Loading [Contrib]/a11y/accessibility-menu.js

Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35A05, 35D05, 35F25, 35L67, 92D25.

  • We study a quasilinear hierarchically size-structured population modelpresented in [4]. In this model the growth, mortality andreproduction rates are assumed to depend on a function of thepopulation density. In [4] we showed that solutions to thismodel can become singular (measure-valued) in finite time even ifall the individual parameters are smooth. Therefore, in this paperwe develop a first order finite difference scheme to compute thesemeasure-valued solutions. Convergence analysis for this method isprovided. We also develop a high resolution second order scheme tocompute the measure-valued solution of the model and perform a comparative study between thetwo schemes.

    Citation: Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233

    Related Papers:

    [1] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [2] Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039
    [3] Qihua Huang, Hao Wang . A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences and Engineering, 2016, 13(4): 697-722. doi: 10.3934/mbe.2016015
    [4] Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures. Mathematical Biosciences and Engineering, 2023, 20(7): 11805-11820. doi: 10.3934/mbe.2023525
    [5] Gonzalo Galiano, Julián Velasco . Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637
    [6] Weicheng Chen, Zhanping Wang . Stability of a class of nonlinear hierarchical size-structured population model. Mathematical Biosciences and Engineering, 2022, 19(10): 10143-10159. doi: 10.3934/mbe.2022475
    [7] Z. Jackiewicz, B. Zubik-Kowal, B. Basse . Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences and Engineering, 2009, 6(3): 561-572. doi: 10.3934/mbe.2009.6.561
    [8] Suzanne M. O'Regan, John M. Drake . Finite mixture models of superspreading in epidemics. Mathematical Biosciences and Engineering, 2025, 22(5): 1081-1108. doi: 10.3934/mbe.2025039
    [9] Peter W. Bates, Jianing Chen, Mingji Zhang . Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Mathematical Biosciences and Engineering, 2020, 17(4): 3736-3766. doi: 10.3934/mbe.2020210
    [10] Horst R. Thieme . Discrete-time population dynamics on the state space of measures. Mathematical Biosciences and Engineering, 2020, 17(2): 1168-1217. doi: 10.3934/mbe.2020061
  • We study a quasilinear hierarchically size-structured population modelpresented in [4]. In this model the growth, mortality andreproduction rates are assumed to depend on a function of thepopulation density. In [4] we showed that solutions to thismodel can become singular (measure-valued) in finite time even ifall the individual parameters are smooth. Therefore, in this paperwe develop a first order finite difference scheme to compute thesemeasure-valued solutions. Convergence analysis for this method isprovided. We also develop a high resolution second order scheme tocompute the measure-valued solution of the model and perform a comparative study between thetwo schemes.


    [1] Theor. Popul. Biol., 71 (2007), 290-300.
    [2] Appl. Math. Optim., 51 (2005), 35-59.
    [3] J. Num. Funct. Anal. Optimization, 18 (1997), 865-884.
    [4] J. Differential Equations, 217 (2005), 431-455.
    [5] Dynamic Systems Appl., 9 (2000), 527-539.
    [6] J. Math. Biol., 35 (1997), 967-987.
    [7] J. Differetial Equations, 252 (2012), 3245-3277.
    [8] Math. Models Methods Appl. Sci., 24 (2014), 2171-2197.
    [9] J. Math. Biol., 32 (1994), 705-729.
    [10] J. Math. Biol., 43 (2001), 157-189.
    [11] Num. Meth. Partial Diff. Eq., 30 (2014), 1797-1820.
    [12] J. Differential Equations, 248 (2010), 2703-2735.
    [13] J. Math. Biol., 34 (1996), 755-772.
    [14] Natural Resource Modeling, 14 (2001), 45-70.
    [15] Mat. Sb., 123 (1970), 228-255; English transl. in Math. USSR Sb., 10 (1970), 217-273.
    [16] SIAM J. Numer. Anal., 45 (2007), 352-370.
    [17] J. Comput. Phys., 77 (1988), 439-471.
    [18] Springer-Verlag, New York, 1994.
  • This article has been cited by:

    1. Toshitaka Matsumoto, Naoki Tanaka, Abstract Cauchy problems for quasilinear operators whose domains are not necessarily dense or constant, 2017, 162, 0362546X, 91, 10.1016/j.na.2017.06.013
    2. YAN LIU, ZE-RONG HE, ON THE WELL-POSEDNESS OF A NONLINEAR HIERARCHICAL SIZE-STRUCTURED POPULATION MODEL, 2017, 58, 1446-1811, 482, 10.1017/S1446181117000025
    3. Jȩdrzej Jabłoński, Dariusz Wrzosek, Measure-valued solutions to size-structured population model of prey controlled by optimally foraging predator harvester, 2019, 29, 0218-2025, 1657, 10.1142/S0218202519500313
    4. Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier, High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures, 2023, 20, 1551-0018, 11805, 10.3934/mbe.2023525
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2670) PDF downloads(558) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog