Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Optimizing boiler combustion parameters based on evolution teaching-learning-based optimization algorithm for reducing NOx emission concentration


  • How to reduce a boiler's NOx emission concentration is an urgent problem for thermal power plants. Therefore, in this paper, we combine an evolution teaching-learning-based optimization algorithm with extreme learning machine to optimize a boiler's combustion parameters for reducing NOx emission concentration. Evolution teaching-learning-based optimization algorithm (ETLBO) is a variant of conventional teaching-learning-based optimization algorithm, which uses a chaotic mapping function to initialize individuals' positions and employs the idea of genetic evolution into the learner phase. To verify the effectiveness of ETLBO, 20 IEEE congress on Evolutionary Computation benchmark test functions are applied to test its convergence speed and convergence accuracy. Experimental results reveal that ETLBO shows the best convergence accuracy on most functions compared to other state-of-the-art optimization algorithms. In addition, the ETLBO is used to reduce boilers' NOx emissions by optimizing combustion parameters, such as coal supply amount and the air valve. Result shows that ETLBO is well-suited to solve the boiler combustion optimization problem.

    Citation: Yunpeng Ma, Shilin Liu, Shan Gao, Chenheng Xu, Wenbo Guo. Optimizing boiler combustion parameters based on evolution teaching-learning-based optimization algorithm for reducing NOx emission concentration[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 20317-20344. doi: 10.3934/mbe.2023899

    Related Papers:

    [1] Qihua Huang, Hao Wang . A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences and Engineering, 2016, 13(4): 697-722. doi: 10.3934/mbe.2016015
    [2] Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039
    [3] Suman Ganguli, David Gammack, Denise E. Kirschner . A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535
    [4] Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito . Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233
    [5] Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures. Mathematical Biosciences and Engineering, 2023, 20(7): 11805-11820. doi: 10.3934/mbe.2023525
    [6] Simone De Reggi, Francesca Scarabel, Rossana Vermiglio . Approximating reproduction numbers: a general numerical method for age-structured models. Mathematical Biosciences and Engineering, 2024, 21(4): 5360-5393. doi: 10.3934/mbe.2024236
    [7] Arthur D. Lander, Qing Nie, Frederic Y. M. Wan . Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences and Engineering, 2005, 2(2): 239-262. doi: 10.3934/mbe.2005.2.239
    [8] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [9] Saima Akter, Zhen Jin . A fractional order model of the COVID-19 outbreak in Bangladesh. Mathematical Biosciences and Engineering, 2023, 20(2): 2544-2565. doi: 10.3934/mbe.2023119
    [10] Inom Mirzaev, David M. Bortz . A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences and Engineering, 2017, 14(4): 933-952. doi: 10.3934/mbe.2017049
  • How to reduce a boiler's NOx emission concentration is an urgent problem for thermal power plants. Therefore, in this paper, we combine an evolution teaching-learning-based optimization algorithm with extreme learning machine to optimize a boiler's combustion parameters for reducing NOx emission concentration. Evolution teaching-learning-based optimization algorithm (ETLBO) is a variant of conventional teaching-learning-based optimization algorithm, which uses a chaotic mapping function to initialize individuals' positions and employs the idea of genetic evolution into the learner phase. To verify the effectiveness of ETLBO, 20 IEEE congress on Evolutionary Computation benchmark test functions are applied to test its convergence speed and convergence accuracy. Experimental results reveal that ETLBO shows the best convergence accuracy on most functions compared to other state-of-the-art optimization algorithms. In addition, the ETLBO is used to reduce boilers' NOx emissions by optimizing combustion parameters, such as coal supply amount and the air valve. Result shows that ETLBO is well-suited to solve the boiler combustion optimization problem.



    Diverse viral outbreaks, including those engendered by the human immune compromised virus (HIV) [1], ebola virus [2], acute respiratory syndrome Coronavirus‐2 (SARS‐CoV‐2) [3], dengue virus [4], nipah virus [5], HBV [6], etc., have been researched utilizing mathematical formulas to describe the within-host nonlinear versatile tendencies. In typical latent infection systems, uncontrolled infections, vulnerable tissues, and attacked cellular responses interact. Additionally, several researchers highlight the phenomenon of incubation by mentioning persistent contamination. The recipient defensive mechanism responds to viral infestation via inherent and monoclonal antibody immunogenicity. Both kinds of reactions can be roughly classified into lytic and nonlytic parts. While nonlytic responder processes prevent viremia by aqueous molecules, lytic responder strategies eliminate afflicted organisms. Innate mechanisms include the ability of autonomous assassin systems to destroy intracellular pathogens and the nonlytic inhibition of viral multiplication by cytokines released by cellular functions. Cytotoxic T lymphocytes (CTLs), which are allergen antibodies, destroy intracellular pathogens while autoantibodies deactivate dispersed viral proteins and prevent the transmission of bacteria to infected macrophages. Furthermore, CD4+ and CD8+ T lymphocytes can produce chemicals that inhibit infectious proliferation (e.g., IFN- and TNF-), (see Figure 1).

    Figure 1.  Life cycle of CD4+ and CD8+ T cells.

    These discrepancies are not necessarily easy to make, though. For instance, cytokines like interferon and tumour necrotic signal have been shown to promote apoptosis in some circumstances, in addition to inhibiting infectious multiplication [7]. Eichelberger et al. [8] investigated whether the pathogen can be eradicated by the CD4+ T-cell-dependent antigen reaction in the absence of CD8+ T cells, (see Figure 2). Topham et al. [9] demonstrated that CD8+ T lymphocytes can eliminate the pathogen by a lytic process that is either regulated by complement activation or Fas. In terms of explaining the four distinct HCV scenarios quantitatively, Pan et al. [10] addressed the HCV infectious system, which incorporates the pathways of contamination and propagation, such as infectious agent and cell-to-cell dissemination patterns.

    Figure 2.  Aging and respiratory viral infection: from acute morbidity to chronic.

    Chronic infestations result when the pathogen weakens and suppresses the innate immunity. An immunological reaction has occurred whereby, upon a bacteria's penetration into the system, the immunological mechanism identifies the onslaught and communicates this information to the defensive components, which then generate lymphocytes to eradicate the infection. Additionally, the responsive immunological mechanism is very important in regulating the virus replication. When an infection propagates in a person, the cells respond in two ways: first, a host antibody immune reaction is triggered by the B-cell, and then a cytotoxic immunological reaction is induced by the Cytotoxic T Lymphocyte (CTL). According to earlier investigations, the autoimmune disease seems to be more robust than the intracellular immunological defences. Elaiw et al. [11] addressed the production of antibodies, particular nonlinear prevalence rate expression, and behavioural features of viral transmission scenarios, including insidiously viral particles. Luo et al. [12] analyzed a nonlinear prevalence, cell-to-cell dissemination, and host immune protection framework for diffusive pathogen infectious diseases. Wang et al. [13] investigated the infectious patterns of a system of persistent HIV transmission that included multiple latencies, B-cell immunological responses, and the Beddington-DeAngelis occurrence criterion. Hattaf [14] presented a generalised virus-induced framework with several delayed and immune regulatory components that exhibit global stability and Hopf bifurcation. Rajivganthi and Rihan [15] presented the stochastic analysis of viral infection model involving latently infected cells. Olaide et al. [16] presented a novel metaheuristic algorithm named ebola optimization search algorithm (EOSA) based on the propagation mechanism of the ebola virus disease. For further investigations on optimization and epidemics, we refer the readers [17,18,19,20,21,22,23,24,25].

    Fractional calculus (FC) is a subfield of mathematics that was created by applying integer derivatives to differential equations (DEs) involving fractional-orders [26,27,28,29,30,31]. Since many considerable anomalies in digital circuits, phonics, physio-chemical processes, special relativity, photo-catalysis, transport phenomena, stretchability, and optoelectronics can be characterized by fractional DEs, this field, which deals with classical derivatives and fractional-order, has gained popularity in the last three decades. Additionally, FC is currently an essential strategy for simulating complicated events as well as electron mobility that occurs in permeable heterogeneity environments [32,33,34,35,36]. In order to analyze FDEs, scientists require a powerful toolset, yet it might be challenging to identify precise alternatives to these kinds of computations. Therefore, it is vital to designing appropriate quantitative strategies to address these issues [37]. However, quantitative approaches for FDEs create mathematical challenges that are not present in the evaluation of integer-order models. Because certain of the advantageous aspects of the conventional approximation operators are compromised, there are certain systemic problems in performing simulations of the fractional derivatives. During the last decade, the Atangana-Baleanu fractional operator has made recent advancements in fractional DEs approximation, [38]. Atangana [39] proposed a revolutionary nonlocal formulation that combines fractional-order and fractal-dimension: fractal-fractional (FF) differential and integral operators. To examine intricate real-world situations that can never be modelled using classical and fractional derivative/integral formulations of single order, the F-F technique has been expounded as a valuable technique in numerous scientific and epidemiological fields. Versaci et al. [40] presented a fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects. The present scheme can be further formulated with the method proposed by [40].

    However, the fractional-order and integer-order mathematical models have been developed to analyze a large number of randomized order derivatives, providing an additional level of flexibility in selecting; see [41,42,43,44]. The stochastic DEs might offer a significant level of reliability, and when linked to deterministic systems, they encompass the comprehensive spectra of an individual cohort and produce a highly precise result as compared to a classical model. We need to execute the simulations repeatedly and detect commonalities in the projected scenarios because the results of every inquiry in a stochastic procedure differ from the preceding [46,47,48]. According to several researchers, a non-linear recurrence projection for stochastic processes is one of the epidemiological techniques that has been examined for stability evaluation. In fact, random events are prevalent worldwide. Systems frequently experience random disturbances. Various studies have been conducted on stochastic dynamics; for example, a wide range of scientific theories, including meteorology, accounting, biology, and telecommunication systems, frequently exhibit randomized fluctuations with long-term dependency. In order to analyze fractional stochastic processes, fractional Brownian motion (BM) employing the Hurst index H(1/2,1) has been proposed as an alternative to classical BM [49]. Kerboua et al. [50] looked into stochastic fractional DEs with perturbed regulatory frameworks that involved fractional BM. Pei and Xu [51] investigated the non-Lipschitz stochastic DEs driven by fractional BM. In 2021, authors [52] presented a novel notion for analyzing and predicting the transmission of COVID-19 throughout Africa and Europe using stochastic and deterministic methods. Alkahtani and Koca [53] contemplated the fractional stochastic SIR system within the fractional calculus technique. Rashid et al. [54] contemplated the stochastic fractal-fractional tuberculosis model via a non-singular kernel with random densities.

    Owing to the aforesaid propensity, we intend to suggest a novel fractal-fractional stochastic immune effector response to viral infections while taking the notion of a fluctuating population with white noise into consideration. We intend to divide the entire population into five distinct groups based on the severity of viral infection. Furthermore, several qualitative analyses are conducted, such as the existence and distinctiveness of the positive solution in the stochastic immune effector responses considering a Holling type II functionality reaction. Perceptions from these systems are distilled in this assessment, which also contrasts them with test findings. Numerical results are presented by employing the revolutionary technique proposed by Atangana and Araz [52] in the fractal-fractional derivative sense. Graphical illustrations are presented with low random densities, incorporating the fractal-dimension and fractional-order. In a nutshell, we presented the simulation findings with and without control.

    The rest of this paper is structured as follows. Section 2 gives some foundational information on F-F operators in the ABC sense, formulations of stochastic perturbation and the fractional viral infection model construction. In Section 3, we demonstrate the model's configuration. Section 4 exhibits the solution's existence-uniqueness, as well as ergodicity and conducts a stationary distribution study on the proposed model. The unique result for the F-F viral model is established utilizing the Atangana-Baleanu sense and standard Brownian motion in Section 5. Furthermore, the discussion of numerical simulations utilizing the novel numerical scheme is provided to analyze the behaviors of the considered model. Finally, we give the conclusion of our paper in the last section.

    Before advancing on to the formal description, it is imperative to study certain fundamental F-F operator concepts. Take into account the parameters provided in [39] as well as the functional v(t1), which is continuous and fractal differentiable on [c,d] with fractal-dimension and fractional-order α.

    Definition 2.1. ([39]) The FF operator of v(ˉt) involving the index law kernel in the perspective of Riemann–Liouville (RL) can be described as follows for ˉt[0,1]:

    FFPDα,0,ˉt(v(ˉt))=1Γ(uα)ddˉtˉt0(ˉtw)uα1v(w)dw, (2.1)

    where dv(w)dw=limˉtϰv(ˉt)v(ϰ)ˉtϰ and u1<α,uN.

    Definition 2.2. ([39]) The FF operator of v(ˉt) involving the exponential decay kernel in the terms of RL can be described as follows for α[0,1]:

    FFEDα,0,ˉt(v(ˉt))=M(α)1αddˉtˉt0exp(α1α(ˉtϰ))v(ϰ)dϰ, (2.2)

    such that M(0)=M(1)=1 containing α>0,uN.

    Definition 2.3. ([39]) The FF operator of v(ˉt) involving the generalized Mittag-Leffler kernel in the perspective of RL can be described as follows for α[0,1]:

    FFMDα,0,ˉt(v(ˉt))=ABC(α)1αddˉtˉt0Eα(α1α(ˉtϰ))v(ϰ)dϰ, (2.3)

    such that ABC(α)=1α+αΓ(α) involving α>0,1N.

    Definition 2.4. ([39]) The corresponding F-F integral formulae of (2.1) is described as:

    FFPJα0,ˉt(v(ˉt))=Γ(α)ˉt0(ˉtϰ)α1ϰ1v(ϰ)dϰ. (2.4)

    Definition 2.5. ([39]) The corresponding F-F integral formulae of (2.2) is described as:

    FFEJα0,ˉt(v(ˉt))=αM(α)ˉt0ϰ1v(ϰ)dϰ+(1α)ˉt1v(ˉt)M(α). (2.5)

    Definition 2.6. ([39]) The corresponding F-F integral formulae of (2.3) is described as:

    FFMJα0,ˉt(v(ˉt))=αABC(α)ˉt0ϰ1(ˉtϰ)α1v(ϰ)dϰ+(1α)ˉt1v(ˉt)ABC(α). (2.6)

    Definition 2.7. ([38]) Let vH1(c,d),c<d and the Atangana-Baleanu fractional derivative operator is described as:

    ABCcDαˉt(v(ˉt))=ABC(α)1αˉtcv(ϰ)Eα(α(ˉtϰ)α1α)dϰ,α[0,1], (2.7)

    where ABC(α) represents the normalization function.

    Definition 2.8. ([55]) The Gaussian hypergeometric function 2F1, characterized as

    2F1(y1,y2;y3,y4)=1B(y2,y3y2)11ˉty21(1ˉt)y3y21(1y4ˉt)y1dˉt,(y3>y2>0,|y1|<1), (2.8)

    where B(y1,y2)=Γ(y1)Γ(y2)Γ(y1+y2) and Γ(y1)=0exp(ˉt)ˉty1dˉt is the Gamma function.

    Here, the immunological mechanism is necessary for the highly contagious viral replication. If infectious processes are adequately described, the infection and the therapeutic medications employed to address it can be comprehended. Lymphocytes are vicariously liable for specialization and retention in responsive immunological systems. B cells and T cells are the two primary categories of lymphocytes. T cells have the ability to identify and eliminate contaminated organisms, whereas B cells are responsible for producing antigens that can neutralize pathogens. Immune systems, including CTL and antigen-response, have been examined in terms of their impact [56,57]. The impact of CTL reactions and cytoplasmic latencies has been considered by a few other scientists as well [58]. Murase et al. [59] presented the mathematical framework that shows how adaptive immunity affects viral transmission as follows:

    {U(ˉt)dˉt=ΛςU(ˉt)λ11U(ˉt)F(ˉt)λ22U(ˉt)A(ˉt),A(ˉt)dˉt=λ1U(ˉt)F(ˉt)+λ2U(ˉt)A(ˉt)δA(ˉt),F(ˉt)dˉt=φA(ˉt)ν2F(ˉt)ξF(ˉt)Q(ˉt),Q(ˉt)dˉt=χF(ˉt)Q(ˉt)ζQ(ˉt)A(ˉt)δA(ˉt), (3.1)

    The system (3.1) based on unrestricted infections F(ˉt), unaffected target cells U(ˉt), productively infectious specific cells A(ˉt) and antibodies/B tissue Q(ˉt). The productivity Λ of the infectious organisms U(ˉt) and fatality rate ς are both constant. The incidence of the disease by uncontrolled pathogen is λ11, and uncontrolled bacteria become constructively contaminated at a rate of λ22 for each of the two individuals. The percentage of viral components that died at δ,ν2 and ζ released pathogens, antibodies, and B tissues, respectively. When tissues are actively infested, individual viral particles are created at a speed of φ, where is the ratio ξ at which responses can eliminate the pathogen. The frequency of responses that are active versus the pathogen is χ.

    However, the persistent infectious factor is applied to framework (3.1) in this article as an improvement. We suppose that the incidence at which a Holling type II functioning reaction develops is that the unaffected cell U(ˉt) becomes contaminated by a neutral pathogen F(ˉt) or by virus is transmitted organism A(ˉt) at the rate λ1U(ˉt)F(ˉt)1+F(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt) response. The rates of pathogen to tissue infection and tissue to cell propagation are indicated by λ1>0 and λ2>0,, respectively, see [60]. We further estimate that the amounts of contamination that result in response times and efficiency are 1ϕ and ϕ(0,1), respectively. In addition, we included the effect of unpredictability within the host by injecting nonlinear disturbances on the spontaneous mortality rate, employing white noise throughout each expression in an attempt to depict a more accurate state of pathogen progression. As a result, the modified framework is specified:

    {dU(ˉt)=(ΛςU(ˉt)λ1U(ˉt)S(ˉt)1+S(ˉt)λ2U(ˉt)A(ˉt)1+A(ˉt))dˉt+ρ1U(ˉt)dB1(ˉt),dS(ˉt)=((1ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))(ν1+σ)S(ˉt))dˉt+ρ2S(ˉt)dB2(ˉt),dA(ˉt)=(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+σS(ˉt)δA(ˉt))dˉt+ρ3A(ˉt)dB3(ˉt),dF(ˉt)=(φA(ˉt)ν2F(ˉt)ξF(ˉt)Q(ˉt))dˉt+ρ4F(ˉt)dB4(ˉt),dQ(ˉt)=(χF(ˉt)Q(ˉt)ζQ(ˉt))dˉt+ρ5Q(ˉt)dB5(ˉt), (3.2)

    subject to initial conditions (ICs) U(0)>0,S(0)>0,A(0)>0,F(0)>0,Q(0)>0. Moreover, the term S(ˉt) stands for the concentrations of contaminated tissues in the predictive phase at time ˉt. ν1 be the death rate of S(ˉt), the underlying contamination becomes prolific at the rate σ. Also, ρ2ι,ι=1,...,5 are intensities of standard Gaussian white noise and Bι,ι=1,...,5 are independent standard Brownian motion (BM). The underlying ideas of probability theory and stochastic differential equations are described as: let (Ω,F,{F}ˉt0,P) be a complete probability space using filtration such that {F}ˉt0 admits the basic requirements. For further information on Itô's technique, see [61]. However, the deterministic model has certain limitations because it cannot consider demographic stochasticity, which are important features of any natural system. Due to the influence of environmental noise, population density usually does not stabilize at a fixed value, but fluctuates around a certain average value. Nowadays, stochastic biological modeling has attracted great interest from researchers all over the world [20,21,22].

    In what follows, we provide the accompanying result to identify the stochastic model's (3.2) existence and uniqueness.

    Theorem 4.1. For χ<ξ<ζ,λ1φ<ν2+χ,1+λ2<δφ, the solution of the system (3.2)  (U(0),S(0),A(0),F(0),Q(0)) is unique for ˉt0 underlying ICs (U(0),S(0),A(0),F(0),Q(0))R5+. Also, the solution will probably stay in R5+ having unit probability, i, e., (U(0),S(0),A(0),F(0),Q(0))R5+,ˉt>0 almost surely (a.s).

    Proof. Briefly, if the local Lipschitz criterion is fulfilled by the components of the scheme (3.2). Thus, (3.2) has an unique local solution (U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt)) on [0,τe], where τe is the exposition duration. Then, we illustrate that τe=. Let us apply the same methodology used in [48] to prove the result. Our intention is to define a non-negative mapping C2 as H:R5+R+ such that limη(U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt))R5+ΥηinfH(U,S,A,F,Q)= and LH(U,S,A,F,Q)k, where Υη=(1/η,η)×(1/η,η)×(1/η,η)×(1/η,η)×(1/η,η) and k is non-negative constant.

    Now, considering two positive constants values ϵ from (0,1) and T must exist such that

    P[Tτ]>ϵ. (4.1)

    Introducing a mapping H:R5+R+ as:

    H(U,S,A,F,Q)=U+S+A+F+Q5(lnU+lnS+lnA+lnF+lnQ). (4.2)

    This stored procedure non-negativity is shown by examining at ϱ1lnϱ,ϱ>0. Suppose that k0k and T>0. The Itô's formula can be used to acquire

    dH(U,S,A,F,Q)=LH(U,S,A,F,Q)dˉt+ρ1(U1)dB1(ˉt)+ρ2(S1)dB2(ˉt)+ρ3(A1)dB3(ˉt)+ρ4(F1)dB4(ˉt)+ρ5(Q1)dB5(ˉt). (4.3)

    It follows that

    LH(U,S,A,F,Q)=(11U)(ΛςU(ˉt)λ1U(ˉt)S(ˉt)1+S(ˉt)λ2U(ˉt)A(ˉt)1+A(ˉt))+(11S)((1ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))(ν1+σ)S(ˉt))+(11A)(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+(11F)(φA(ˉt)ν2F(ˉt)ξF(ˉt)Q(ˉt))+(11Q)(χF(ˉt)Q(ˉt)ζQ(ˉt))12(ρ21+ρ22+ρ23+ρ24+ρ25)+Λ+ς+ν1+σ1+δ+ν2+ζ+((ξζ)+(χξ)F)Q+(λφ(ν2+χ))F+((λ2+1)φδ)A. (4.4)

    Utilizing the given hypothesis, there exists a non-negative constant η such that LH<η.

    Therefore,

    U[H(U(τηT),S(τηT),A(τηT),F(τηT),Q(τηT))]H(U(0),S(0),A(0),F(0),Q(0))+U[τηT0ηdˉt]H(U(0),S(0),A(0),F(0),Q(0))+ηT. (4.5)

    Inserting Ωη={τηT} for ηη1 and by (4.1) we have P(Ωη)ϵ. Observe that for every ω from Ωη there exist at least one U(τη,ω),S(τη,ω),A(τη,ω),F(τη,ω),Q(τη,ω) that yields 1/ηorη. Consequently, H(U(τη),S(τη),A(τη),F(τη),Q(τη))(1/η1+lnη)U(η1lnη).

    In view of (4.1) and (4.5), we can express

    H(U(0),S(0),A(0),F(0),Q(0))+ηTU[1Ω(ω)H(U(τη),S(τη),A(τη),F(τη),Q(τη))]ϵ(1/η1+lnη)U(η1lnη). (4.6)

    The indicating mapping of ω is denoted as 1Ω(ω) that approaches to , the contradiction

    >H(U(0),S(0),A(0),F(0),Q(0))+ηT=

    reveals itself, proving that τ=.

    Now, we review and examine the model's (3.2) stationary distribution outcomes, which show that the infections are eliminated or enduring.

    Suppose there be a regular Markov technique in Rn+ for which the behaviour is as below:

    dΦ(ˉt)=b1(Φ)dˉt+ur1ζr1dΨr1(ˉt).

    The diffusion matrix takes the form

    A(Φ)=[aij(ϕ)],aij(ϕ)=ur1=1ζir1(ϕ)ζr1j(ϕ).

    Lemma 4.1. ([62]) Suppose there is a unique stationary distribution technique Φ(ˉt). If there is a bounded region involving regular boundary such that S,ˉSRdˉS closure ˉSRd satisfies the following:

    (a) The smallest eigenvalue for A(ˉt) is bounded away from (0,0) for the open region S having neighbourhood.

    (b) For ψRdS, the mean time τ is bounded and for every compact subset KRn,supψkSψτ<. Therefore, f1(.) is an integrable mapping containing measure π, then

    P(limT1TT0f1(Φψ(ˉt))dˉt=Rdf1(ψ)π(dψ))=1,ψRd.

    Theorem 4.2. For ˆσ=ν1+σ+ρ222,ˆδ=δ+ρ232,^ν2=ν2+ρ242, then assume that Rs0:=Λσφλ1(1ϕ)ςˆδˆσ>1, then for any ICs exists in R5+, the system has a unique ESD π(.).

    Proof. The diffusive matrix for system (3.2) is computed as follows:

    A=[ρ21U200000ρ22S200000ρ23A200000ρ24F200000ρ25U2].

    This proves that the criteria (a) in Lemma 4.1 is applicable for any compact subset of R5+. In view of mapping C2 defined as H:R5+R+. Thus, we have

    H(U,S,A,F,Q):=M(ln1U+1ln1S+2ln1A+3ln1F+ln1Q)+ln1U+ln1S+ln1A+ln1F+(U+S+A+F+Q)θ+1θ+1=MH1+H2+H3+H4+H5+H6,

    where θ[0,1],1=Λλ1σφ(1ϕ)ˆσ2ˆa^ν2,2=Λλ1σφ(1ϕ)ˆσ2ˆa2^ν2,3=Λλ1σφˆσˆa^ν22 fulfilling cθ2(ρ21ρ22ρ23ρ24ρ25)>0 and M>0, admitting the assumption Mν2+N12 and ν2=ς(Rs01)>0.

    This shows that H(U,S,A,F,Q) is continuous as well as it tends to . So that (U,S,A,F,Q) approaches to R5+ and Also, \mathcal{H} have ICs that lies in \mathbb{R}_{+}^{5}.

    Again, in view of mapping \mathbb{C}^{2} defined as \mathcal{H}:\mathbb{R}_{+}^{5}\mapsto\mathbb{R}_{+}. Thus, we have

    \begin{array}{l} \bar{\mathcal{H}}(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q}) = \mathcal{H}\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q}-\mathcal{H}(\mathbf{U}(0), \mathbf{S}(0), \mathbf{A}(0), \mathbf{F}(0), \mathbf{Q}(0)). \end{array}

    Considering Itô's technique \mathbb{L} on the mappings \mathcal{H}_{1}, ..., \mathcal{H}_{6} and utilizing the given hypothesis such that c = \max\{\varsigma, \nu_{1}, \delta, \nu_{2}, \zeta\}, we have

    \begin{array}{l} \mathbb{L}\mathcal{H}_{1} \leq-\frac{\Lambda}{\mathbf{U}}-\frac{\ell_{1}}{\mathbf{S}}(1-\phi)\lambda_{1}\mathbf{U}\mathbf{F}-\frac{\sigma\ell_{2}\mathbf{S}}{\mathbf{A}}-\frac{\varphi\mathbf{A}\ell_{3}}{\mathbf{F}}+\varsigma+\lambda_{2}\mathbf{A}+\ell_{1}(\nu_{1}+\sigma)+\delta\ell_{2}+\nu_{2}\ell_{3}\\ \quad+\xi\mathbf{Q}\ell_{3}-(\chi-\lambda_{1})\mathbf{F}+\zeta+\frac{1}{2}(\rho_{1}^{2}+\ell_{1}\rho_{2}^{2}+\ell_{2}\rho_{3}^{2}+\ell_{3}\rho_{4}^{2}+\rho_{4}^{2})\\ \leq -\mathbf{F}+\frac{\rho_{1}^{2}}{2}+\zeta+\rho_{5}^{2}+\lambda_{2}\mathbf{A}+\xi\ell_{3}\mathbf{Q}. \end{array} (4.7)

    Analogously, we have

    \begin{array}{l} \mathbb{L}\mathcal{H}_{2}\leq-\frac{\Lambda}{\mathbf{U}}+\varsigma+\lambda_{1}\mathbf{F}+\lambda_{2}\mathbf{A}+\frac{\rho_{1}^{2}}{2}, \\ \mathbb{L}\mathcal{H}_{3} = -\frac{1}{\mathbf{S}}(1-\phi)\Big(\frac{\lambda_{1}\mathbf{U}\mathbf{F}}{1+\mathbf{F}}+\frac{\lambda_{2}\mathbf{U}\mathbf{A}}{1+\mathbf{A}}\Big)+\nu_{1}+\sigma+\frac{\rho_{2}^{2}}{2}, \\ \mathbb{L}\mathcal{H}_{4} = -\frac{\phi\lambda_{1}\mathbf{U}\mathbf{F}}{\mathbf{A}(1+\mathbf{F})}-\frac{\phi\lambda_{2}\mathbf{U}}{1+\mathbf{A}}-\frac{\sigma\mathbf{S}}{\mathbf{A}}+\delta+\frac{\rho_{3}^{2}}{2}, \\ \mathbb{L}\mathcal{H}_{5} = -\frac{\varphi\mathbf{A}}{\mathbf{F}}+\nu_{2}+\xi\mathbf{Q}+ \frac{\rho_{4}^{2}}{2}, \\ \mathbb{L}\mathcal{H}_{5}\leq\mathcal{N}_{2}-\frac{1}{2}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{U}^{\theta+1}, \mathbf{S}^{\theta+1}, \mathbf{A}^{\theta+1}, \mathbf{F}^{\theta+1}, \mathbf{Q}^{\theta+1}), \end{array} (4.8)

    where \mathcal{N}_{2} = \sup\limits_{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}}\Big\{\Lambda(\mathbf{U}+\mathbf{S}+\mathbf{A}+\mathbf{F}+\mathbf{Q})^{\theta}-\frac{1}{2}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{U}+\mathbf{S}+\mathbf{A}+\mathbf{F}+\mathbf{Q})^{\theta+1}\Big\} < \infty.

    Utilizing (4.7) and (4.8), we have

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq\frac{-\Lambda}{\mathbf{U}}-\mathcal{M}\mathbf{F}+(\mathcal{M}\ell_{3}+1)\xi\mathbf{Q}-\frac{1}{\mathbf{S}}(1-\phi)\lambda_{1}\mathbf{U}\mathbf{F}-\frac{\phi\lambda_{2}\mathbf{U}}{1+\mathbf{A}}-\frac{\varphi\mathbf{A}}{\mathbf{F}}\\ \quad-\frac{1}{2}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{U}^{\vartheta+1}+\mathbf{S}^{\vartheta+1}+\mathbf{A}^{\vartheta+1}+\mathbf{F}^{\vartheta+1}+\mathbf{Q}^{\vartheta+1})+\varsigma\\ \quad+(\mathcal{M}+1)\frac{\rho_{1}^{2}}{2}+\mathcal{M}\zeta+\mathcal{M}\frac{\rho_{5}^{2}}{2}+(\mathcal{M}+1)\lambda_{2}\mathbf{A}+\delta+\nu_{2}+\lambda_{1}\mathbf{F}+\mathcal{N}_{2}+\nu_{1}+\sigma\\ \quad+\frac{\rho_{2}^{2}}{2}+ \frac{\rho_{3}^{2}}{2}+\frac{\rho_{4}^{2}}{2}. \end{array} (4.9)

    For \epsilon > 0, we construct the following set

    \begin{array}{l} \mathbb{D} = \Big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{U}\in[\epsilon, 1/\epsilon], \mathbf{S}\in[\epsilon^{5}, 1/\epsilon^{5}], \mathbf{A}\in[\epsilon^{2}, 1/\epsilon^{2}], \mathbf{F}\in[\epsilon^{3}, 1/\epsilon^{3}], \mathbf{Q}\in[\epsilon, 1/\epsilon]\Big\}.\\ \end{array} (4.10)

    We can validate Lemma 4.1 in order to demonstrate that \mathbb{L}\bar{\mathcal{H}}\leq-1 for (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}\backslash\mathbb{D}\; and\; \mathbb{R}_{+}^{5}\backslash\mathbb{D} = \bigcup_{\iota = 1}^{10}\mathbb{D}_{\iota}, where

    \begin{array}{l} \mathbb{D}_{1} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{U}\in(0, \epsilon)\big\}, \\ \mathbb{D}_{2} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{A}\in(0, \epsilon^{5}), \mathbf{U}\geq\epsilon, \mathbf{F}\geq\epsilon^{3}\big\}, \\ \mathbb{D}_{3} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{A}\in(0, \epsilon^{2}), \; \mathbf{U}\geq\epsilon\big\}, \\ \mathbb{D}_{4} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{F}\in(0, \epsilon^{3}), \mathbf{A}\geq\epsilon^{2}\big\}, \\ \mathbb{D}_{5} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{Q}\in(0, \epsilon)\big\}, \\ \mathbb{D}_{6} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{U} > 1/\epsilon\big\}, \\ \mathbb{D}_{7} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{S} > 1/\epsilon^{5}\big\}, \\ \mathbb{D}_{8} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{A} > 1/\epsilon^{2}\big\}, \\ \mathbb{D}_{9} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{F} > 1/\epsilon^{3}\big\}, \\ \mathbb{D}_{10} = \big\{(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5}:\mathbf{Q} > 1/\epsilon\big\}. \end{array} (4.11)

    Case (a) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{1}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq\frac{-\Lambda}{\mathbf{U}}+(\mathcal{M}\ell_{3}+1)\xi\mathbf{Q}-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{U}^{\vartheta+1}+\mathbf{S}^{\vartheta+1}+\mathbf{A}^{\vartheta+1}\\ \quad+\mathbf{F}^{\vartheta+1}+\mathbf{Q}^{\vartheta+1})+\varsigma+(\mathcal{M}+1)\frac{\rho_{1}^{2}}{2}+\mathcal{M}\zeta+\mathcal{M}\frac{\rho_{5}^{2}}{2}+(\mathcal{M}+1)\lambda_{2}\mathbf{A}+\delta+\nu_{2}\\ \quad+\lambda_{1}\mathbf{F}+\mathcal{N}_{2}+\nu_{1}+\sigma+\frac{\rho_{2}^{2}}{2}+ \frac{\rho_{3}^{2}}{2}+\frac{\rho_{4}^{2}}{2}\\ \leq-\frac{\Lambda}{\epsilon}+\mathcal{M}_{1} \end{array} (4.12)

    If we choose a sufficiently small \epsilon > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{1}.

    Case (b) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{2}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq\frac{-1}{\mathbf{S}}(1-\phi)\lambda_{1}\mathbf{U}\mathbf{F}+\mathcal{M}_{1}\nonumber\\ \leq\frac{-1}{\epsilon}(1-\phi)\lambda_{1}+\mathcal{M}_{1} \end{array}

    If we choose a sufficiently small \epsilon^{5} > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{2}.

    Case (c) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{3}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq\frac{-\phi\lambda_{2}\mathbf{U}}{1+\mathbf{A}}+\mathcal{M}_{1}\nonumber\\ \leq\frac{-\phi\lambda_{2}\epsilon}{1+\epsilon^{2}}+\mathcal{M}_{1}. \end{array}

    If we choose a sufficiently small \epsilon^{2} > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{3}.

    Case (d) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{4}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq\frac{-\varphi\mathbf{A}}{\mathbf{F}}+\mathcal{M}_{1}\nonumber\\ \leq\frac{-\varphi}{\epsilon}+\mathcal{M}_{1}. \end{array}

    If we choose a sufficiently small \epsilon > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{4}.

    Case (e) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{5}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq-\mathcal{M}\mathbf{F}+(\mathcal{M}\ell_{3}+1)\xi\mathbf{Q}+\mathcal{N}_{1}\nonumber\\ \leq-\mathcal{M}\mathbf{F}+(\mathcal{M}\ell_{3}+1)\xi\epsilon+\mathcal{N}_{1}. \end{array}

    If we choose a sufficiently small \epsilon > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{4}.

    Case (f) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{6}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{U})^{\theta+1}+\mathcal{M}_{1}\nonumber\\ \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)\frac{1}{\epsilon^{(\theta+1)}}+\mathcal{M}_{1}. \end{array}

    If we choose a sufficiently small \epsilon > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{6}.

    Case (g) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{7}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{S})^{\theta+1}+\mathcal{M}_{1}\nonumber\\ \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)\frac{1}{\epsilon^{5(\theta+1)}}+\mathcal{M}_{1}. \end{array}

    If we choose a sufficiently small 1/\epsilon^{5} > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{7}.

    Case (h) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{8}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{A})^{\theta+1}+\mathcal{M}_{1}\nonumber\\ \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)\frac{1}{\epsilon^{2(\theta+1)}}+\mathcal{M}_{1}. \end{array}

    If we choose a sufficiently small 1/\epsilon^{2} > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{8}.

    Case (i) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{9}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{F})^{\theta+1}+\mathcal{M}_{1}\nonumber\\ \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)\frac{1}{\epsilon^{3(\theta+1)}}+\mathcal{M}_{1}. \end{array}

    If we choose a sufficiently small 1/\epsilon^{3} > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{9}.

    Case (j) If (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in \mathbb{D}_{10}, then by (4.9), we find

    \begin{array}{l} \mathbb{L}\bar{\mathcal{H}} \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)(\mathbf{Q})^{\theta+1}+\mathcal{M}_{1}\nonumber\\ \leq-\frac{1}{4}\Big(c_{1}-\frac{\theta}{2}(\rho_{1}^{2}\vee\rho_{2}^{2}\vee\rho_{3}^{2}\vee\rho_{4}^{2}\vee\rho_{5}^{2})\Big)\frac{1}{\epsilon^{(\theta+1)}}+\mathcal{M}_{1}. \end{array}

    If we choose a sufficiently small 1/\epsilon > 0, then we get \mathbb{L}\bar{\mathcal{H}} < 0 for each (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{D}_{10}. \\As a result of the foregoing explanation, a \epsilon > 0 exists such that \mathbb{L}\bar{\mathcal{H}}(\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q}) < 0 \forall (\mathbf{U}, \mathbf{S}, \mathbf{A}, \mathbf{F}, \mathbf{Q})\in\mathbb{R}_{+}^{5} . The unique ESD of the system (3.2) is predicated on Lemma 4.1. This completes the proof.

    This part defines the objectives for a virus's systemic elimination (3.1). Before proving the key findings, let's take a closer look at a key premise. Suppose

    \begin{array}{l} \langle\Phi(\bar{\mathbf{t}})\rangle = \frac{1}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\phi(r_{1})dr_{1}. \end{array} (4.13)

    Theorem 4.3. Suppose there is a solution of the system (3.1) ~~(\mathbf{U}(\bar{\mathbf{t}}), \mathbf{S}(\bar{\mathbf{t}}), \mathbf{A}(\bar{\mathbf{t}}), \mathbf{F}(\bar{\mathbf{t}}), \mathbf{Q}(\bar{\mathbf{t}})) having ICs lies in \mathbb{R}_{+}^{5}. If

    \tilde{\mathbb{R}}_{0}^{s}: = \frac{3(\lambda_{1}+\lambda_{2})\Lambda}{\varsigma\big((\nu_{1}+\frac{\rho_{2}^{2}}{2})\wedge((\delta-\varphi)+\frac{\rho_{3}^{2}}{2})\wedge(\nu_{2}+\frac{\rho_{4}^{2}}{2})\big)} < 1
    \implies\lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\frac{1}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\mathbf{U}(\varpi)d\varpi\leq\frac{\Lambda}{\varsigma}, \; \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\mathbf{S}(\bar{\mathbf{t}}) = 0, \; \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\mathbf{A}(\bar{\mathbf{t}}) = 0, \; \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\mathbf{F}(\bar{\mathbf{t}}) = 0

    almost surely.

    Proof. Under the hypothesis of Theorem 4.1, model (3.2) has non-negative solution,

    \begin{array}{l} d\mathbf{U}(\bar{\mathbf{t}})\leq(\Lambda-\varsigma\mathbf{U})d\bar{\mathbf{t}}+\rho_{1}\mathbf{U}d\mathbf{B}_{1}(\bar{\mathbf{t}}). \end{array}

    Assume the stochastic DE of the aforementioned system

    \begin{array}{l} d\mathbf{U}_{1}(\bar{\mathbf{t}})\leq(\Lambda-\varsigma\mathbf{U}_{1})d\bar{\mathbf{t}}+\rho_{1}\mathbf{U}_{1}d\mathbf{B}_{1}(\bar{\mathbf{t}}), \; \; \mathbf{U}_{1}(0) = \mathbf{U}(0) > 0, \end{array}

    we have \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\frac{1}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\mathbf{U}(\varpi)d\varpi\leq\frac{\Lambda}{\varsigma} \; (a.s).

    Applying the result of [48], gives \mathbf{U}(\bar{\mathbf{t}})\leq\mathbf{U}_{1}(\bar{\mathbf{t}})\; (a.s). Then

    \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\frac{1}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\mathbf{U}(\varpi)d\varpi\leq\lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\frac{1}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\mathbf{U}_{1}(\varpi)d\varpi = \frac{\Lambda}{\varsigma} \; (a.s).

    For \varphi < \delta and introducing \ln(\mathbf{S}(\bar{\mathbf{t}})+\mathbf{A}(\bar{\mathbf{t}})+\mathbf{F}(\bar{\mathbf{t}})) and implement the Itô's technique, we have

    \begin{array}{l} d\big(\ln(\mathbf{S}(\bar{\mathbf{t}})+\mathbf{A}(\bar{\mathbf{t}})+\mathbf{F}(\bar{\mathbf{t}}))\big) = \frac{1}{\mathbf{S}(\bar{\mathbf{t}})+\mathbf{A}(\bar{\mathbf{t}})+\mathbf{F}(\bar{\mathbf{t}})}\bigg(\frac{\lambda_{1}\mathbf{U}\mathbf{F}}{1+\mathbf{F}}+\frac{\lambda_{2}\mathbf{U}\mathbf{A}}{1+\mathbf{A}}-\nu_{1}\mathbf{S}-(\delta-\varphi)\mathbf{A}\\ \quad-\nu_{2}\mathbf{F}-\xi\mathbf{F}\mathbf{Q}\bigg)d\bar{\mathbf{t}}+\frac{\rho_{2}\mathbf{S}}{\mathbf{S}+\mathbf{A}+\mathbf{F}}d\mathbf{B}_{2}(\bar{\mathbf{t}})+\frac{\rho_{3}\mathbf{A}}{\mathbf{S}+\mathbf{A}+\mathbf{F}}d\mathbf{B}_{3}(\bar{\mathbf{t}})\\ \quad+\frac{\rho_{4}\mathbf{F}}{\mathbf{S}+\mathbf{A}+\mathbf{F}}d\mathbf{B}_{2}(\bar{\mathbf{t}})-\frac{1}{2(\mathbf{S}+\mathbf{A}+\mathbf{F})^{2}}(\rho_{2}^{2}\mathbf{S}^{2}+\rho_{3}^{2}\mathbf{A}^{2}+\rho_{4}^{2}\mathbf{F}^{2})d\bar{\mathbf{t}}\\ \leq\frac{\rho_{2}\mathbf{S}}{\mathbf{S}+\mathbf{A}+\mathbf{F}}d\mathbf{B}_{2}(\bar{\mathbf{t}})+\frac{\rho_{3}\mathbf{A}}{\mathbf{S}+\mathbf{A}+\mathbf{F}}d\mathbf{B}_{3}(\bar{\mathbf{t}})+\frac{\rho_{4}\mathbf{F}}{\mathbf{S}+\mathbf{A}+\mathbf{F}}d\mathbf{B}_{2}(\bar{\mathbf{t}})\\ \quad+(\lambda_{1}+\lambda_{2})\mathbf{U}d\bar{\mathbf{t}}-\frac{1}{3}\Big(\big((\nu_{1}+\frac{\rho_{2}^{2}}{2})\wedge((\delta-\varphi)+\frac{\rho_{3}^{2}}{2})\wedge(\nu_{2}+\frac{\rho_{4}^{2}}{2})\big)\Big)d\bar{\mathbf{t}}.\\ \end{array} (4.14)

    Applying integration from 0 to \bar{\mathbf{t}} and dividing by \bar{\mathbf{t}}, we have

    \begin{array}{l} \frac{\ln\big(\mathbf{S}(\bar{\mathbf{t}})+\mathbf{A}(\bar{\mathbf{t}})+\mathbf{F}(\bar{\mathbf{t}})\big)}{\bar{\mathbf{t}}}-\frac{\ln\big(\mathbf{S}(0)+\mathbf{A}(0)+\mathbf{F}(0)\big)}{\bar{\mathbf{t}}}\nonumber\\ \leq\frac{\lambda_{1}+\lambda_{2}}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\mathbf{U}(\varrho)d\varrho-\frac{1}{3}\Big(\big((\nu_{1}+\frac{\rho_{2}^{2}}{2})\wedge((\delta-\varphi)+\frac{\rho_{3}^{2}}{2})\wedge(\nu_{2}+\frac{\rho_{4}^{2}}{2})\big)\Big)\nonumber\\ \quad+\frac{\rho_{2}}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\frac{d\mathbf{B}_{2}(\varrho)}{\mathbf{S}+\mathbf{A}+\mathbf{F}}+\frac{\rho_{3}}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\frac{d\mathbf{B}_{3}(\varrho)}{\mathbf{S}+\mathbf{A}+\mathbf{F}}+\frac{\rho_{4}}{\bar{\mathbf{t}}}\int\limits_{0}^{\bar{\mathbf{t}}}\frac{d\mathbf{B}_{4}(\varrho)}{\mathbf{S}+\mathbf{A}+\mathbf{F}}\nonumber\\ \leq\frac{1}{3}\Big(\big((\nu_{1}+\frac{\rho_{2}^{2}}{2})\wedge((\delta-\varphi)+\frac{\rho_{3}^{2}}{2})\wedge(\nu_{2}+\frac{\rho_{4}^{2}}{2})\big)\Big)(\tilde{\mathbb{R}}_{0}^{s}-1) < 0\; (a.s) \end{array}

    that yields \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\mathbf{S}(\bar{\mathbf{t}}) = 0, \; \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\mathbf{A}(\bar{\mathbf{t}}) = 0, \; \lim\limits_{\bar{\mathbf{t}}\mapsto\infty}\mathbf{F}(\bar{\mathbf{t}})\; (a.s).

    The modeling framework helps us understand and interpret experimental data on immune responses against viral infection model (5.1). The role of the fractal-fractional operator in the Atangana-Baleanu fractional derivative sense and antibodies for the resolution of viral infection is debated by utilizing the scheme proposed in [52]. Studies of the acute phase of the infection showed that humans who cleared the virus from their blood developed strong and sustained CTL responses [57]. Here, we illustrate the fractal-fractional derivative for the classical derivative formulation stated in (3.1). The fractal-fractional version in the sense of a generalized Mittag-Leffler function is described as

    \begin{array}{l} \begin{cases} \, _{0}^{\mathbf{FFM}}\mathbf{D}_{\bar{\mathbf{t}}}^{\alpha, \wp}\mathbf{U}(\bar{\mathbf{t}}) = \Big(\Lambda-\varsigma\mathbf{U}(\bar{\mathbf{t}})-\frac{\lambda_{1}\mathbf{U}(\bar{\mathbf{t}})\mathbf{S}(\bar{\mathbf{t}})}{1+\mathbf{S}(\bar{\mathbf{t}})}-\frac{\lambda_{2}\mathbf{U}(\bar{\mathbf{t}})\mathbf{A}(\bar{\mathbf{t}})}{1+\mathbf{A}(t_{1})}\Big)dt_{1}+\rho_{1}\mathcal{G}_{1}(t_{1}, \mathbf{U})d\mathbf{B}_{1}(\bar{\mathbf{t}}), \\\, _{0}^{\mathbf{FFM}}\mathbf{D}_{\bar{\mathbf{t}}}^{\alpha, \wp}\mathbf{S}(\bar{\mathbf{t}}) = \Big((1-\phi)\Big(\frac{\lambda_{1}\mathbf{U}(\bar{\mathbf{t}})\mathbf{S}(\bar{\mathbf{t}})}{1+\mathbf{S}(\bar{\mathbf{t}})}+\frac{\lambda_{2}\mathbf{U}(\bar{\mathbf{t}})\mathbf{A}(\bar{\mathbf{t}})}{1+\mathbf{A}(\bar{\mathbf{t}})}\Big)-(\nu_{1}+\sigma)\mathbf{S}(\bar{\mathbf{t}})\Big)d\bar{\mathbf{t}}+\rho_{2}\mathcal{G}_{2}(\bar{\mathbf{t}}, \mathbf{S})d\mathbf{B}_{2}(\bar{\mathbf{t}}), \\ \, _{0}^{\mathbf{FFM}}\mathbf{D}_{\bar{\mathbf{t}}}^{\alpha, \wp}\mathbf{A}(\bar{\mathbf{t}}) = \Big(\phi\Big(\frac{\lambda_{1}\mathbf{U}(\bar{\mathbf{t}})\mathbf{S}(\bar{\mathbf{t}})}{1+\mathbf{S}(\bar{\mathbf{t}})}+\frac{\lambda_{2}\mathbf{U}(\bar{\mathbf{t}})\mathbf{A}(\bar{\mathbf{t}})}{1+\mathbf{A}(\bar{\mathbf{t}})}\Big)+\sigma\mathbf{S}(\bar{\mathbf{t}})-\delta\mathbf{A}(\bar{\mathbf{t}})\Big)d\bar{\mathbf{t}}+\rho_{3}\mathcal{G}_{3}(\bar{\mathbf{t}}, \mathbf{A})d\mathbf{B}_{3}(\bar{\mathbf{t}}), \\ \, _{0}^{\mathbf{FFM}}\mathbf{D}_{\bar{\mathbf{t}}}^{\alpha, \wp}\mathbf{F}(\bar{\mathbf{t}}) = \Big(\varphi\mathbf{A}(\bar{\mathbf{t}})-\nu_{2}\mathbf{F}(\bar{\mathbf{t}})-\xi\mathbf{F}(\bar{\mathbf{t}})\mathbf{Q}(\bar{\mathbf{t}})\Big)d\bar{\mathbf{t}}+\rho_{4}\mathcal{G}_{4}(\bar{\mathbf{t}}, \mathbf{F})d\mathbf{B}_{4}(\bar{\mathbf{t}}), \\ \, _{0}^{\mathbf{FFM}}\mathbf{D}_{\bar{\mathbf{t}}}^{\alpha, \wp}\mathbf{Q}(\bar{\mathbf{t}}) = \Big(\chi\mathbf{F}(\bar{\mathbf{t}})\mathbf{Q}(\bar{\mathbf{t}})-\zeta\mathbf{Q}(\bar{\mathbf{t}})\Big)d\bar{\mathbf{t}}+\rho_{5}\mathcal{G}_{5}(\bar{\mathbf{t}}, \mathbf{Q})d\mathbf{B}_{5}(\bar{\mathbf{t}}). \end{cases} \end{array} (5.1)

    For {t_{\mathfrak{n}+1}} = (\mathfrak{n}+1)\Delta \bar{\mathbf{t}}, then we transform these mappings by their polynomials as follows:

    \begin{array}{l} \mathbf{U}_{\mathfrak{n}+1} = \mathbf{U}_{0}+\frac{(1-\alpha)}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\cr+\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}+2})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})\big)\end{cases}\right]\nonumber\\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \frac{\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)-\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)}{\hbar}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\frac{\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)-2\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)+\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{U}_{\kappa-1}, \mathbf{A}_{\kappa-1}, \mathbf{F}_{\kappa-1}\big)}{\hbar}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \bigg\{\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa})\big)\cr- \rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa-1})\big) \bigg\}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg\{\frac{\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa})\big)-2\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa-1})\big)}{\hbar}\cr-\frac{\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{U}_{\kappa-1}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa-1})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa-2})\big)}{\hbar}\bigg\}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\left[ \begin{cases} \mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\bigg\{\frac{\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)-2\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)}{2\hbar}\bigg\}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{U}_{\mathfrak{n}-1}, \mathbf{A}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}\big)}{2\hbar^{2}}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr-2\frac{\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{U}_{\mathfrak{n}-1}^{p_{1}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp} \end{cases} \right], \end{array}
    \begin{array}{l} \mathbf{S}_{\mathfrak{n}+1} = \mathbf{S}_{0}+\frac{(1-\alpha)}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\cr+\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{S}_{\mathfrak{n}+1}^{p}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}+2})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})\big)\end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{S}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \frac{\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{S}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)-\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)}{\hbar}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg(\frac{\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{S}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)-2\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)}{\hbar}\cr+\frac{\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{U}_{\kappa-1}, \mathbf{S}_{\kappa-1}, \mathbf{A}_{\kappa-1}, \mathbf{F}_{\kappa-1}\big)}{\hbar}\bigg)\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{S}_{\kappa+1}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \bigg\{\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{S}_{\kappa+1}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa})\big)\cr- \rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{S}_{\kappa}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa-1})\big) \bigg\}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg\{\frac{\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{S}_{\kappa+1}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa})\big)-2\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{S}_{\kappa}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa-1})\big)}{\hbar}\cr-\frac{\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{S}_{\kappa-1}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa-1})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa-2})\big)}{\hbar}\bigg\}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\left[ \begin{cases} \mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\bigg\{\frac{\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)-2\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)}{2\hbar}\bigg\}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{U}_{\mathfrak{n}-1}, \mathbf{S}_{\mathfrak{n}-1}, \mathbf{A}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}\big)}{2\hbar^{2}}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{S}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{S}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{S}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr-2\frac{\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{S}_{\mathfrak{n}-1}^{p_{1}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp} \end{cases} \right], \end{array}
    \begin{array}{l} \mathbf{A}_{\mathfrak{n}+1} = \mathbf{A}_{0}+\frac{(1-\alpha)}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\cr+\rho_{3}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}+2})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})\big)\end{cases}\right]\nonumber\\\end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{S}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \frac{\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{S}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)-\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)}{\hbar}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg(\frac{\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{U}_{\kappa+1}, \mathbf{S}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)-2\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)}{\hbar}\cr+\frac{\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{U}_{\kappa-1}, \mathbf{S}_{\kappa-1}, \mathbf{A}_{\kappa-1}, \mathbf{F}_{\kappa-1}\big)}{\hbar}\bigg)\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{A}_{\kappa+1}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \bigg\{\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{A}_{\kappa+1}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa})\big)\cr- \rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa-1})\big) \bigg\}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg\{\frac{\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{A}_{\kappa+1}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa})\big)-2\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa-1})\big)}{\hbar}\cr-\frac{\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{A}_{\kappa-1}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa-1})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa-2})\big)}{\hbar}\bigg\}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\left[ \begin{cases} \mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\bigg\{\frac{\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{U}_{\mathfrak{n}+1}^{p}, \mathbf{S}_{\mathfrak{n}+1}^{p}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)-2\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)}{2\hbar}\bigg\}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{U}_{\mathfrak{n}-1}, \mathbf{A}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}\big)}{2\hbar^{2}}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr-2\frac{\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{A}_{\mathfrak{n}-1}^{p_{1}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp} \end{cases} \right], \end{array}
    \begin{array}{l} \mathbf{F}_{\mathfrak{n}+1} = \mathbf{F}_{0}+\frac{(1-\alpha)}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\cr+\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+2})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})\big)\end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \frac{\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)-\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)}{\hbar}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\frac{\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{A}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)-2\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)+\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{A}_{\kappa-1}, \mathbf{F}_{\kappa-1}, \mathbf{Q}_{\kappa-1}\big)}{\hbar}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber \end{array}
    \begin{array}{l} \\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \bigg\{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})\big)\cr- \rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})\big) \bigg\}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg\{\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})\big)-2\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})\big)}{\hbar}\cr-\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{F}_{\kappa-1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-2})\big)}{\hbar}\bigg\}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\left[ \begin{cases} \mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\bigg\{\frac{\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)-2\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)}{2\hbar}\bigg\}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{A}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}, \mathbf{Q}_{\mathfrak{n}-1}\big)}{2\hbar^{2}}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr-2\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp} \end{cases} \right], \end{array}
    \begin{array}{l} \mathbf{Q}_{\mathfrak{n}+1} = \mathbf{Q}_{0}+\frac{(1-\alpha)}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+2})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})\big)\end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)-\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)}{\hbar}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)-2\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)+\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{F}_{\kappa-1}, \mathbf{Q}_{\kappa-1}\big)}{\hbar}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \bigg\{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})\big)\cr- \rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{Q}_{\kappa}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})\big) \bigg\}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg\{\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})\big)-2\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{Q}_{\kappa}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})\big)}{\hbar}\cr-\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{Q}_{\kappa-1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-2})\big)}{\hbar}\bigg\}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\left[ \begin{cases} \mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\bigg\{\frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)-2\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)}{2\hbar}\bigg\}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}, \mathbf{Q}_{\mathfrak{n}-1}\big)}{2\hbar^{2}}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr-2\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{Q}_{\mathfrak{n}-1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp} \end{cases} \right], \end{array}

    where

    \begin{array}{l} \mathbf{U}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{U}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\cr+\wp\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\ \mathbf{S}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{S}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\cr+\wp\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{S}_{\kappa}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\ \end{array}
    \begin{array}{l} \mathbf{A}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{A}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\cr+\wp\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \end{array}
    \begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\\mathbf{F}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{F}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\cr+\wp\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\\mathbf{Q}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{Q}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\cr+\wp\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{Q}_{\kappa}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right]. \end{array}

    Also,

    \begin{array}{l} \mathcal{J}_{1, \kappa}^{\alpha, \wp} = \frac{((\mathfrak{n}+1)\hbar)^{\alpha-1}}{\wp}\left[\begin{cases} ((\kappa+1)\hbar)^{\wp}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr-(\kappa\hbar)^{\wp}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa}{\mathfrak{n}}\Big) \end{cases}\right], \nonumber\\ \mathcal{J}_{2, \kappa}^{\alpha, \wp} = \frac{((\mathfrak{n}+1)\hbar)^{\alpha-1}}{\wp(\wp+1)}\left[\begin{cases} \wp((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr-(1+\wp)((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa+1}{\mathfrak{n}}\Big)\cr- \wp((\kappa)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa}{\mathfrak{n}+1}\Big)\cr+ \hbar((\kappa)\hbar)^{\wp}(1+\wp)(1+\kappa)\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa}{\mathfrak{n}}\Big)\end{cases}\right] , \nonumber\\ \mathcal{J}_{3, \kappa}^{\alpha, \wp} = \frac{((\kappa+1)\hbar)^{\alpha-1}}{\wp(\wp+1)(\wp+2)}\left[\begin{cases} \wp(\wp+1)((\kappa+1)\hbar)^{\wp+2}\, _{2}\mathcal{F}_{1}\Big(\big[2+\wp, 1-\alpha\big], \big[3+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr- 2\wp(\wp+2)\Big(\kappa+\frac{1}{2}\Big)\hbar((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr + \kappa\hbar(\wp+1)(\wp+2)((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa+1}{\mathfrak{n}}\Big)\cr + 2\wp(\wp+2)\Big(\kappa+\frac{1}{2}\Big)\hbar((\hbar\kappa))^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa}{\mathfrak{n}+1}\Big)\cr -\wp(\wp+1)(\kappa\hbar)^{\wp+2}\, _{2}\mathcal{F}_{1}\Big(\big[2+\wp, 1-\alpha\big], \big[3+\wp\big], \frac{\kappa}{\mathfrak{n}}\Big)\cr -\hbar(\wp+1)(\wp+2)(\kappa+1)(\kappa\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa}{\mathfrak{n}+1}\Big)\end{cases}\right]. \end{array}

    To exemplify the theoretical outcomes of the suggested framework, numerical computations were performed in this part. We accomplish this using the stochastic complete numerical technique proposed by Atangana and Araz [52]. Moreover, we compute the fractal-fractional model (3.2) for Atangana-Baleanu-Caputo sense when both fractional-order \alpha and fractal-dimension \wp are distinct.

    Figures 35 illustrate the effects of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at various fractional-orders and fixed fractal-dimensions. We assign the following parameter values: \Lambda = 10, \; \varsigma = 0.1, \; \lambda_{1} = 2, \; \lambda_{2} = 2, \; \phi = 0.5, \; \nu_{1} = 0.5, \; \sigma = 5, \; \delta = 10, \; \varphi = 2, \; \nu_{2} = 10, \; \xi = 3, \; \chi = 2, \; \zeta = 4. To demonstrate the system's dynamical behaviour, we input various white noise levels (5.1). We first take into account the white noise components \rho_{1} = 0.9, \; \rho_{2} = 0.9, \; \rho_{3} = 0.7, \; \rho_{4} = 0.9 and \rho_{5} = 0.8, where the distinctive stationary distribution sensitivity criterion \mathbb{R}_{0}^{s} > 1 is attained. As the virus spreads through the community, the class diminishes over time and eventually affects all other categories in the structure. This classification corresponds rapidly at low orders and slowly at higher orders, which displays a consistent tendency.

    Figure 3.  Graphical display of uninfected cells \mathbf{U}(\bar{\mathbf{t}}) and latently infected cells \mathbf{S}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractional-order with fixed fractal-dimension.
    Figure 4.  Graphical display of actively infected cells \mathbf{A}(\bar{\mathbf{t}}) and free virus \mathbf{F}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractional-order with fixed fractal-dimension.
    Figure 5.  Graphical display of antibodies \mathbf{Q}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractional-order with fixed fractal-dimension.

    Figures 68 display the temporal patterns of (\mathbf{U}(\bar{\mathbf{t}}), \mathbf{S}(\bar{\mathbf{t}}), \mathbf{A}(\bar{\mathbf{t}}), \mathbf{F}(\bar{\mathbf{t}}), \mathbf{Q}(\bar{\mathbf{t}})) of the stochastic system (5.1) involving white noise \rho_{1} = 0.9, \; \rho_{2} = 0.9, \; \rho_{3} = 0.7, \; \rho_{4} = 0.9 and \rho_{5} = 0.8, respectively. The solution varies at white noises, having a corresponding stochastic mean. The affected cells \mathbf{S}(\bar{\mathbf{t}}) exhibit a rapid decline in behaviour over time, similar to the behaviour of uninfected cells \mathbf{U}(\bar{\mathbf{t}}) at various fractal-fractional orders.

    Figure 6.  Graphical display of uninfected cells \mathbf{U}(\bar{\mathbf{t}}) and latently infected cells \mathbf{S}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying both fractional-order with fractal-dimension.
    Figure 7.  Graphical display of actively infected cells \mathbf{A}(\bar{\mathbf{t}}) and free virus \mathbf{F}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying both fractional-order with fractal-dimension.
    Figure 8.  Graphical display of antibodies \mathbf{Q}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying both fractional-order with fractal-dimension.

    Figures 911 show the impacts of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at various fractal-dimension and fixed fractional-orders. The corresponding attributed values: \Lambda = 10, \; \varsigma = 0.1, \; \lambda_{1} = 2, \; \lambda_{2} = 2, \; \phi = 0.5, \; \nu_{1} = 0.5, \; \sigma = 5, \; \delta = 10, \; \varphi = 2, \; \nu_{2} = 10, \; \xi = 3, \; \chi = 2, \; \zeta = 4. Then, by increasing the white noise intensities to \rho_{1} = 3.9, \; \rho_{2} = 3.7, \; \rho_{3} = 3.9, \; \rho_{4} = 3.9 and \rho_{5} = 3.8, we are able to satisfy the elimination criterion \tilde{\mathbb{R}}_{0}^{s} < 1 in Theorem 4.3 and validate the findings. Figures 911 demonstrate that as the white noise intensity escalates, contaminated lymphocytes \mathbf{S}(\bar{\mathbf{t}}) , productively infested cells \mathbf{A}(\bar{\mathbf{t}}) , and uncontrolled pathogen \mathbf{A}(\bar{\mathbf{t}}) can all perish and settle at a variety of fractal dimensions and fixed fractional-order. This shows that white noise concentration can effectively eradicate all insidiously, proactively, and freely virally infested cells, dramatically reduce the quantity of virally affected cells, and prevent the proliferation of contaminated nuclei.

    Figure 9.  Graphical display of uninfected cells \mathbf{U}(\bar{\mathbf{t}}) and latently infected cells \mathbf{S}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractal-dimension with fixed fractional-order.
    Figure 10.  Graphical display of actively infected cells \mathbf{A}(\bar{\mathbf{t}}) and free virus \mathbf{F}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractal-dimension with fixed fractional-order.
    Figure 11.  Graphical display of antibodies \mathbf{Q}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractal-dimension with fixed fractional-order.

    Figures 1214 predict the behaviour of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at various fractal-dimension and fractional-orders. The corresponding attributed values: \Lambda = 10, \; \varsigma = 0.1, \; \lambda_{1} = 2, \; \lambda_{2} = 2, \; \phi = 0.5, \; \nu_{1} = 0.5, \; \sigma = 5, \; \delta = 10, \; \varphi = 2, \; \nu_{2} = 10, \; \xi = 3, \; \chi = 2, \; \zeta = 4. Then, by increasing the white noise intensities to \rho_{1} = 3.9, \; \rho_{2} = 3.7, \; \rho_{3} = 3.9, \; \rho_{4} = 3.9 and \rho_{5} = 3.8, and \tilde{\mathbb{R}}_{0}^{s} < 1. This shows that the stochastic noise is demonstrated to be suppressed by the massive boom. The infectious populace is disappearing more significantly when both fractional-order and fractal-dimension are changed simultaneously in an infectious system in comparison to fractional systems, which leads to fascinating and biologically more plausible findings.

    Figure 12.  Graphical display of uninfected cells \mathbf{U}(\bar{\mathbf{t}}) and latently infected cells \mathbf{S}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and both varying fractal-dimension with fractional-order.
    Figure 13.  Graphical display of actively infected cells \mathbf{A}(\bar{\mathbf{t}}) and free virus \mathbf{F}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and both varying fractal-dimension with fractional-order.
    Figure 14.  Graphical display of antibodies \mathbf{Q}(\bar{\mathbf{t}}) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and both varying fractal-dimension with fractional-order.

    Figures 1517 demonstrate the effect of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at fixed fractal-dimension and fractional-orders with and without control, respectively. Considering an inadequate CTL reaction, we examine how virus replication affects the patterns of HCV and immunological reactions from acute infection through the chronic stage. This is accomplished using a mix of analytical and numerical techniques. Since the target cell restriction prevents the penetration of new viral variations in the case of severe liver damage, virus development is predicted to come to an end.

    Figure 15.  Graphical display of uninfected cells \mathbf{U}(\bar{\mathbf{t}}) and latently infected cells \mathbf{S}(\bar{\mathbf{t}}) of the model (5.1) with and without control when \alpha = 0.98 considering the fractal-fractional derivative with generalized Mittag-Leffler kernel.
    Figure 16.  Graphical display of actively infected cells \mathbf{A}(\bar{\mathbf{t}}) and free virus \mathbf{F}(\bar{\mathbf{t}}) of the model (5.1) with and without control when \alpha = 0.98 considering the fractal-fractional derivative with generalized Mittag-Leffler kernel.
    Figure 17.  Graphical display of antibodies \mathbf{Q}(\bar{\mathbf{t}}) of the model (5.1) with and without control when \alpha = 0.98 considering the fractal-fractional derivative with generalized Mittag-Leffler kernel.

    As a result of these pictorial outcomes, we draw the conclusion that by using this novel fractal-fractional operator concept, it is possible to detect more precise outcomes and to offer a wider insight of problems that arise in engineering and science as well as in the reality.

    In this article, we examined the variations in cellular complexities of a novel randomized fractal-fractional virus transmission system considering latently diseased tissues and a Holling type II functionality reaction. We discovered the existence of non-negative solutions to the examined system by accounting for environmental noise and the fractal effects of vaccination. In view of Itô's technique and Lyapunov candidate, we established the necessary assumptions of the stochastically permanence of the virus transmission scenario and the elimination of chronically diseased, productively contaminated cells and independent pathogen fragments. Ultimately, in order to create the suggested system, we employed the F-F calculus notion in the ABC context. Additionally, numerical simulations are provided to understand the tendencies of our theoretical model's analysis. We determine that increasing the noise strength will eventually render the virus obsolete. The illustration analysis shows that the fractal-fractional notion outperforms the integer-order and classical derivatives in terms of effectiveness and biological dependability. Upcoming research on viral infections, particularly the novel COVID-19, monkey pox and lumpy virus can confidently implement the revolutionary modelling methodology termed as the fractal-fractional operator.

    The authors declare there is no conflict of interest.



    [1] F. Zou, L. Wang, X. Hei, D. Chen, Teaching-learning-based optimization with learning experience of other learners and its application, Appl. Soft Comput., 37 (2015), 725–736. https://doi.org/10.1016/j.asoc.2015.08.047 doi: 10.1016/j.asoc.2015.08.047
    [2] S. Yu, S. Su, Research and application of chaotic glowworm swarm optimization algorithm, J. Front. Comput. Sci. Technol., 8 (2014), 352–358. https://doi.org/10.3778/j.issn.1673-9418.1310016 doi: 10.3778/j.issn.1673-9418.1310016
    [3] S. He, Q. H. Wu, J. Saunders, Group search optimizer: An optimization algorithm inspired by animal searching behavior, IEEE Trans. Evolut. Comput., 13 (2009), 973–990. https://doi.org/10.1109/TEVC.2009.2011992 doi: 10.1109/TEVC.2009.2011992
    [4] D. Karaboga, B. Akay, A comparative study of Artificial Bee Colony algorithm, Appl. Math. Comput., 214 (2009), 108–132. https://doi.org/10.1016/j.amc.2009.03.090 doi: 10.1016/j.amc.2009.03.090
    [5] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [6] M. Dorigo, V. Maniezzo, A. Colorni, Ant System: Optimization by a colony of cooperating agents, IEEE Trans. Syst., Man, Cybern., Part B, 26 (1996), 29–41. https://doi.org/10.1109/3477.484436
    [7] M. M. Eusuff, K. E. Lansey, Optimization of water distribution network design using the shuffled frog leaping algorithm, J. Water Resour. Plann. Manage., 129 (2003), 210–225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210) doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)
    [8] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459–471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
    [9] X. Li, Z. Shao, J. Qian, An optimizing method based on autonomous animats: Fish swarm algorithm, Syst. Eng.-Theory Pract., 11 (2002), 32–38.
    [10] S. Mirjalili, S. Saremi, S. M. Mirjalili, L. S. Coelho, Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization, Expert Syst. Appl., 47 (2016), 106–119. https://doi.org/10.1016/j.eswa.2015.10.039 doi: 10.1016/j.eswa.2015.10.039
    [11] K. M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag., 22 (2002), 52–67. https://doi.org/10.1109/MCS.2002.1004010 doi: 10.1109/MCS.2002.1004010
    [12] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [13] F. A. Hashim, A. G. Hussien, Snake Optimizer: A novel meta-heuristic optimization algorithm, Knowl.-Based Syst., 242 (2022), 108320. https://doi.org/10.1016/j.knosys.2022.108320 doi: 10.1016/j.knosys.2022.108320
    [14] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: A Gravitational Search Algorithm, Inf. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
    [15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, Boston, 1989.
    [16] S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015), 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010 doi: 10.1016/j.advengsoft.2015.01.010
    [17] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073. https://doi.org/10.1007/s00521-015-1920-1
    [18] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
    [19] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [20] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011), 303–315. https://doi.org/10.1016/j.cad.2010.12.015 doi: 10.1016/j.cad.2010.12.015
    [21] R. V. Rao, V. Patel, An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems, Sci. Iran., 20 (2013), 710–720. https://doi.org/10.1016/j.scient.2012.12.005 doi: 10.1016/j.scient.2012.12.005
    [22] K. Yu, X. Wang, Z. Wang, Elitist teaching-learning-based optimization algorithm based on feedback, Acta Autom. Sin., 40 (2014), 1976–1983.
    [23] L. Gao, H. Ouyang, X. Kong, H. Liu, Teaching-learning based optimization algorithm with crossover operation, J. Northeastern Univ. (Nat. Sci.), 35 (2014), 323–327. https://doi.org/10.3969/j.issn.1005-3026.2014.03.005 doi: 10.3969/j.issn.1005-3026.2014.03.005
    [24] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems, Inf. Sci., 183 (2012), 1–15. https://doi.org/10.1016/j.ins.2011.08.006 doi: 10.1016/j.ins.2011.08.006
    [25] S. Yang, Y. Zhang, S. Xu, Z. Liao, J. Li, Parameter identification of photovoltaic cell model based on grouping teaching-learning-based optimization algorithm, Distrib. Energy, 7 (2022), 52–61. https://doi.org/10.16513/j.2096-2185.DE.2207307 doi: 10.16513/j.2096-2185.DE.2207307
    [26] T. Niknam, R. Azizipanah-Abarghooee, M. Rasoul Narimani, A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems, Eng. Appl. Artif. Intell., 25 (2012), 1577–1588. https://doi.org/10.1016/j.engappai.2012.07.004 doi: 10.1016/j.engappai.2012.07.004
    [27] S. C. Satapathy, A. Naik, Data clustering based on teaching-learning-based optimization, in International Conference on Swarm, Evolutionary, and Memetic Computing, 7077 (2011), 148–156. https://doi.org/10.1007/978-3-642-27242-4_18
    [28] A. B. Gunji, B. B. B. V. L. Deepak, C. M. V. A. R. Bahubalendruni, D. B. B. Biswal, An optimal robotic assembly sequence planning by assembly subsets detection method using teaching-learning-based optimization algorithm, IEEE Trans. Autom. Sci. Eng., 15 (2018), 1369–1385. https://doi.org/10.1109/TASE.2018.2791665 doi: 10.1109/TASE.2018.2791665
    [29] C. Wu, Y. He, J. Zhao, Solving set-union knapsack problem by modified teaching-learning-based optimization algorithm, J. Front. Comput. Sci. Technol., 12 (2018), 2007–2020. https://doi.org/10.3778/j.issn.1673-9418.1802021 doi: 10.3778/j.issn.1673-9418.1802021
    [30] M. Ghasemi, S. Ghavidel, M. Gitizadeh, E. Akbari, An improved teaching-learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow, Int. J. Electr. Power Energy Syst., 65 (2015), 375–384. https://doi.org/10.1016/j.ijepes.2014.10.027 doi: 10.1016/j.ijepes.2014.10.027
    [31] G. Li, P. Niu, W. Zhang, Y. Liu, Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching-learning-based optimization, Chemom. Intell. Lab. Syst., 126 (2013), 11–20. https://doi.org/10.1016/j.chemolab.2013.04.012 doi: 10.1016/j.chemolab.2013.04.012
    [32] B. Wang, H. Li, Y. Feng, An improved teaching-learning-based optimization for constrained evolutionary optimization, Inf. Sci., 456 (2018), 131–144. https://doi.org/10.1016/j.ins.2018.04.083 doi: 10.1016/j.ins.2018.04.083
    [33] K. Yu, X. Wang, Z. Wang, An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems, J. Intell. Manuf., 27 (2016), 831–843. https://doi.org/10.1007/s10845-014-0918-3 doi: 10.1007/s10845-014-0918-3
    [34] H. Tsai, Confined teaching learning based optimization with variable search strategies for continuous optimization, Inf. Sci., 500 (2019), 34–47. https://doi.org/10.1016/j.ins.2019.05.065 doi: 10.1016/j.ins.2019.05.065
    [35] R. V. Rao, V. Patel, An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems, Int. J. Ind. Eng. Comput., 3 (2012), 535–560. https://doi.org/10.5267/j.ijiec.2012.03.007 doi: 10.5267/j.ijiec.2012.03.007
    [36] F. Zou, L. Wang, X. Hei, D. Chen, D. Yang, Teaching-learning-based optimization with dynamic group strategy for global optimization, Inf. Sci., 273 (2014), 112–131. https://doi.org/10.1016/j.ins.2014.03.038 doi: 10.1016/j.ins.2014.03.038
    [37] D. Chen, R. Lu, F. Zou, S. Li, Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization, Neurocomputing, 173 (2016), 1096–1111. https://doi.org/10.1016/j.neucom.2015.08.068 doi: 10.1016/j.neucom.2015.08.068
    [38] S. Sultana, P. K. Roy, Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems, Int. J. Electr. Power Energy Syst., 63 (2014), 534–545. https://doi.org/10.1016/j.ijepes.2014.06.031 doi: 10.1016/j.ijepes.2014.06.031
    [39] F. Zou, D. Chen, Q. Xu, A survey of teaching-learning-based optimization, Neurocomputing, 335 (2019), 366–383. https://doi.org/10.1016/j.neucom.2018.06.076 doi: 10.1016/j.neucom.2018.06.076
    [40] S. Tuo, L. Yong, F. Deng, Y. Li, Y. Lin, Q. Lu, HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems, Plos One, 12 (2017), 0175114. https://doi.org/10.1371/journal.pone.0175114 doi: 10.1371/journal.pone.0175114
    [41] X. Li, P. Niu, J. Liu, Combustion optimization of a boiler based on the chaos and Lévy flight vortex search algorithm, Appl. Math. Modell., 58 (2018), 3–18. https://doi.org/10.1016/j.apm.2018.01.043 doi: 10.1016/j.apm.2018.01.043
    [42] Y. Niu, J. Kang, F. Li, W. Ge, G. Zhou, Case-based reasoning based on grey-relational theory for the optimization of boiler combustion systems, ISA Trans., 103 (2020), 166–176. https://doi.org/10.1016/j.isatra.2020.03.024 doi: 10.1016/j.isatra.2020.03.024
    [43] Y. Shi, W. Zhong, X. Chen, A. B. Yu, Jie Li, Combustion optimization of ultra supercritical boiler based on artificial intelligence, Energy, 170 (2019), 804–817. https://doi.org/10.1016/j.energy.2018.12.172 doi: 10.1016/j.energy.2018.12.172
    [44] A. Aminmahalati, A. Fazlali, H. Safifikhani, Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA Ⅱ algorithm, Energy, 221 (2021), 119859. https://doi.org/10.1016/j.energy.2021.119859 doi: 10.1016/j.energy.2021.119859
    [45] P. Tan, J. Xia, C. Zhang, Q. Fang, G. Chen, Modeling and reduction of NOX emissions for a 700MW coal-fired boiler with the advanced machine learning method, Energy, 94 (2016), 672–679. https://doi.org/10.1016/j.energy.2015.11.020 doi: 10.1016/j.energy.2015.11.020
    [46] Q. Li, Q. He, Z. Liu, Low NOx combustion optimization based on partial dimension opposition-based learning particle swarm optimization, Fuel, 310 (2022), 122352. https://doi.org/10.1016/j.fuel.2021.122352 doi: 10.1016/j.fuel.2021.122352
    [47] H. Xi, P. Liao, X. Wu, Simultaneous parametric optimization for design and operation of solvent-based post-combustion carbon capture using particle swarm optimization, Appl. Therm. Eng., 184 (2021), 116287. https://doi.org/10.1016/j.applthermaleng.2020.116287 doi: 10.1016/j.applthermaleng.2020.116287
    [48] M. V. J. J. Suresh, K. S. Reddy, A. K. Kolar, ANN-GA based optimization of a high ash coal-fired supercritical power plant, Appl. Energy, 88 (2011), 4867–4873. https://doi.org/10.1016/j.apenergy.2011.06.029 doi: 10.1016/j.apenergy.2011.06.029
    [49] A. A. M. Rahat, C. Wang, R. M. Everson, J. E. Fieldsend, Data-driven multi-objective optimization of coal-fired boiler combustion systems, Appl. Energy, 229 (2018): 446–458. https://doi.org/10.1016/j.apenergy.2018.07.101
    [50] F. Wang, S. Ma, H. Wang, Y. Li, Z. Qin, J. Zhang, A hybrid model integrating improved flower pollination algorithm-based feature selection and improved random forest for NOX emission estimation of coal-fired power plants, Measurement, 125 (2018), 303–312. https://doi.org/10.1016/j.measurement.2018.04.069 doi: 10.1016/j.measurement.2018.04.069
    [51] X. Hu, P. Niu, J. Wang, X. Zhang, Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks, Atmos. Pollut. Res., 11 (2020), 1084–1090. https://doi.org/10.1016/j.apr.2020.04.001 doi: 10.1016/j.apr.2020.04.001
    [52] G. Huang, Q. Zhu, C. Siew, Extreme learning machine: a new learning scheme of feedforward neural network, in 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), 2 (2004), 985–990. https://doi.org/10.1109/IJCNN.2004.1380068
    [53] Y. Ma, C. Xu, H. Wang, R. Wang, S. Liu, X. Gu, Model NOx, SO2 emissions concentration and thermal efficiency of CFBB based on a hyper-parameter self-optimized broad learning system, Energies, 15 (2022), 7700. https://doi.org/10.3390/en15207700 doi: 10.3390/en15207700
  • This article has been cited by:

    1. Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, A second-order high-resolution finite difference scheme for a size-structured model for the spread ofMycobacterium marinum, 2015, 9, 1751-3758, 156, 10.1080/17513758.2014.962998
    2. Hayriye Gulbudak, Cameron J. Browne, Infection severity across scales in multi-strain immuno-epidemiological Dengue model structured by host antibody level, 2020, 80, 0303-6812, 1803, 10.1007/s00285-020-01480-3
    3. O. Angulo, J.C. López-Marcos, M.A. López-Marcos, Study on the efficiency in the numerical integration of size-structured population models: Error and computational cost, 2016, 291, 03770427, 391, 10.1016/j.cam.2015.03.022
    4. Azmy S. Ackleh, Baoling Ma, Tingting Tang, A high resolution finite difference method for a model of structured susceptible-infected populations coupled with the environment, 2017, 33, 0749159X, 1420, 10.1002/num.22139
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1672) PDF downloads(79) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog