

    1) $ H_1(x, w_1, \nabla w_1), H_1(x, w_2, \nabla w_2)\in L^1(\Omega) $,

    2) for a.e. $ x\in \Omega $, we have

    $ H_1(x, w_1, \nabla w_1)-H_1(x, w_2, \nabla w_2) = \langle B(x, w_1, w_2, \nabla w_1, \nabla w_2), \nabla(w_1-w_2)\rangle + f(x, w_1, w_2) $

    with $ B\in (L^{a}(\Omega))^N $, $ a > \frac{N}{2s-1} $ and $ f\in L^1(\Omega) $ with $ f\le 0 $ a.e. in $ \Omega $.

    Then $ w_1\le w_2 $ in $ \Omega $.

    Recall that we are considering problem (1.1), then we have the next definition.

    Definition 2.6. A function $ u \in L^{1}(\Omega) $, with $ |\nabla u|^{p}\in L^{1}_{loc}(\Omega) $, is a distributional solution to problem (1.1) if for any $ \phi \in \mathbb{X}_s(\Omega) $, there holds

    $ \int_\Omega u(-\Delta)^{s}\phi + \int_\Omega\phi |\nabla u|^{p} = \int_\Omega f\phi, $

    and $ u = 0 $ in $ \mathbb{R}^{N}\setminus \Omega $.

    We denote by $ G_s $ the Green kernel of $ (-\Delta)^{s} $ in $ \Omega $ and by $ \mathbb{G}_s[\cdot] $ the associated Green operator defined by

    $ \mathbb{G}_s[f](x): = \int_\Omega G_s(x, y)df(y). $

    See [8] and [14] for the estimates of the Green function.

    Definition 2.7. A function $ u: \Omega \to \mathbb{R} $ is a strong solution to the equation

    $ (-\Delta)^{s}w + |\nabla w|^{p} = f $

    in $ \Omega $ if $ u \in \mathcal{C}^{2s+ \alpha}(\Omega) $, for some $ \alpha > 0 $ and

    $ (-\Delta)^{s}u(x) + |\nabla u(x)|^{p} = f(x) $

    for every $ x $ in $ \Omega $.

    The other class of solutions that we shall consider is the class of viscosity solutions. Unlike the distributional scenario, the notion of viscosity solutions requires the punctual evaluation of the equation using appropriate test functions that touch the solution from above or below. We refer to [5] and [13] for more details.

    Definition 2.8. An upper semicontinuous function $ u: \mathbb{R}^{N} \to \mathbb{R} $ is a viscosity subsolution to (1.1) in $ \Omega $, if $ u \in L_{loc}(\mathbb{R}^{N}) $, and for any open set $ U \subset \Omega $, any $ x_0 \in U $ and any $ \phi \in \mathcal{C}^{2}(U) $ such that $ u(x_0) = \phi(x_0) $ and $ \phi \geq u $ in $ U $, if we let

    $ v(x):={ϕ(x) in Uu(x) outside U, $ (2.3)

    we have

    $ (-\Delta)^{s}\phi(x_0) + |\nabla \phi(x_0)|^{p} \leq f(x_0), $

    and $ v\leq 0 $ in $ \mathbb{R}^{N}\setminus \Omega $. On the other hand, a lower semicontinuous function $ u: \mathbb{R}^{N} \to \mathbb{R} $ is a viscosity supersolution to (1.1) in $ \Omega $ if $ u \in L_{loc}(\mathbb{R}^{N}) $, and for any open set $ U \subset \Omega $, any $ x_0 \in U $ and any $ \psi \in \mathcal{C}^{2}(U) $ such that $ u(x_0) = \psi(x_0) $ and $ \phi \leq u $ in $ U $, if we define $ v $ as

    $ v(x):={ψ(x) in Uu(x) outside U, $ (2.4)

    there holds

    $ (-\Delta)^{s}\psi(x_0) + |\nabla \psi(x_0)|^{p} \geq f(x_0) $

    and $ v\geq 0 $ in $ \mathbb{R}^{N}\setminus \Omega $. Finally, a viscosity solution to (1.1) is a continuous function which is both a subsolution and a supersolution to (1.1).

    To end this section, we prove the next non existence result that justifies in some way the condition $ p < \frac{1}{1-s} $ that we will be used later.

    Theorem 2.9. Assume that $ p > \frac{2s-1}{1-s}N+1 $, then for all $ 0\lvertneqq f\in L^\infty(\Omega) $, problem (1.1) has no weak solution $ u $ in the sense of Definition 2.2, such that $ u\in W^{1, p}_0(\Omega) $.

    Proof. Suppose by contradiction that problem (1.1) has a solution $ u $ with $ u\in W^{1, p}_0(\Omega) $. It is clear that $ u $ solves the problem

    $ (- \Delta )^s u +\langle B(x), \nabla u\rangle = f, $

    where $ B(x) = |\nabla u|^{p-2}\nabla u $. Since $ p > \frac{2s-1}{1-s}N+1 $, then $ |B|\in L^\sigma (\Omega) $ with $ \sigma > \frac{N}{2s-1} $ and then $ B\in \mathcal{K}^{s}_N(\Omega) $ the Kato class of function defined by formula (30) in [8]. Thus

    $ u(x) = \int\limits_\Omega\, \hat{\mathcal{G}}_s(x, y)f(y)dy, $

    where $ \hat{\mathcal{G}}_s $ is the Green function associated to the operator $ (- \Delta)^s +B(x)\nabla $. From the result of [8], we know that $ \hat{\mathcal{G}}_s\simeq \mathcal{G}_s $, the Green function associated to the fractional laplacian. Hence

    $ \mathcal{G}_s(x, y)\simeq C(B)\frac{1}{|x-y|^{N-2s}}\bigg(\frac{\delta ^s(x)}{|x-y|^{s}}\wedge 1\bigg) \bigg(\frac{\delta ^s(y)}{|x-y|^{s}}\wedge 1\bigg). $

    Using the fact that $ \dfrac{\delta ^s(x)}{|x-y|^{s}}\ge C(\Omega)\delta ^s(x) $, we reach that

    $ u(x)\ge C(B) \delta ^s(x) \int\limits_\Omega\, f(y) \delta (y)\, dy. $

    Therefore, using the Hardy inequality we deduce that

    $ \frac{\delta ^{sp}}{\delta ^p}\le C\frac{u^p}{\delta ^p}\in L^1(\Omega ). $

    Thus $ \dfrac{1}{\delta ^{p(1-s)}}\in L^1(\Omega) $. Since $ p(1-s)\ge 1 $, then we reach a contradiction.

    Corollary 2.10. Let $ f $ be a Lipschitz function such that $ f\gneqq 0 $, then if $ p > \frac{1}{1-s} $, problem (1.1) has no solution $ u $ such that $ u\in \mathcal{C}^1(\Omega) $ with $ |\nabla u|\in L^p(\Omega) $.

    Remark 2.11. It is clear that the above result makes a significative difference with the local case and the general existence result proved in [23] for Lipschitz function. We conjecture that the non existence result holds at least for all $ p > \frac{1}{s-1} $ as in the case of gradient reaction term.

    In this section we consider the case of natural growth in the gradient, namely we will assume that $ p < 2s $. Then using truncating arguments, we are able to show the existence of a solution to problem (1.1) for a large class of data. We also treat the case where a linear reaction term appears in (1.1).

    In the case where $ p < p_* $, then for more regular data $ f $, we can show that the solution is in effect a classical solution.

    Theorem 3.1. Let $ f \in L^{m}(\Omega) $ with $ m \geq 1 $, and assume that $ 1 < p < p_{*} $. Then, the Dirichlet problem

    $ {(Δ)sw+|w|p=fin Ωw=0in RNΩ, $

    has a unique distributional solution $ w $ verifying

    if $ m < \frac{N}{2s-1} $, then $ |\nabla w| \in L^{q}_{loc}(\Omega) $ for all $ 1\leq q < \frac{mN}{N-m(2s-1)} $;

    if $ m = \frac{N}{2s-1} $, then $ |\nabla w| \in L^{q}_{loc}(\Omega) $ for all $ 1 \leq q < \infty $;

    if $ m > \frac{N}{2s-1} $, then $ |\nabla w |\in \mathcal{C}^{\alpha}(\Omega) $ for some $ \alpha \in (0, 1) $.

    Moreover, if in addition $ f \in \mathcal{C}^{\epsilon}(\Omega) $, for some $ \epsilon \in (0, 2s-1) $, then the $ \mathcal{C}^{1, \alpha} $ distributional solution is a strong solution.

    Proof. It is clear that the existence and the uniqueness follow using [15,1], however, the regularity in the local Sobolev space follows using Proposition 1.2. Notice that, in this case $ |\nabla u|^{p-1}\in L^\sigma (\Omega) $ with $ \sigma > \frac{N}{2s-1} $ and then we can iterate the local regularity result in Proposition 1.2 to deduce that $ |\nabla u|\in L^\theta_{loc}(\Omega) $ for all $ \theta > 0 $. Hence $ |\nabla u|\in \mathcal{C}^{a}(\Omega) $ for some $ a < 1 $.

    Now, assume that $ f \in \mathcal{C}^{\epsilon}(\Omega) $, and let $ \Omega' \Subset \Omega $, open and let $ u $ be a distributional solution to problem (1.1). Since $ u \in L^{\infty}(\mathbb{R}^{N}) $ and $ f-|\nabla u|^{p} \in L^{\infty}(\Omega') $, we apply Proposition 2.3 in [27] to derive

    $ uCβ(Ω), for all β(0,2s),ΩΩ. $

    In particular, we have $ |\nabla u| \in \mathcal{C}^{\beta-1}(\Omega'') $ for any $ \beta \in (1, 2s) $. Consequently, $ f- |\nabla u|^{p} \in \mathcal{C}^{\epsilon}(\Omega'') $. Appealing now to Corollary 2.4 in [27], we obtain $ u \in \mathcal{C}^{2s+\epsilon} $ in a smaller subdomain of $ \Omega'' $. Thus, $ u \in \mathcal{C}^{2s+\epsilon} $ locally in $ \Omega $.

    We prove that $ u $ is a strong solution. Since the term $ f-|\nabla u|^{p} $ is $ \mathcal{C}^{\epsilon} $ in $ \Omega $, and then, by appropriate extension, in $ \overline{\Omega} $, we deduce from [16,Lemma 2.1(ⅱ)] that $ u \in \mathbb{X}_s $. Hence the integration by parts formula

    $ \int_\Omega u(-\Delta)^{s}\phi = \int_\Omega\phi(-\Delta)^{s}u $

    holds for all $ \phi \in \mathbb{X}_s $. For any $ \phi \in \mathcal{C}^{\infty}_0(\Omega) $ we hence obtain

    $ Ωϕ(Δ)su=Ωu(Δ)sϕ=ΩfϕΩ|u|pϕ. $

    Therefore

    $ (-\Delta)^{s}u(x) = f(x)-|\nabla u(x)|^{p} $

    for almost everywhere $ x $ in $ \Omega $. By continuity, it holds in the full set $ \Omega $.

    Remark 3.2. Observe that the reasoning employed to prove the above result gives the precise way in which the function $ f $ transfers its regularity to a solution $ u $. Indeed, if $ f \in \mathcal{C}^{2ns+\epsilon -n} $ locally in $ \Omega $, for $ \epsilon \in (0, 2s-1) $ and $ n \geq 0 $, then $ u \in \mathcal{C}^{2(n+1)s + \epsilon -n} $ locally in $ \Omega $.

    In this subsection we will assume that $ p_*\le p < 2s $, then the first existence result for problem (1.1) is the following.

    Theorem 3.3. Assume that $ p < 2s $, then for all $ f\in L^1(\Omega) $ with $ f\ge 0 $, the problem (1.1) has a maximal weak solution $ u $ such that $ u\in W^{1, p}_0(\Omega) $ and $ T_k(u)\in W^{1, \alpha }_0(\Omega)\cap H^s_0(\Omega) $ for any $ 1 < \alpha < 2s $ and for all $ k > 0 $.

    Proof. We divide the proof into two steps.

    The first step: We show for a fixed positive integer $ n\in {I\!\!N}^* $, the problem

    $ {(Δ)sun+|un|p1+1n|un|p=f in Ω,un=0 in RNΩ. $ (3.1)

    has a unique solution $ u_n $ such that $ u_n\in W^{1, q}_0(\Omega) $ for all $ 1\le q < \frac{N}{N-2s+1} $ and $ T_k(u_n)\in H^s_0(\Omega) $. To prove that, we proceed by approximation.

    Let $ k\in {I\!\!N}^* $ and define $ u_{n, k} $ to be the unique solution to the approximating problem

    $ {(Δ)sun,k+|un,k|p1+1n|un,k|p=fk in Ω,un,k=0 in RNΩ. $ (3.2)

    where $ f_k = T_k(f) $. We claim that the sequence $ \{u_{n, k}\}_k $ is increasing in $ k $, namely $ u_{n, k}\le u_{n, k+1} $ for all $ k\ge 1 $ and $ n $ fixed. To see that, we have

    $ (- \Delta )^s u_{n, k+1} + \dfrac{|\nabla u_{n, k+1}|^p}{1+\frac 1n |\nabla u_{n, k+1}|^p}\ge f_k. $

    Thus $ u_{n, k+1} $ is a supersolution the problem solved by $ u_{n, k} $. Setting $ H(x, s, \xi) = -\dfrac{|\xi|^p}{1+\frac 1n |\xi|^p} $, then by the comparison principle in Theorem 2.5, it follows that $ u_{n, k}\le u_{n, k+1} $ and then the claim follows. It is clear that $ u_{n, k}\le w $ for all $ n, k\in {I\!\!N}^* $ where $ w $ is the unique solution to problem

    $ {(Δ)sw=f in Ω,w=0 in RNΩ. $ (3.3)

    Notice that $ w\in W^{1, q}_0(\Omega) $ for all $ 1\le q < \frac{N}{N-2s+1} $ and $ w\in L^r(\Omega) $ for all $ 1\le r < \frac{N}{N-2s} $.

    Hence, we get the existence of $ u_n $ such that $ u_{n, k}\uparrow u_n $ strongly in $ L^{\sigma }(\Omega) $ for all $ 1\le \sigma < \frac{N}{N-2s} $.

    For $ n $ fixed, we set $ h_{n, k}: = f_{k}-\dfrac{|\nabla u_{n, k}|^p}{1+\frac 1n |\nabla u_{n, k}|^p} $, then $ |h_{n, k}|\le f+n $. Thus $ ||h_{n, k}||_{L^1(\Omega)}\le ||f||_{L^1(\Omega)}+n|\Omega | $. Hence using the compactness result in Theorem 2.3 we deduce that up to a subsequence, $ u_{n, k}\to u_n $ strongly in $ W^{1, \alpha }_0(\Omega) $ for all $ \alpha < \frac{N}{N-2s+1} $. Since the sequence $ \{u_{k, n}\}_k $ is increasing in $ k $, then the limit $ u_n $ is unique. Thus, up to a further subsequence, $ \nabla u_{n, k}\to \nabla u_n $ a.e. in $ \Omega $. Hence using the dominated convergence Theorem it holds that

    $ \dfrac{|\nabla u_{n, k}|^p}{1+\frac 1n |\nabla u_{n, k}|^p}\to \dfrac{|\nabla u_{n}|^p}{1+\frac 1n |\nabla u_{n}|^p}\mbox{ strongly in }L^a(\Omega )\mbox{ for all }a \lt \infty. $

    Hence $ u_n $ solves the problem (3.1). To proof the uniqueness of $ u_n $, we assume that $ v_n $ is another solution to problem (3.1), then

    $ (- \Delta )^s(u_n-v_n) = \hat{H}(|\nabla u_n|)-\hat{H}(|\nabla v_n|), $

    where $ \hat{H}(|\xi|) = -\dfrac{|\xi|^p}{1+\frac 1n |\xi|^p} $. Since $ |\hat{H}(|\xi|)|\le n $, then we obtain that $ u_n-v_n\in L^\infty(\Omega) $. Finally using the comparison principle in Theorem 2.5 it follows that $ u_n = v_n $ and then we conclude.

    Second step: Consider the sequence $ \{u_n\}_n $ obtained in the first step, then we know that $ u_n\le w $ for all $ n $. We claim that $ u_n $ is decreasing in $ n $. Recall that $ u_n $ is the unique solution to the problem

    $ {(Δ)sun+|un|p1+1n|un|p=f in Ω,un=0 in RNΩ. $ (3.4)

    Thus

    $ (-\Delta)^s u_n +\dfrac{|\nabla u_n|^p}{1+\frac 1{n+1} |\nabla u_n|^p}\ge f. $

    Hence $ u_n $ is a supersolution to the problem solved by $ u_{n+1} $. As a consequence and using the comparison principle in Theorem 2.5, it follows that $ u_{n+1}\le u_{n}\le w $ for all $ n $.

    Hence, there exists $ u $ such that $ u_n\downarrow u $ strongly in $ L^{\sigma }(\Omega) $ for all $ 1\le \sigma < \frac{N}{N-2s} $.

    We set $ g_n(|\nabla u_n|) = \dfrac{|\nabla u_n|^p}{1+\frac 1n |\nabla u_n|^p} $, and let $ j > 0 $, using $ T_j(u_n) $ as a test function in (3.4) it follows that

    $ \iint_{D_\Omega }\frac{(T_{j}(u_n(x))-T_{j}(u_n(y)))^2}{|x-y|^{N+2s}}\, dxdy + \int\limits_\Omega\, g_n(|\nabla u_n|) T_j(u_n) dx \leq Cj . $

    Hence $ \{T_j(u_n)\}_n $ is bounded in $ H^s_0(\Omega) $ for all $ j > 0 $ and then, up to a subsequence, we have $ T_j(u)\rightharpoonup T_j(u) $ weakly in $ H^s_0(\Omega) $. We claim that $ \{g_n\}_n $ is bounded in $ L^1(\Omega) $. To see that, we fix $ \varepsilon > 0 $ and we use $ v_{n, \varepsilon } = \frac{u_n}{\varepsilon +u_n} $ as a test function in (3.4). It is clear that $ v_{n, \varepsilon }\le 1 $, then taking into consideration that

    $ (u_n(x)-u_n(y))(v_{n, \varepsilon }(x)-v_{n, \varepsilon }(y))\ge 0, $

    it follows that

    $ \int\limits_\Omega\, g_n(|\nabla u_n|)v_{n, \varepsilon }(x)\le \int\limits_\Omega\, f dx\le C. $

    Letting $ \varepsilon \to 0 $, we reach that $ \int\limits_\Omega\, g_n(|\nabla u_n|)dx\le C $ an the claim follows. Define $ h_n = f-g_n $, then $ ||h_n||_{L^1(\Omega)}\le C $. As a consequence and by the compactness result in Theorem 2.3, we reach that, up to a subsequence, $ u_n\to u $ strongly in $ W^{1, \alpha }_0(\Omega) $ for all $ 1\le \alpha < \frac{N}{N-2s+1} $ and then, up to an other subsequence, $ \nabla u_n\to \nabla u $ a.e in $ \Omega $. Hence $ g_n\to g $ a.e. in $ \Omega $ where $ g(x) = |\nabla u|^p $. Since $ p < 2s $, then by Theorem 2.4 and using Vitali Lemma we conclude that

    $ T_k(u_n)\to T_k(u)\mbox{ strongly in } W^{1, \sigma }_0(\Omega ) \mbox{ for all }\sigma \lt 2s. $

    In particular

    $ Tk(un)Tk(u) strongly in W1,p0(Ω). $ (3.5)

    Hence to get the existence result we have just to show that $ g_n\to g $ strongly in $ L^1(\Omega) $.

    Notice that, using $ T_1(G_j(u_n)) $ as a test function in (3.4) it holds that

    $ \int_{u_n\ge j+1}g_ndx\le \int_{u_n\ge j}f dx\to 0\mbox{ as }j\to \infty. $

    Let $ \varepsilon > 0 $ and consider $ E\subset \Omega $ to be a measurable set, then

    $ Egndx={E{un<j+1}}gndx+{E{unj+1}}gndx{E{un<j+1}}|Tj+1(un)|pdx+{unj+1}fdx. $

    By (3.5), letting $ n\to \infty $, we can chose $ |E| $ small enough such that

    $ \limsup\limits_{n\to \infty}\int_{\{E\cap \{u_n \lt j+1\}\}} |\nabla T_{j+1}(u_n)|^p dx\le \frac{\varepsilon }{2}. $

    In the same way and since $ f\in L^1(\Omega) $, we reach that

    $ \limsup\limits_{n\to \infty}\int_{\{u_n\ge j+1\}} fdx\le \frac{\varepsilon }{2}. $

    Hence, for $ |E| $ small enough, we have

    $ \limsup\limits_{n\to \infty}\int_E g_n dx\le \varepsilon . $

    Thus by Vitali lemma we obtain that $ g_n\to g $ strongly in $ L^1(\Omega) $. Therefore we conclude that $ u $ is a solution to problem (1.1).

    If $ \hat{u} $ is an other solution to (1.1), then

    $ (-\Delta)^s \hat{u} +\dfrac{| \nabla\hat{u}|^p}{1+\frac 1n | \nabla\hat{u}|^p}\le f. $

    Hence $ \hat{u}\le u_n $ and then $ \hat{u}\le u $.

    Remark 3.4. 1) The existence of a unique solution to the approximating problem (3.4) holds for all $ p\ge 1 $.

    2) Problem of uniqueness of solution to problem (1.1) is an interesting open problem including for the local case $ s = 1 $ where partial results are known in the case $ 1 < p < \frac{N}{N-1} $ or $ p = 2 $.

    3) As a consequence of the previous result and following closely the same argument we can prove that for all $ p < 2s $, for all $ a > 0 $ and for all $ (f, g)\in L^1(\Omega)\times L^1(\Omega) $ with $ f, g\gneqq 0 $, the problem

    $ {(Δ)su+|u|p=g(x)u1+au+f in Ω,u=0 in RNΩ. $ (3.6)

    has a positive solution $ u $.

    In the case where the datum $ f $ is substituted by a Radon measure $ \nu $, existence of solutions holds for all $ 1 < p < p_* $ as it was proved in [15]. However, if $ p\ge p_* $, then the situation changes completely as in the local case, and, additional hypotheses on $ \nu $ related to a fractional capacity $ \text{Cap}_{\sigma, p} $ are needed, with $ \sigma < 1 $.

    The fractional capacity $ \text{Cap}_{\sigma, p} $ is defined as follow.

    For a compact set $ K\subset \Omega $, we define

    $ Capσ,p(K)=inf{ψWσ,p0(Ω):ψWσ,p0(Ω),0ψ1 and  ψχK a.e. inΩ}. $ (3.7)

    Now, if $ U\subset \Omega $ is an open set, then

    $ Capσ,p(U)=sup{Capσ,p(K):KU compact of Ω with KU}. $

    For any borel subset $ B\subset \Omega $, the definition is extended by setting:

    $ Capσ,p(B)=inf{Capσ,p(U), U open subset of ΩBU}. $

    Notice that, using Sobolev inequality, we obtain that if $ \text{Cap}_{\sigma, p}(A) = 0 $ for some set $ A\subset \subset \Omega $, then $ |A| = 0 $. We refer to [24] and [31] for the main properties of this capacity.

    To show that the situation changes for the set of general Radon measure, we prove the next non existence result.

    Theorem 3.5. Assume that $ p > p_* $, $ \frac 12 < s < 1 $ and let $ x_0\in \Omega $, then the problem

    $ {(Δ)su+|u|p=δx0in Ω,u=0 in RNΩ, $ (3.8)

    has non solution $ u $ such that $ u\in W^{1, p}_0(\Omega) $.

    Proof. For simplify of tipping we assume that $ x_0 = 0\in \Omega $ and we write $ \delta $ for $ \delta _0 $. We follow closely the argument used in [4]. Assume by contradiction that for some $ p > p_* $, problem (3.8) has a solution $ u\in W^{1, p}_0(\Omega) $. Then $ u\in W^{\sigma, p}_0(\Omega) $ for all $ \sigma < 1 $. We claim that $ (-\Delta)^s u \in W^{-\sigma, p}(\Omega) $, the dual space of $ W^{\sigma, p}_0(\Omega) $, for all $ \sigma \in (2s-1, 2s) $. To see that, we consider $ \phi\in \mathcal{C}^\infty_0(\Omega) $, then

    $ |Ω(Δ)suϕdx|IR2N|u(x)u(y)||ϕ(x)ϕ(y)||xy|N+2sdxdy(IR2N|u(x)u(y)|p|xy|N+p(2sσ)dxdy)1p(IR2N|ϕ(x)ϕ(y)|p|xy|N+pσdxdy)1p. $

    Since $ 2s-\sigma \in (0, 1) $, then $ \bigg(\iint_{ {I\!\!R}^{2N}} \dfrac{|u(x)-u(y)|^p}{|x-y|^{N+p(2s-\sigma)}}\, dxdy\bigg)^{\frac{1}{p}} \le C(\sigma, s, N, \Omega)||u||_{W^{1, p}_0(\Omega)} $. Thus

    $ | \int\limits_\Omega\, (-\Delta)^s u \phi dx| \le C ||u||_{W^{1, p}_0(\Omega )} ||\phi||_{W^{\sigma , p'}_0(\Omega )}, $

    and then the claim follows. Hence going back to problem (3.8), we deduce that $ \delta \in L^1(\Omega)+W^{-\sigma, p}(\Omega) $.

    As in [7], let us now show that if $ \nu\in W^{-\sigma, p}(\Omega) $, then $ \nu < < \text{Cap}_{\sigma, p'} $. Notice that, if in addition, $ \nu $ is nonnegative, then we can prove that

    $ ν(A)C(Capσ,p(A))1p, $

    and we deduce easily that $ \nu < < \text{Cap}_{\sigma, p'} $. Here we give the proof without the positivity assumption on $ \nu $.

    Let $ A\subset\subset \Omega $ be such that $ \text{Cap}_{\sigma, p'}(A) = 0 $, then there exists a Borel set $ A_0 $ such that $ A\subset A_0 $ and $ \text{Cap}_{\sigma, p'}(A_0) = 0 $. Let $ K\subset A_0 $ be a compact set, then there exists a sequence $ \{\psi_n\}_n\in \mathcal{C}^\infty_0(\Omega) $ such that $ 0\le \psi_n\le 1 $, $ \psi_n\ge \chi_K $ and $ ||\psi_n||^{p'}_{W^{\sigma, p'}_0(\Omega)}\to 0 $ as $ n\to \infty $. It is clear that $ \psi_n\to \chi_K $ a.e in $ \Omega $, as $ n\to \infty $. Hence

    $ \nu (K) = \lim\limits_{n\to \infty}\int \psi_n d\nu = \lim\limits_{n\to \infty}\langle \psi_n, \nu\rangle_{W^{\sigma , p'}_0(\Omega ), W^{-\sigma , p}_0(\Omega )}. $

    Thus

    $ |\nu (K)|\le \limsup\limits_{n\to \infty}|\langle \psi_n, \nu\rangle_{W^{\sigma , p'}_0(\Omega ), W^{-\sigma , p}_0(\Omega )}|\le \limsup\limits_{n\to \infty} ||\nu||_{W^{-\sigma , p}_0(\Omega )} ||\psi_n||_{W^{\sigma , p'}_0(\Omega )} = 0. $

    Therefore, we conclude that for any compact set $ K\subset A_0 $, we have $ |\nu (K)| = 0 $. Hence $ |\nu (A_0)| = 0 $ and the result follows.

    Notice that if $ h\in L^1(\Omega) $, then $ |h| < < \text{Cap}_{\sigma, p'} $. As a conclusion, we deduce that $ \delta < < \text{Cap}_{\sigma, p'} $ for all $ \sigma \in (2s-1, 2s) $.

    Since $ p > p_* $, we can choose $ \sigma _0\in (2s-1, 2s) $ such that $ p'\sigma _0 < N $. To end the proof, we have just to show that $ \text{Cap}_{\sigma _0, p'}\{0\} = 0 $. Without loss of generality, we can assume that $ \Omega = B_1(0) $. Since $ \sigma p' < N $, setting $ w(x) = (\dfrac{1}{|x|^ \alpha }-1)_+ $ with $ 0 < \alpha < \frac{N-\sigma _0 p'}{p'} $, we obtain that $ w\in W^{\sigma, p'}_0(\Omega) $. Notice that, for all $ v\in W^{\sigma, p'}_0(\Omega) $, we know that

    $ \text{Cap}_{\sigma , p'}\{|v|\ge k\}\le \frac{C}{k}||v||_{W^{\sigma , p'}_0(\Omega )}. $

    Since $ w(0) = \infty $, then $ \{0\}\subset \{|w|\ge k\} $ for all $ k > 0 $. Thus

    $ \text{Cap}_{\sigma , p'}\{0\}\le \frac{C}{k}||w||_{W^{\sigma , p'}_0(\Omega )}\mbox{ for all }k. $

    Letting $ k\to \infty $, it holds that $ \text{Cap}_{\sigma, p'}\{0\} = 0 $ and the result follows.

    As a direct consequence of the above Theorem we obtain that for $ p > p_* $, to get the existence of a solution to problem (1.1) with measure data $ \nu $, then necessarily $ \nu $ is continuous with respect to the capacity $ \text{Cap}_{\sigma, p} $ for all $ \sigma \in (2s-1, 2s) $.

    Let consider now the next problem

    $ {(Δ)su+|u|p=λg(x)u+f in Ω,u=0 in RNΩ. $ (3.9)

    with $ g\gneqq 0 $ and $ \lambda > 0 $. As in local case studied in [3], we can show that under natural conditions on $ q $ and $ g $, the problem (3.9) has a solution for all $ \lambda > 0 $. Moreover, the gradient term $ |\nabla u|^q $ produces a strong regularizing effect on the problem and kills any effect of the linear term $ \lambda g u $.

    Before stating the main existence result for problem (3.9), let us begin by the next definition.

    Definition 3.6 Let $ g $ be a nonnegative measurable function such that $ g\in L^1(\Omega) $. We say that $ g $ is an admissible weight if

    $ C(g,p)=infϕW1,p0(Ω){0}(Ω|ϕ|pdx)1pΩg|ϕ|dx>0. $ (3.10)

    $ \bullet $ If $ g \in L^{\frac{p N}{N(p-1)+p}}(\Omega) $ with $ g\gneqq 0 $, then using the Sobolev inequality in the space $ W^{1, p}_0(\Omega) $, it holds that $ g $ satisfies (3.10).

    $ \bullet $ If $ p < N $ and $ g(x) = \frac{1}{|x|^\sigma } $ with $ \sigma < 1+\frac{N}{p'} $, then using the Hardy-Sobolev inequality in the space $ W^{1, p}_0(\Omega) $, we deduce that $ g $ satisfies (3.10).

    Now, we are able to state the next result.

    Theorem 3.7. Assume that $ 1 < p < 2s $ and suppose that $ g $ is an admissible weight in the sense given in (3.10). Then for all $ f\in L^1(\Omega) $ with $ f\ge 0 $ and for all $ \lambda > 0 $, the problem (3.9) has a solution $ u $ such that $ u\in W^{1, p}_0(\Omega) $ and $ T_k(u)\in W^{1, \alpha }_0(\Omega)\cap H^s_0(\Omega) $ for any $ 1 < \alpha < 2s $ and for all $ k > 0 $.

    Proof. Fix $ \lambda > 0 $ and define $ \{u_n\}_n $ to be a sequence of positive solutions to problem

    $ {(Δ)sun+|un|p=λg(x)un1+1nun+f in Ω,un=0 in RNΩ. $ (3.11)

    To reach the desired result we have just to show that the sequence $ \{g(x)\dfrac{u_n}{1+\frac 1n _nu}\}_n $ is uniformly bounded in $ L^1(\Omega) $. To do that, we use $ T_k(u_n) $ as a test function in (3.11), hence

    $ ||Tk(un)||2Hs0(Ω)+Ω|un|pTk(un)dxkλΩg(x)undx+kfL1(Ω). $ (3.12)

    It is clear that

    $ \int\limits_\Omega\, |\nabla u_n|^p T_k(u_n) = \int\limits_\Omega\, |\nabla H_k(u_n)|^p dx $

    where $ H_k(\sigma) = \int_0^ \sigma(T_k(t))^{\frac{1}{p}}dt $. By a direct computation we obtain that

    $ H_k(\sigma )\ge C_1(k)\sigma -C_2(k), $

    Thus using (3.10) for $ H_k(u_n) $ it holds that

    $ Ω|Hk(un)|pdxC(g,p)(ΩgHk(un)dx)pC(g,p)[C1(k)(Ωgundx)pC2(k)] $

    where $ C_1(k), C_2(k) > 0 $ are independent of $ n $.

    Therefore, going back to (3.12), we conclude that

    $ C_1(k) \bigg( \int\limits_\Omega\, g u_n dx\bigg)^p dx\le \frac{k}{C(g, p)}\left[\lambda \int\limits_\Omega\, g(x) u_n dx + \| f\|_{L^{1}(\Omega)}\right] + C_2(k). $

    Since $ p > 1 $, then by Young inequality we reach that $ \{g u_n\}_n $ is uniformly bounded in $ L^1(\Omega) $. The rest of the proof follows exactly the same compactness arguments as in the proof of Theorem 3.3.

    Remark 3.8. $ \bullet $ In the case where $ g(x) = \dfrac{1}{|x|^{2s}} $, the Hardy potential, the condition (3.10) holds if $ p > \frac{N}{N-(2s-1)} $. Thus, in this case and for all $ \lambda > 0 $, problem (3.9) has a solution $ u $ such that $ u\in W^{1, p}_0(\Omega) $ and $ T_k(u)\in W^{1, \alpha }_0(\Omega)\cap H^s_0(\Omega) $ for all $ \alpha < 2s $.

    $ \bullet $ Notice that, in this case, without the absorption term $ |\nabla u|^p $, the existence of solution holds under the restriction $ \lambda \le \Lambda_{N, s} $, where $ \Lambda_{N, s} $ is the Hardy constant, and with integral condition on the datum $ f $ near the origin. We refer to [2] for more details.

    For $ 2s\le p < \dfrac{s}{1-s} $ and in the same way as above we can show the next existence result.

    Theorem 3.9. Suppose that $ f \in L^{m}(\Omega) $ with $ m > N/[p'(2s-1)] $. Then there is $ \lambda^* > 0 $ such that if $ ||f||_{L^m(\Omega)}\le \lambda ^* $, problem (1.1) admits a solution $ u\delta ^{1-s}\in W_0^{1, p}(\Omega) $.

    Proof. The proof follows closely the argument used in [19] and [1], however, for the reader convenience we include here some details.

    Without loss of generality we can assume that $ N\ge 2 $. Fix $ \lambda ^* > 0 $ such that if $ ||f||_{L^m(\Omega)}\le \lambda ^* $, then there exists $ l > 0 $ satisfies

    $ \bar{C}(\Omega , N, s, m, p)(l+||f||_{L^m(\Omega )}) = l^{\frac{1}{p}}, $

    where $ \bar{C}(\Omega, N, s, m, p) $ is a positive constant which only depends on the data, it is independent of $ f $ and its will be specified below.

    Define now the set

    $ E={vW1,10(Ω):vδ1sW1,pm0(Ω) and (Ω|(vδ1s)|pmdx)1pml12s}, $ (3.13)

    It is clear that $ E $ is a closed convex set of $ W^{1, 1}_0(\Omega) $. Using Hardy inequality in (1.6), we deduce that if $ v\in E $, then $ |\nabla v|^{pm}\delta ^{pm(1-s)}\in L^1(\Omega) $ and

    $ \bigg( \int\limits_\Omega\, |\nabla v|^{pm}\, \delta ^{pm(1-s)}dx\bigg)^{\frac{1}{pm}}\le \hat{C}_0(\Omega )l^{\frac{1}{p}}. $

    Define now the operator

    $ T:EW1,10(Ω)vT(v)=u $

    where $ u $ is the unique solution to problem

    $ {(Δ)su=|v|p+f in Ω,u=0 in RNΩ,u>0 in Ω. $ (3.14)

    To prove that $ T $ is well defined we will use Theorem 2.3, namely we show the existence of $ \beta < 2s-1 $ such that $ \bigg|f-|\nabla v|^{p}\bigg|\delta ^\beta \in L^1(\Omega) $. To do that we have just to show that $ |\nabla v|^{p}\delta ^\beta \in L^1(\Omega) $.

    It is cleat that $ |\nabla v|^{p}\in L^1_{loc}(\Omega) $, moreover, we have

    $ \int\limits_\Omega\, |\nabla v|^{p}\delta ^\beta dx = \int\limits_\Omega\, |\nabla v|^{p}\delta ^{p(1-s)}\delta ^{\beta-p(1-s)}dx\le \bigg( \int\limits_\Omega\, |\nabla v|^{pm}\delta ^{pm(1-s)}dx\bigg)^{\frac{1}{m}} \bigg( \int\limits_\Omega\, \delta ^{(\beta-p(1-s))m'}dx\bigg)^{\frac{1}{m'}}. $

    If $ p(1-s) < 2s-1 $, we can chose $ \beta < 2s-1 $ such that $ p(1-s) < \beta $. Hence $ \int\limits_\Omega\, \delta ^{(\beta-p(1-s))m'}dx < \infty $.

    Assume that $ p(1-s)\ge 2s-1 $, then $ s\in (\frac{1}{2}, \frac{p+2}{p+1}] $. Notice that, since $ p < \frac{s}{1-s} $, then $ p(1-s)-(2s-1) < 1-s $. Since $ m > \frac{N}{p'(2s-1)} > \frac{1}{s} $, then $ (p(1-s)-(2s-1))m' < 1 $. Hence we get the existence of $ \beta < 2s-1 $ such that $ (p(1-s)-\beta)m' < 1 $ and then we conclude.

    Then using the fact that $ v\in E $, we reach that $ |\nabla v|^{p}\delta ^\beta +f \in L^1(\Omega) $. Therefore the existence of $ u $ is a consequence of Theorems 2.3 and 1.1. Moreover, $ |\nabla u|\in L^{ \alpha }(\Omega) $ for all $ \alpha < \frac{N}{N-2s+1+\beta} $. Hence $ T $ is well defined.

    Now following the argument used in [1], for $ l $ defined as above and using the regularity result in Theorem 1.1 where we choose the constant $ \bar{C} $ strongly related to the constant $ \hat{C} $ defined in formula (1.4), we can prove that $ T $ is continuous and compact on $ E $ and that $ T(E)\subset E $. For the reader convenience we included some details

    We have

    $ u(x) = \int\limits_\Omega\, \mathcal{G}_s(x, y)f(y))dy- \int\limits_\Omega\, \mathcal{G}_s(x, y)|\nabla v(y)|^{2s}dy, $

    then

    $ \nabla u(x) = \int\limits_\Omega\, \nabla _x\mathcal{G}_s(x, y)f(y))dy- \int\limits_\Omega\, \nabla _x\mathcal{G}_s(x, y)|\nabla v(y)|^{p}dy. $

    Thus

    $ |\nabla u(x)|\le \int\limits_\Omega\, \frac{|\nabla _x \mathcal{G}_s(x, y)|}{\mathcal{G}_s(x, y)}\mathcal{G}_s(x, y) (|\nabla v(y)|^{p} dy+f(y))dy. $

    Taking into consideration the properties of the Green function, it holds that

    $ |u(x)|δ1sC2(Ω,N,s)(I1(x)+I2(x)+J1(x)+J2(x)), $

    where

    $ I_1(x) = \delta ^{1-s}(x)\int_{\{|x-y| \lt \delta (x)\}} \frac{\mathcal{G}_s(x, y)}{|x-y|}|\nabla v(y)|^{2s} dy, $
    $ I_2(x) = \frac{1}{\delta ^s(x)} \int_{\{|x-y|\ge \delta (x)\}} \mathcal{G}_s(x, y)|\nabla v(y)|^{2s} dy, $
    $ J_1(x) = \delta ^{1-s}(x)\int_{\{|x-y| \lt \delta (x)\}} \frac{\mathcal{G}_s(x, y)}{|x-y|}f(y)dy, $

    and

    $ J_2(x) = \frac{1}{\delta ^s(x)} \int_{\{|x-y|\ge \delta (x)\}} \mathcal{G}_s(x, y)f(y) dy. $

    Following the arguments used in [1] and using the regularity result in Theorem 2.3, we get the existence of a positive constant $ \breve{C}: = \breve{C}(\Omega, N, s, m) $ such that $ I_i, J_i\in L^{pm}(\Omega) $ for $ i = 1, 2 $ and

    $ ||I_i||_{L^{pm}(\Omega )} +||J_i||_{L^{pm}(\Omega )}\le \breve{C}\bigg(|||\nabla v|\delta ^{1-s}||_{L^{pm}(\Omega )}+ ||f||_{L^m(\Omega )}\bigg). $

    Hence assuming that $ \bar{C}(\Omega, N, s, m, p) = \breve{C}(\Omega, N, s, m, p)C_2(\Omega, N, s, m, p) $, it follows that

    $ |||v|δ1s||Lpm(Ω)˘C(Ω,N,s,m,p)C2(Ω,N,s,m,p)(|||v|δ1s||Lpm(Ω)+||f||Lm(Ω))ˉC(Ω,N,s,m,p)(l1p+||f||Lm(Ω))=l1p. $

    Thus $ u\in E $ and then $ T(E)\subset E $. In the same way we can prove that $ T $ is compact.

    Therefore by the Schauder Fixed Point Theorem, there exists $ u\in E $ such that $ T(u) = u $. Thus, $ u\in W^{1, pm}_{loc}(\Omega) $ solves (1.1), at least in the sense of distribution.

    Remark 3.10. 1) It is clear that the above argument does not take advantage of the fact that the gradient term appears as an absorption term.

    2) The existence of a solution can be also proved independently of the sign of $ f $.

    As in Theorem 3.1, if in addition we suppose that $ f $ is more regular, then under suitable hypothesis on $ s $ and $ p $, we get the following analogous result of Theorem 3.1.

    Corollary 3.11. Assume that the conditions of Theorem 3.9 hold. Assume in addition that

    $ N<s(2s1)1s and p<s(2s1)N(1s)1. $ (3.15)

    If $ f \in \mathcal{C}^{\epsilon}(\Omega) $, for some $ \epsilon \in (0, 2s-1) $, then the $ \mathcal{C}^{1, \alpha} $ distributional solutions from Theorem 3.9 is a strong solution.

    Notice that the condition (3.15) is used in order to show that $ |\nabla u|^{p-1}\in L^\sigma _{loc}(\Omega) $ for some $ \sigma > \frac{N}{2s-1} $ which is the key point in order to get the desired regularity.

    In the case where $ f\gvertneqq 0 $, we can prove also that $ u\gneqq 0 $, more precisely, we have

    Corollary 3.12. Assume that the above conditions hold. Let $ f \in \mathcal{C}^{\epsilon}(\Omega)\cap L^{\infty}(\overline{\Omega}) $, for some $ \epsilon \in (0, 2s-1) $. If $ f(x)\geq 0 $ for all $ x \in \Omega $, then the solution from Theorem 3.9 is non-negative. Moreover, if $ f_1 \leq f_2 $ and $ u_1 $ and $ u_2 $ are the corresponding strong solutions to $ f_1 $ and $ f_2 $ from Corollary 3.11, respectively, then $ u_1 \leq u_2 $.

    Proof. Suppose that there is a point $ x_0 \in \Omega $ so that $ u(x_0) < 0 $. Since $ u $ is continuous in $ \mathbb{R}^{N} $ (see Proposition 1.1 in [27]), we have $ u $ attains its negative minimum at an interior point $ x_1 $ of $ \Omega $. Hence

    $ \nabla u(x_1) = 0, \quad (-\Delta)^{s}u(x_1) \lt 0. $

    But hence we obtain the contradiction $ 0 \leq f(x_1)-0 = (-\Delta)^{s}u(x_1) < 0 $.

    We next prove the last statement in the Corollary 3.12. Let $ f_1 \leq f_2 $. Let $ u_1 $ and $ u_2 $ be the corresponding strong solutions from Corollary 3.11, and assume that

    $ \min\limits_{\Omega}(u_2-u_1) = u_2(x_0)-u_1(x_0) \lt 0. $

    Hence $ \nabla(u_1-u_2)(x_0) = 0 $ and $ (-\Delta)^{s}(u_2-u_1)(x_0) < 0 $, so we have the contradiction

    $ f_1(x_0) = (-\Delta)^{s}u_1(x_0) +|\nabla u_1(x_0)|^{p} \gt (-\Delta)^{s}u_2(x_0) +|\nabla u_2(x_0)|^{p} = f_2(x_0). $

    In this section, we investigate the relation between distributional solutions and viscosity solutions. Let us recall that according to Theorem 3.1 and Corollary 3.11, to obtain strong solutions to (1.1) it is sufficient that $ f \in \mathcal{C}^{\epsilon}(\Omega) $ and that

    $ p \lt p_{*} $

    or

    $ N \lt \frac{s(2s-1)}{1-s}, \:\:p^*\le p \lt \frac{s(2s-1)}{N(1-s)}-1\hbox{ and } ||f||_{L^{m}(\Omega)} \leq \lambda ^*, $

    for $ \lambda ^* $ defined in Theorem 3.9. In this section we show that strong solutions to (1.1) are viscosity solutions. The converse is also true provided a comparison principle for viscosity solutions. We prove it in the next subsection.

    We prove a comparison result for viscosity solutions of problem (1.1). This result requires a continuous source term $ f $.

    In order to state the result, we shall need some technical lemmas that could have interest by themselves. For related results see [22].

    We start with a usual property for the fractional Laplacian of smooth functions. See [21,Lemma 2.6] for the proof.

    Lemma 4.1. Let $ B_\epsilon(x)\subset U \Subset\Omega $ and let $ u \in \mathcal{C}^{2}(U) $. Then:

    $ \Big\vert P.V. \int_{B_\epsilon(x)}\frac{u(x)-u(y)}{|x-y|^{N+2s}}dy \Big\vert \leq c_\epsilon $

    where $ c_\epsilon $ is independent of $ x $ and $ c_\epsilon \to 0 $ as $ \epsilon \to 0 $.

    Observe that in the definition of viscosity solutions, we do not evaluate the given equation in the solution $ u $. However, the following lemma states an extra information when $ u $ is touched from below or above by $ C^{2} $-test functions.

    Lemma 4.2. Let $ u $ be a viscosity supersolution to (1.1) and suppose that there exists $ \phi \in C^{2}(U) $, $ U \Subset \Omega $, touching $ u $ from below at $ x_0 \in U $. Then $ (-\Delta)^{s}u(x_0) $ is finite and moreover:

    $ (Δ)su(x0)+|ϕ(x0)|pf(x0). $ (4.1)

    A similar result holds for subsolutions.

    Proof. We assume that $ x_0 = 0 $ and $ u(0) = 0 $. For $ r > 0 $ so that $ B_r : = B(0, r)\subset U $, define:

    $ ϕr(x):={ϕ(x), in Bru(x), outside Br, $

    Hence for all $ 0 < \rho < r $

    $ BrBρu(0)u(y)|y|N+2sdy=BrBρϕ(y)u(y)|y|N+2sdyBrBρϕ(y)|y|N+2sdyBrBρϕ(y)|y|N+2sdy, $

    where we have used that $ \phi $ touches $ u $ from below. As $ \rho \to 0 $, the last integral converges since $ \phi \in \mathcal{C}^{2}(B_r) $. Hence

    $ limρ0BrBρu(0)u(y)|y|N+2sdy[,M], $ (4.2)

    where

    $ M: = \lim\limits_{\rho \to 0} \left(-\int_{B_r \setminus B_\rho}\frac{\phi(y)}{|y|^{N+2s}}dy\right). $

    Also, from the fact that $ u $ is a supersolution, we have $ u \geq 0 $ in $ \mathbb{R}^{N}\setminus \Omega $. Thus

    $ RNBru(0)u(y)|y|N+2sdy¯ΩBru(y)|y|N+2sdy. $ (4.3)

    Since $ u \in LSC(\overline{\Omega}) $, there is a constant $ m $ so that

    $ u(y) \geq m, \text{ for all }y \in \overline{\Omega}\setminus B_r. $

    Hence from (4.3), it follows

    $ \int_{\mathbb{R}^{N}\setminus B_r }\frac{u(0)-u(y)}{|y|^{N+2s}}dy \leq -m \int_{\mathbb{R}^{N}\setminus B_r }\frac{1}{|y|^{N+2s}}dy \lt \infty. $

    This fact, together with (4.2), imply that $ (-\Delta)^{s}u(0) \in [-\infty, \infty) $.

    We now prove the estimate (4.1), and consequently that $ (-\Delta)^{s}u(0) $ is finite. For $ \rho > 0 $, we have by Lemma 4.1 that

    $ |P.V.Brϕ(y)|y|N+2sdy|ρ, $

    choosing $ r $ small enough. Hence

    $ RNBru(0)u(y)|y|N+2sdy=RNBrϕr(0)ϕr(y)|y|N+2sdy=(Δ)sϕr(0)P.V.Brϕ(y)|y|N+2sdy|ϕ(0)|p+f(0)+ρ. $

    By letting $ r \to 0 $, and then $ \rho\to 0 $, we derive (4.1).

    We now give the main result of this section.

    Theorem 4.3 (Comparison principle for viscosity solutions). Assume that $ f \in \mathcal{C}(\Omega) $. Let $ v \in USC(\overline{\Omega}) $ be a subsolution and $ u\in LSC(\overline{\Omega}) $ be a supersolution, respectively, of (1.1). Then $ v \leq u $ in $ \Omega $.

    Proof. We argue by contradiction. Assume that there is $ x_0 \in \Omega $ so that:

    $ σ:=supΩ(vu)=v(x0)u(x0)>0. $

    As usual, we double the variables and consider for $ \epsilon > 0 $ the function

    $ Ψϵ(x,y):=v(x)u(y)1ϵ|xy|2. $

    By the upper semi continuity of $ v $ and $ -u $, there exist $ x_\epsilon $ and $ y_\epsilon $ in $ \overline{\Omega} $ so that

    $ Mϵ:=sup¯ΩׯΩΨϵ=Ψϵ(xϵ,yϵ). $

    By compactness, $ x_\epsilon \to \overline{x} $ and $ y_\epsilon \to \overline{y} $, up to subsequence that we do not re-label. From

    $ Ψϵ(xϵ,yϵ)Ψϵ(x0,x0) $ (4.4)

    and the upper boundedness of $ v $ and $ -u $ in $ \overline{\Omega} $, we derive

    $ \lim\limits_{\epsilon \to 0}|x_\epsilon-y_\epsilon|^{2} = 0, $

    hence $ \overline{x} = \overline{y} $. Moreover

    $ \Psi_\epsilon(x_\epsilon, y_\epsilon) \geq \Psi_\epsilon(\overline{x}, \overline{x}) $

    implies that:

    $ \lim\limits_{\epsilon \to 0}\frac{1}{\epsilon}|x_\epsilon-y_\epsilon|^{2} = 0. $

    As a consequence, by letting $ \epsilon \to 0 $ in (4.4) and using the semicontinuity of $ u $ and $ v $, we obtain

    $ σ=limϵ0(v(xϵ)u(yϵ)). $ (4.5)

    Also, observe that $ \overline{x} \in \Omega $, because otherwise there is a contraction with $ v \leq u $ in $ \mathbb{R}^{N}\setminus\Omega $.

    Define the $ \mathcal{C}^2 $ test functions

    $ \phi_\epsilon(x): = v(x_\epsilon)-\frac{1}{\epsilon}|x_\epsilon-y_\epsilon|^{2}+\frac{1}{\epsilon}|x-y_\epsilon|^{2}, $
    $ \psi_\epsilon(y): = u(y_\epsilon)-\frac{1}{\epsilon}|x_\epsilon-y_\epsilon|^{2}+\frac{1}{\epsilon}|x_\epsilon-y|^{2}. $

    Then $ \phi_\epsilon $ touches $ v $ from above at $ x_\epsilon $ and $ \psi_\epsilon $ touches $ u $ from below at $ y_\epsilon $. By Lemma 4.2, we have

    $ (Δ)sv(xϵ)+|ϕϵ(xϵ)|pf(xϵ) $

    and

    $ (Δ)su(yϵ)+|ψϵ(yϵ)|pf(yϵ) $

    Therefore:

    $ (Δ)sv(xϵ)(Δ)su(yϵ)f(xϵ)f(yϵ)+|ψϵ(yϵ)|p|ϕϵ(xϵ)|p. $ (4.6)

    Since $ f \in \mathcal{C}(\Omega) $ and

    $ \nabla_y\psi_\epsilon(y_\epsilon) = -\nabla_x \phi_\epsilon(x_\epsilon), $

    we have that the right hand side in (4.6) tends to $ 0 $ as $ \epsilon \to 0 $. Thus, we obtain

    $ lim infϵ0RNv(xϵ)v(xϵ+z)u(yϵ)+u(yϵ+z)|z|N+2sdz=lim infϵ0((Δ)sv(xϵ)(Δ)su(yϵ))0. $ (4.7)

    Let $ A_{1, \epsilon}: = \{z \in \mathbb{R}^{N}: x_\epsilon + z, y_\epsilon +z \in \Omega\} $. Hence for $ z \in A_{1, \epsilon} $, we have from the inequality

    $ \Psi_\epsilon(x_\epsilon, y_\epsilon) \geq \Psi_\epsilon(x_\epsilon+z, y_\epsilon+z ) $

    that

    $ v(xϵ)v(xϵ+z)u(yϵ)+u(yϵ+z)0. $ (4.8)

    Define $ A_{2, \epsilon}: = \mathbb{R}^{N}\setminus A_{1, \epsilon} $. We will justify that we are allowed to use Fatou's Theorem in

    $ lim infϵ0A2,ϵv(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sdz $ (4.9)

    by showing that the integrand is bounded from below by an $ L^{1} $ function. Firstly, let $ r > 0 $ so that $ B_{3r}(\overline{x}) \subset \Omega $ and take $ \epsilon_0 $ small enough such that $ x_\epsilon, y_\epsilon \in B_r(\overline{x}) $ for all $ \epsilon < \epsilon_0 $. Take $ z \in A_{2, \epsilon} $. We show now that $ |z|\geq 2r $. Indeed, to reach a contradiction, assume that $ |z| < 2r $. Since $ z \notin A_{1, \epsilon} $, it follows that $ x_\epsilon + z $ or $ y_\epsilon + z $ does not belong to $ \Omega $. Without loss of generality, assume $ x_\epsilon +z \notin \Omega $. Hence

    $ |x_\epsilon +z-\overline{x}| \lt 3r, $

    and so $ x_\epsilon+ z \in B_{3r}(\overline{x}) \subset \Omega $ which is a contradiction. Next, notice that

    $ v(xϵ)v(xϵ+z)|z|N+2s|v(xϵ)||z|N+2s|v+(xϵ+z)||z|N+2s. $ (4.10)

    Hence, using that $ z \notin B_{2r} $ when $ z \in A_{2, \epsilon} $, we have

    $ \int_{A_{2, \epsilon}}\dfrac{|v(x_\epsilon)|}{|z|^{N+2s}} dz \leq C \int_{\mathbb{R}^{N}\setminus B_{2r}}\dfrac{1}{|z|^{N+2s}}dz \lt \infty. $

    On the other hand

    $ A2,ϵ|v+(z+xϵ)||z|N+2sdzRNB2r|v+(z+xϵ)||z|N+2sdz=RNB2r(xϵ)|v+(y)||yxϵ|N+2sdy. $

    Since $ v $ is a subsolution, we have $ v \leq 0 $ in $ \mathbb{R}^{N}\setminus \Omega $. Hence

    $ A2,ϵ|v+(z+xϵ)||z|N+2sdz¯ΩB2r(xϵ)|v+(y)||yxϵ|N+2sdy¯ΩBr(¯x)|v+(y)||yxϵ|N+2sdy1rN+2s¯ΩBr(¯x)v+(y)dy. $

    Observe that the last integral is finite since $ v \in L^{1}_{loc}(\mathbb{R}^{N}) $ by definition. In this way, recalling (4.10), the term

    $ \frac{v(x_\epsilon)-v(x_\epsilon+z)}{|z|^{N+2s}} $

    is bounded from below by an $ L^{1} $-integrable function. A similar result follows for

    $ \frac{u(y_\epsilon+z)-u(y_\epsilon)}{|z|^{N+2s}}. $

    Hence, we may use Fatou Lemma in (4.9) and derive

    $ lim infϵ0A2,ϵv(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sdzRNlim infϵ0v(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sχA2,ϵ(z)dzRNA¯xσ+u(¯x+z)v(¯x+z)|z|N+2sdz. $ (4.11)

    Here $ A_{\overline{x}}: = \{z\in \mathbb{R}^{N}: \overline{x}+z \in \Omega\} $ and we have used the a.e. pointwise convergence of $ \chi_{A_{2, \epsilon}} $ to $ \chi_{A_{\overline{x}}} $, [9,Lemma 4.3] together with a diagonal argument to conclude for a subsequence

    $ \liminf\limits_{\epsilon \to 0}[v(x_\epsilon)-u(y_\epsilon)-v(x_\epsilon+z)+u(y_\epsilon+z)] \geq \sigma -v(\overline{x}+z)+ u(\overline{x}+z) $

    for a.e. $ z \in \mathbb{R}^{N} $. Moreover, the inequality $ u \geq v $ in $ \mathbb{R}^{N}\setminus \Omega $ implies that the last integral in (4.11) is non-negative. Then

    $ lim infϵ0A2,ϵv(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sdz0. $ (4.12)

    Therefore by Fatou Lemma, (4.12) and (4.7), we deduce

    $ RNlim infϵ0v(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sχA1,ϵdzlim infϵ0A1,ϵv(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sdzlim infϵ0A1,ϵv(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sdz+lim infϵ0A2,ϵv(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sdzlim infϵ0RNv(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)|z|N+2sdz0. $

    Hence

    $ \liminf\limits_{\epsilon \to 0}\frac{v(x_\epsilon)-u(y_\epsilon)-v(x_\epsilon+z)+u(y_\epsilon+z)}{|z|^{N+2s}} \leq 0 $

    almost everywhere in $ A_{1, \epsilon} $. In particular for $ z \in A_{\overline{x}} $. We then have by the lower semicontinuity of $ -v $ and $ u $ in $ \overline{\Omega} $ and (4.5), that

    $ 0lim infϵ0[v(xϵ)u(yϵ)v(xϵ+z)+u(yϵ+z)]σ+u(¯x+z)v(¯x+z). $

    Since $ z \in A_{\overline{x}} $ is arbitrary, we conclude $ \sigma \leq v(x)-u(x) $ for a.e. in $ \overline{\Omega} $, which implies for $ x \in \partial \Omega $

    $ 0 \geq v(x)-u(x) \geq \limsup\limits_{y \to x, y \in \Omega}(v(y)-u(y)) \geq \sigma. $

    A contradiction with the hypothesis.

    In this subsection we prove that strong and viscosity solutions coincide.

    Theorem 4.4. Any strong solution $ u \in \mathcal{C}^{1, \alpha}(\Omega) $ to problem (1.1) is a viscosity solution as well.

    Remark 4.5. For conditions to ensure the existence of strong solutions to problem (1.1) see Theorem 3.1, Theorem 3.9 and Corollary 3.11.

    Proof. The proof is straightforward, we give it by completeness. Let $ u \in \mathcal{C}^{1, \alpha}(\Omega) $ be such that

    $ (Δ)su(x)+|u(x)|p=f(x),for all xΩ. $

    Let $ U \subset \Omega $ be open, take $ x_0 \in U $ and let $ \phi \in \mathcal{C}^{2}(U) $ be such that $ u(x_0) = \phi(x_0) $ and $ \phi \geq u $ in $ U $. Define

    $ v(x):={ϕ(x), in Uu(x), outside U. $ (4.13)

    Hence, since $ u $ is $ \mathcal{C}^{1} $, $ \nabla u(x_0) = \nabla \phi(x_0) $ and then we have that

    $ (-\Delta)^{s}\phi(x_0) + |\nabla \phi(x_0)|^{p} = (-\Delta)^{s}\phi(x_0) + |\nabla u(x_0)|^{p}. $

    By the assumption on $ \phi $, we have that $ (-\Delta)^{s}\phi(x_0) \leq (-\Delta)^{s}u(x_0) $ and so the $ u $ is a viscosity sub-solution. In a similar way, $ u $ is a super-solution and the conclusion follows.

    Theorem 4.6. Assume that the condition (3.15) holds that $ f \in \mathcal{C}^{\epsilon}(\Omega)\cap L^m(\Omega) $, for some $ \epsilon > 0 $ and $ m > \frac{N}{2s-1} $. We suppose that $ ||f||_{L^m(\Omega)}\le \lambda ^* $ defined in Theorem 3.9. Then any viscosity solution is a strong solution.

    Proof. To prove the converse, assume that $ u $ is a viscosity solution to problem (1.1). In view of Theorem 3.9 and Corollary 3.11, there exists a distributional solution $ v $ (which is also strong in view of the assumptions on $ f $). Since any strong solution is of viscosity, we consequently infer from the Comparison Theorem 4.3 that $ u = v $. This ends the proof of the theorem.

    $ (1) $ For the existence of solution using approximating argument, the limitation $ p < 2s $ seems to be technical, we hope that the existence of a solution holds for all $ p\le 2s $ and for all $ f\in L^1(\Omega) $. For $ p > 2s $, this is an interesting open question, even for the Laplacian, with $ L^m $ data. Notice that this is not the framework of the paper [23].

    $ (2) $ For $ p > 2s $, it seems to be interesting to eliminate the smallness condition $ ||f||_{L^m(\Omega)} $ and to treat more general set of $ p $ without the condition (3.15).

    $ (3) $ In order to understand a bigger class of linear integro-differential operators, is seems necessary to obtain alternative techniques independent of the representation formula.

    The first and the third authors are partially supported by Project MTM2016-80474-P, MINECO, Spain. The first author also is partially supported by DGRSDT, Algeria and an Erasmus grant from Autonoma University of Madrid. The second author is partially supported by CONICET and grant PICT 2015-1701 AGENCIA.

    The authors would like to thank the anonymous reviewer for his$ / $her careful reading of the paper and his$ / $her many insightful comments and suggestions.

    The authors declare no conflict of interest.


    Abbreviation PL: Phospholipids; FA: Fatty acids; ATP: Adenosine Triphosphate; APG: Acyl Phosphatidylglycerol; DPG: Diphosphatidylglycerol; MGDG: Monogalactosyl diacylglycerol; DGDG: Digalactosyl diacylglycerol; PLC: Phospholipase C; PLD: Phospholipase D; PLP: Phospholipase P; DHA: Docosahexaenoic acid;
    Acknowledgments



    Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, India and Biomedical Sciences Research Institute, Ulster University, UK are acknowledged.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] López-Marqués RL, Poulsen LR, Bailly A, et al. (2014) Structure and mechanism of ATP-dependent phospholipid transporters. Biochim biophys Acta 1850: 461–475.
    [2] Lopez-Marques RL, Theorin L, Palmgren MG, et al. (2014) P4-ATPases: lipid flippases in the cell membrane. Pflug Arch Eur J Physiol 466: 1227–1240. doi: 10.1007/s00424-013-1363-4
    [3] Li J, Wang XL, Zhang T, et al. (2015) A review on phospholipids and their main applications in drug delivery system. Asian J Pharm Sci 10: 81–98. doi: 10.1016/j.ajps.2014.09.004
    [4] Miao J, Du YZ, Yuan H, et al. (2013) Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multidrug resistant cancer cells. Colloids Surf B 110: 74–80. doi: 10.1016/j.colsurfb.2013.03.037
    [5] Janben HJ, Steinbuchel A (2014) Fatty acid synthesis in E. coli and its applications towards the production of fatty acid-based biofuels. Biotechnol Biofuels 7: 7.
    [6] Hussein J (2013) Cell membrane fatty acids and health. Int J Pharm Pharm Sci 5: 38–46.
    [7] Caforio A, Driessen AJM (2017) Archaeal phospholipids: Structural properties and biosynthesis. Biochim Biophys Acta-Mol Cell Biol Lipids 1862: 1325–1339. doi: 10.1016/j.bbalip.2016.12.006
    [8] Schiller J, Suss R, Arnhold J, et al. (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43: 449–488. doi: 10.1016/j.plipres.2004.08.001
    [9] Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2: 327–338. doi: 10.1038/35073015
    [10] Hannun YA, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40: 4893–4903. doi: 10.1021/bi002836k
    [11] Cooper GM (2000) The Cell: A Molecular Approach. 2Eds., Sunderland (MA): Sinauer Associates. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9928/.
    [12] Dowhan W, Mileykovskaya E, Bogdanov M (2004) Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta 1666: 19–39. doi: 10.1016/j.bbamem.2004.04.010
    [13] Adlercreutz P (2000) Enzymatic conversions of glycerophospholipids. In: Bornscheuer, U.T. Editor, Enzymes in Lipid Modification, Weinheim: Wiley, 292–306.
    [14] George CM, Gil-Soo H (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim Biophys Acta 1771: 322–330. doi: 10.1016/j.bbalip.2006.05.006
    [15] Perumal Chandran S, Natarajan SB, Senthil Rajan D, et al. (2014) Phospholipids as versatile polymer in drug delivery system. Int J Pharm Pharm Sci 6: 8–11.
    [16] Yang S, Qiao B, Lu SH, et al. (2007) Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines. Biochim Biophys Acta 1771: 600–612. doi: 10.1016/j.bbalip.2007.02.011
    [17] Mashaghi S, Jadidi T, Koenderink G, et al. (2013) Lipid nanotechnology. Int J Mol Sci 14: 4242–4282. doi: 10.3390/ijms14024242
    [18] van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 116: 1088–1107. doi: 10.1002/ejlt.201400219
    [19] Burdge GC, Calder PC (2015) Introduction to fatty acids and lipids. World Rev Nutr Diet 112: 1–16.
    [20] Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5Eds. New York: W H Freeman. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22581.
    [21] Schönfeld P, Reiser G (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cerebr Blood F Met 33: 1493–1499.
    [22] Boudière L, Michaud M, Petroutsos D, et al. (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta-Bioenerg 1837: 470–480. doi: 10.1016/j.bbabio.2013.09.007
    [23] Siebers M, Brands M, Wewer V, et al. (2016) Lipids in plant-microbe interactions. Biochim Biophys Acta-Mol Cell Biol Lipids 1861: 1379–1395. doi: 10.1016/j.bbalip.2016.02.021
    [24] Baccile N, Cuvier AS, Prévost S, et al. (2016) Self-assembly mechanism of pH-responsive glycolipids: micelles, fibers, vesicles, and bilayers. Langmuir 32: 10881–10894. doi: 10.1021/acs.langmuir.6b02337
    [25] Harroun TA, Heller WT, Weiss TM et al. (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76: 3176–3185. doi: 10.1016/S0006-3495(99)77469-2
    [26] Peterson BL, Cummings BS (2006) A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 20: 227–243. doi: 10.1002/bmc.563
    [27] Camera E, Picardo M, Presutti C, et al. (2004) Separation and characterization of sphingoceramides by high-performance liquid chromatography–electrospray Ionization mass spectrometry. J Sep Sci 27: 971–976. doi: 10.1002/jssc.200301712
    [28] Chung SY, Moriyama T, Uezu E, et al. (1995) Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J Nutr 125: 1484–1489.
    [29] Nakamura Y (2017) Plant phospholipid diversity: emerging functions in metabolism and protein-lipid interactions. Trends Plant Sci 22: 1027–1040. doi: 10.1016/j.tplants.2017.09.002
    [30] Bevers EM, Comfurius P, Dekkers DW, et al. (1998) Transmembrane phospholipid distribution in blood cells: control mechanisms and pathophysiological significance. Bio Chem 379: 973–986.
    [31] Sodt AJ, Pastor RW (2014) Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape. Biophys J 106: 1958–1969. doi: 10.1016/j.bpj.2014.02.037
    [32] Hama S, Ogino C, Kondo A (2015) Enzymatic synthesis and modification of structures phospholipids: recent advances in enzyme preparation and biocatalytic process. Appl Microbiol Biot 99: 7879–7891. doi: 10.1007/s00253-015-6845-1
    [33] Fahy E, Subramaniam S, Brown HA, et al. (2005) A comprehensive classification system for lipids. J Lipid Res 46: 839–862. doi: 10.1194/jlr.E400004-JLR200
    [34] Hawthorne JN, Ansell GB (1982) Phospholipids: New Comprehensive Biochemistry. Amsterdam: Elsevier Biomedical Press.
    [35] Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5Eds., New York: W H Freeman. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22361/
    [36] Vance DE, Vance JE (2002) Biochemistry of Lipids, Lipoproteins, and Membranes. 4Eds., Amsterdam: Elsevier, 505–526.
    [37] Vance JE (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16: 1–18. doi: 10.1111/tra.12230
    [38] Lorant J, Alemayehu G (2010) Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers. Biophys J 99: 2957–2966. doi: 10.1016/j.bpj.2010.09.020
    [39] Ramstedt B, Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta-Biomembr 1758: 1945–1956. doi: 10.1016/j.bbamem.2006.05.020
    [40] Olsen I, Janzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7: 103–112. doi: 10.1006/anae.2001.0376
    [41] Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, et al. (2018) Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 19: 247. doi: 10.3390/ijms19010247
    [42] Helen JS, Sofia KM, Vassilios MK (1989) Lipid composition and structural studies on lipids from the land snail Eobania vermiculata. Naturforsch 44c: 597-608.
    [43] van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 116: 1088–1107. doi: 10.1002/ejlt.201400219
    [44] Brites P, Waterham HR, Wander, RJA (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636: 219–231. doi: 10.1016/j.bbalip.2003.12.010
    [45] Snyder F, Lee TC, Wykle RL (2002) Ether-linked lipids and their bioactive species in biochemistry of lipids, lipoproteins, and membranes. In: Vance, D.E., Vance, J.E. Editors, Biochemistry of Lipids, Lipoproteins and Membranes, 4Eds., Amsterdam: Elsevier, 233–262.
    [46] Li G, Kim J, Huang Z, et al. (2016) Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. P Natl Acad Sci USA 113: 14025–14030. doi: 10.1073/pnas.1610705113
    [47] Montigny C, Lyons J, Champeil P, et al. (2016) On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta 1861: 767–783. doi: 10.1016/j.bbalip.2015.12.020
    [48] Zhou Y, Wang CO, Cho K, et al. (2015) Signal transduction membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349: 873–876. doi: 10.1126/science.aaa5619
    [49] Vance JE (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related amino phospholipids. J Lipid Res 49: 1377–1387. doi: 10.1194/jlr.R700020-JLR200
    [50] Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Criti Rev Biochem Mol Biol 44: 264–277. doi: 10.1080/10409230903193307
    [51] Suetsugu S, Kurisu S, Takenawa T (2014) Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 94: 1219–1248. doi: 10.1152/physrev.00040.2013
    [52] Darland-Ransom M, Wang XC, Sun CL, et al. (2008) Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 320: 528–531.
    [53] Mapes J, Chen YZ, Kim A, et al. (2012) CED-1, CED-7, and TTR-52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. Curr Biol 22: 1267–1275. doi: 10.1016/j.cub.2012.05.052
    [54] Helen W (2015) Biological membranes. Essays Biochem 59: 43–69. doi: 10.1042/bse0590043
    [55] Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 9: 112–124. doi: 10.1038/nrm2330
    [56] Giordano F (2018) Non-vesicular lipid trafficking at the endoplasmic reticulum-mitochondria interface. Biochem Soc Trans 46: 437–452. doi: 10.1042/BST20160185
    [57] Panatala R, Hennrich H, Holthuis JCM (2015) Inner workings and biological impact of phospholipid flippases. J Cell Sci 128: 2021–2032. doi: 10.1242/jcs.102715
    [58] Sebastian TT, Baldridge RD, Xu P, et al. (2012) Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta 1821: 1068–1077. doi: 10.1016/j.bbalip.2011.12.007
    [59] Tanaka K, Fujimura KK, Yamamoto T (2011) Functions of phospholipid flippases. J Biochem 149: 131–143. doi: 10.1093/jb/mvq140
    [60] Contreras FX, Sánchez-Magraner L, Alonso A, et al. (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584: 1779–1786. doi: 10.1016/j.febslet.2009.12.049
    [61] Hankins HM, Baldridge RD, Xu P, et al. (2015) Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16: 35–47. doi: 10.1111/tra.12233
    [62] Lagace TA, Ridgway ND (2013) The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochim Biophys Acta-Mol cell Res 1833: 2499–2510. doi: 10.1016/j.bbamcr.2013.05.018
    [63] Pomorski TG, Holthuis JCM, Herrmann A, et al. (2004) Tracking down lipid flippases and their biological functions. J Cell Sci 117: 805–813. doi: 10.1242/jcs.01055
    [64] Nakao H, Ikeda K, Ishihama Y, et al. (2016) Membrane-spanning sequences in endoplasmic reticulum proteins promote phospholipid flip-flop. Biophys J 110: 2689–2697. doi: 10.1016/j.bpj.2016.05.023
    [65] Montigny C, Lyons J, Champeil P, et al. (2016) On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta-Mol Cell Biol Lipids 1861: 767–783. doi: 10.1016/j.bbalip.2015.12.020
    [66] Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different. Biochem J 419: 317–328. doi: 10.1042/BJ20081364
    [67] Casadei MA, Mañas P, Niven G, et al. (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68: 5965–5972. doi: 10.1128/AEM.68.12.5965-5972.2002
    [68] Sajbidor J (1997) Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit Rev Biotechnol 17: 87–103. doi: 10.3109/07388559709146608
    [69] Goldstein DB (1984) The effects of drugs on membrane fluidity. Annu Rev Pharmacol Toxicol 24: 43–64. doi: 10.1146/annurev.pa.24.040184.000355
    [70] Begley TP, Guschina IA, Harwood JL (2008) Lipids: chemical diversity. In: Begley, T.P. Editor, Wiley Encyclopedia of Chemical Biology.
    [71] Yagüe G, Segovia M, Valero-Guillén PL (1997) Acyl phosphatidylglycerol: a major phospholipid of Corynebacterium amycolatum. FEMS Microbiol Lett 151: 125–130. doi: 10.1016/S0378-1097(97)00137-7
    [72] Mazzella N, Molinet J, Syakti AD, et al. (2004) Bacterial phospholipid molecular species analysis by ion-pair reversed-phase HPLC/ESI/MS. J Lipid Res 45: 1355–1363. doi: 10.1194/jlr.D300040-JLR200
    [73] Niepel MTH, Wray V, Abraham WR (2006) Intraspecific variation of unusual phospholipids from Corynebacterium spp. containing a Novel Fatty acid. J Bacteriol 180: 4650–4657.
    [74] Pluschke G, Hirota Y, Overath P (1978) Function of phospholipids in Escherichia coli. characterization of a mutant deficient in cardiolipin synthesis. J Biol Chem 253: 5048–5055.
    [75] Albelo ST, Domenech CE (1997) Carbons from choline present in the phospholipids of Pseudomonas aeruginosa. FEMS microbiol lett 156: 271–274. doi: 10.1111/j.1574-6968.1997.tb12739.x
    [76] Wang XG, Scagliotti JP, Hu LT (2004) Phospholipid synthesis in Borrelia burgdorferi BB0249 and BB0721 encode functional phosphatidylcholine synthase phosphatidylglycerol phosphate synthase proteins. Microbiol 150: 391–397. doi: 10.1099/mic.0.26752-0
    [77] Burgdorfer W, Barbour AG, Hayes SF, et al. (1982) Lyme disease-a tick-borne spirochetosis? Science 216: 1317–1319. doi: 10.1126/science.7043737
    [78] Oliver JD, Colwell R (1973) Extractable lipids of Gram-negative marine bacteria: phospholipid composition. J Bacteriol 114: 897–908.
    [79] Yakimov MM, Golyshin PN, Lang S, et al. (1998) Alcanivorax borkurnensis gen. now., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Sys Bacteriol 48: 339–348.
    [80] Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta-Bioenerg 1847: 889–899. doi: 10.1016/j.bbabio.2015.02.002
    [81] Gao QM, Yu K, Xia Y, Shine MB, et al. (2014) Mono- and digalactosyldiacylglycerol lipids function non-redundantly to regulate systemic acquired resistance in plants. Cell Rep 9: 1681–1691. doi: 10.1016/j.celrep.2014.10.069
    [82] Dubots E, Botté C, Boudière L, et al. (2012) Role of phosphatidic acid in plant galactolipid synthesis. Biochimie 94: 86–93. doi: 10.1016/j.biochi.2011.03.012
    [83] Kobayashi K, Awai K, Nakamura M, et al. (2009) Type-B Monogalactosyl diacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J 57: 322–331. doi: 10.1111/j.1365-313X.2008.03692.x
    [84] Lassègue B, Alexander RW, Clark M, et al. (1993) Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth-muscle cells. Biochem J 292: 509–517. doi: 10.1042/bj2920509
    [85] Harwood JL, Nicholls RG (1979) The plant sulpholipid-a major component of the sulphur cycle. Biochem Soc T 7: 440–447. doi: 10.1042/bst0070440
    [86] Joyard J, Teyssier E, Miege C, et al. (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715–723. doi: 10.1104/pp.118.3.715
    [87] Damnjanovic J, Iwasaki Y (2013) Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure, and protein engineering. J Biosci Bioeng 116: 271–280. doi: 10.1016/j.jbiosc.2013.03.008
    [88] Zhao P (2015) Phospholipase D and phosphatidic acid in plant defense response: from protein-protein and lipid-protein interaction to hormone signaling. J Exp Bot 66: 1721–1736. doi: 10.1093/jxb/eru540
    [89] Bodin S, Giuriato S, Ragab J, et al. (2001) Production of phosphatidylinositol 3,4,5-trisphosphate and phosphatidic acid in platelet rafts: evidence for a critical role of cholesterol enriched domains in human platelet activation. Biochemistry 40, 50: 15290–15299.
    [90] Meijer HG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54: 265–306. doi: 10.1146/annurev.arplant.54.031902.134748
    [91] Takashi T, Thomas L (2017) Intra-mitochondrial phospholipid trafficking. Biochim Biophys Acta-Mol Cell Biol Lipids 1862: 81–89. doi: 10.1016/j.bbalip.2016.08.006
    [92] Cowan KA (2006) Phospholipids as plant growth regulators. J Plant Growth Regul 48: 97–109. doi: 10.1007/s10725-005-5481-7
    [93] Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6: 227–233. doi: 10.1016/S1360-1385(01)01918-5
    [94] Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10: 368–375. doi: 10.1016/j.tplants.2005.06.002
    [95] Lodish H, Berk A, Zipursky SL, et al. (2000) Molecular cell Biology. 4Eds., New York: W. H. Freeman. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21583/.
    [96] Penno A, Hackenbroich G, Thiele C (2013) Phospholipids and lipid droplets. Biochim Biophys Acta-Mol Cell Biol Lipids 1831: 589–594. doi: 10.1016/j.bbalip.2012.12.001
    [97] Gupta G, Surolia A (2010) Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett 584: 1634–1641. doi: 10.1016/j.febslet.2009.11.070
    [98] Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell. 4Eds., NewYork: Garland Science.
    [99] Dufourc EJ (2008) Sterols and membrane dynamics. J Chem Biol 1: 63–77. doi: 10.1007/s12154-008-0010-6
    [100] Singer SJ (2004) Some early history of membrane molecular biology. Annu Rev Physiol 66: 1–27. doi: 10.1146/annurev.physiol.66.032902.131835
    [101] Stoeckenius W, Engelman DM (1969) Current models for the structure of biological membranes. J Cell Biol 42: 613–646. doi: 10.1083/jcb.42.3.613
    [102] Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3: a004697.
    [103] Kim SH, Song HE, Kim SJ, et al. (2017) Quantitative structural characterization of phosphatidylinositol phosphates from biological samples. J Lipid Res 58: 469–478. doi: 10.1194/jlr.D069989
    [104] Kim Y, Shanta SR, Zhou LH, et al. (2010) Mass spectrometry-based cellular phosphoinositides profiling and phospholipid analysis: a brief review. Exp Mol Med 42: 1–11. doi: 10.3858/emm.2010.42.1.001
    [105] Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361: 315–325. doi: 10.1038/361315a0
    [106] Pronk JT, De BJC, Bos P (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58: 2227–2230.
    [107] Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56: 65–91. doi: 10.1146/annurev.micro.56.012302.161052
    [108] Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2: 1602–1623. doi: 10.3390/su2061602
    [109] Haruta S, Kanno N (2015) Survivability of microbes in natural environments and their ecological impacts. Microbes Environ 30: 123–125. doi: 10.1264/jsme2.ME3002rh
    [110] Bloem J, de Ruiter P, Bouwman LA (1997) Soil Food webs and nutrient cycling in agroecosystems. In: van Elsas, JD., Trevors, J.T., Willington, E. Editors, Modern Soil Microbiology. New York: Marcel Dekker, 245–278.
    [111] Kaur A, Kaur A, Choudhary R, et al. (2005) Phospholipid fatty acid-a bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci 89: 1103–1112.
    [112] Hosokawa M, Minami K, Kohno H, et al. (1999) Differentiation- and apoptosis-inducing activities of phospholipids containing docosahexaenoic acid for mouse myeloid leukemia M1 cells. Fish Sci 65: 789–799.
    [113] Chaurio RA, Janko C, Muñoz LE, et al. (2009) Phospholipids: key players in apoptosis and immune regulation. Molecules 14: 4892–4914. doi: 10.3390/molecules14124892
    [114] Hoy CE, Xu X (2001) Structured triacylglycerols. In: Gunstone FD. Editor, Structured and Modified Lipid. New York: Marcel Dekker, 209–240.
    [115] Willers C, Jansen VRPJ, Claassens S (2015) Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. J App Microbiol 119: 1207–1218. doi: 10.1111/jam.12902
    [116] Ashraf MZ, Kar NS, Podrez EA (2009) Oxidized phospholipids: biomarker for cardiovascular diseases. Int J Biochem Cell B 4: 1241–1244.
    [117] van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Tech 116: 1088–1107. doi: 10.1002/ejlt.201400219
    [118] Diehl BWK, Ockels W (1995) Phospholipids: characterization, metabolism, and novel biological applications. In: Cevc, G., Paltauf, F. Editors, Proceedings of the 6th International Colloquium, USA: AOCS Press, 29–32.
    [119] Descalzo AM, Insani EM, Pense NA (2003) Light-scattering detection of phospholipids resolved by HPLC. Lipids 38: 999–1003. doi: 10.1007/s11745-003-1154-1
    [120] Campbell NA, Williamson B, Heyden RJ (2015) Biology Exploring Life. Boston, Massachusetts: Pearson Prentice Hall.
    [121] Zachowski A (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294: 1–14. doi: 10.1042/bj2940001
  • This article has been cited by:

    1. Chiara Giverso, Tommaso Lorenzi, Luigi Preziosi, Effective interface conditions for continuum mechanical models describing the invasion of multiple cell populations through thin membranes, 2022, 125, 08939659, 107708, 10.1016/j.aml.2021.107708
    2. Martin Dugstad, Kundan Kumar, Øystein Pettersen, Dimensional reduction of a fractured medium for a polymer EOR model, 2021, 25, 1420-0597, 1753, 10.1007/s10596-021-10075-w
    3. Apratim Bhattacharya, Markus Gahn, Maria Neuss-Radu, Effective transmission conditions for reaction–diffusion processes in domains separated by thin channels, 2022, 101, 0003-6811, 1896, 10.1080/00036811.2020.1789599
    4. Markus Gahn, Willi Jäger, Maria Neuss-Radu, Correctors and error estimates for reaction–diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion, 2021, 383, 03770427, 113126, 10.1016/j.cam.2020.113126
    5. Markus Gahn, Maria Neuss-Radu, Singular Limit for Reactive Diffusive Transport Through an Array of Thin Channels in case of Critical Diffusivity, 2021, 19, 1540-3459, 1573, 10.1137/21M1390505
    6. Mark A. Peletier, André Schlichting, Cosh gradient systems and tilting, 2022, 0362546X, 113094, 10.1016/j.na.2022.113094
    7. Lena Scholz, Carina Bringedal, A Three-Dimensional Homogenization Approach for Effective Heat Transport in Thin Porous Media, 2022, 141, 0169-3913, 737, 10.1007/s11242-022-01746-y
    8. M. Gahn, M. Neuss-Radu, I.S. Pop, Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions, 2021, 289, 00220396, 95, 10.1016/j.jde.2021.04.013
    9. Markus Gahn, Singular limit for reactive transport through a thin heterogeneous layer including a nonlinear diffusion coefficient, 2021, 0, 1534-0392, 0, 10.3934/cpaa.2021167
    10. Florian List, Kundan Kumar, Iuliu Sorin Pop, Florin Adrian Radu, Rigorous Upscaling of Unsaturated Flow in Fractured Porous Media, 2020, 52, 0036-1410, 239, 10.1137/18M1203754
    11. Kundan Kumar, Florian List, Iuliu Sorin Pop, Florin Adrian Radu, Formal upscaling and numerical validation of unsaturated flow models in fractured porous media, 2020, 407, 00219991, 109138, 10.1016/j.jcp.2019.109138
    12. Martin Dugstad, Kundan Kumar, Dimensional reduction of a fractured medium for a two-phase flow, 2022, 162, 03091708, 104140, 10.1016/j.advwatres.2022.104140
    13. Mark A. J. Chaplain, Chiara Giverso, Tommaso Lorenzi, Luigi Preziosi, Derivation and Application of Effective Interface Conditions for Continuum Mechanical Models of Cell Invasion through Thin Membranes, 2019, 79, 0036-1399, 2011, 10.1137/19M124263X
    14. Giuseppe Cardone, Willi Jäger, Jean Louis Woukeng, Derivation and analysis of a nonlocal Hele–Shaw–Cahn–Hilliard system for flow in thin heterogeneous layers, 2024, 34, 0218-2025, 1343, 10.1142/S0218202524500246
    15. Tom Freudenberg, Michael Eden, Homogenization and simulation of heat transfer through a thin grain layer, 2024, 19, 1556-1801, 569, 10.3934/nhm.2024025
    16. Hongru Ma, Yanbin Tang, Homogenization of a nonlinear reaction‐diffusion problem in a perforated domain with different size obstacles, 2024, 104, 0044-2267, 10.1002/zamm.202300333
    17. Hongru Ma, Yanbin Tang, Homogenization of a semilinear elliptic problem in a thin composite domain with an imperfect interface, 2023, 46, 0170-4214, 19329, 10.1002/mma.9628
    18. Renata Bunoiu, Karim Karim, Claudia Timofte, T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, 2021, 2021, 1072-6691, 59, 10.58997/ejde.2021.59
    19. Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with flux jump in high contrast composites, 2024, 103, 0003-6811, 2269, 10.1080/00036811.2023.2291810
    20. Georges Griso, Larysa Khilkova, Julia Orlik, Asymptotic Analysis of Stokes Flow Through a Filter, 2025, 0170-4214, 10.1002/mma.11072
    21. Markus Gahn, Maria Neuss-Radu, Effective interface laws for fluid flow and solute transport through thin reactive porous layers, 2025, 25, 1424-3199, 10.1007/s00028-025-01061-1
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(19217) PDF downloads(4604) Cited by(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog