Riemann problems with non--local point constraints and capacity drop

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35L65, 90B20.

  • In the present note we discuss in details the Riemann problem for a one-dimensional hyperbolic conservation law subject to a point constraint. We investigate how the regularity of the constraint operator impacts the well--posedness of the problem, namely in the case, relevant for numerical applications, of a discretized exit capacity. We devote particular attention to the case in which the constraint is given by a non--local operator depending on the solution itself. We provide several explicit examples.
       We also give the detailed proof of some results announced in the paper [Andreianov, Donadello, Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop], which is devoted to existence and stability for a more general class of Cauchy problems subject to Lipschitz continuous non--local point constraints.

    Citation: Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano D. Rosini. Riemann problems with non--local point constraints and capacity drop[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 259-278. doi: 10.3934/mbe.2015.12.259

    Related Papers:

    [1] Shanshan Pan, Jinbao Jian, Linfeng Yang . Solution to dynamic economic dispatch with prohibited operating zones via MILP. Mathematical Biosciences and Engineering, 2022, 19(7): 6455-6468. doi: 10.3934/mbe.2022303
    [2] Dawei Li, Suzhen Lin, Xiaofei Lu, Xingwang Zhang, Chenhui Cui, Boran Yang . IMD-Net: Interpretable multi-scale detection network for infrared dim and small objects. Mathematical Biosciences and Engineering, 2024, 21(1): 1712-1737. doi: 10.3934/mbe.2024074
    [3] Jianjun Paul Tian . The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Mathematical Biosciences and Engineering, 2011, 8(3): 841-860. doi: 10.3934/mbe.2011.8.841
    [4] Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421
    [5] Francesca Marcellini . The Riemann problem for a Two-Phase model for road traffic with fixed or moving constraints. Mathematical Biosciences and Engineering, 2020, 17(2): 1218-1232. doi: 10.3934/mbe.2020062
    [6] Souâd Yacheur, Ali Moussaoui, Abdessamad Tridane . Modeling the imported malaria to north Africa and the absorption effect of the immigrants. Mathematical Biosciences and Engineering, 2019, 16(2): 967-989. doi: 10.3934/mbe.2019045
    [7] Veronika Schleper . A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences and Engineering, 2015, 12(2): 393-413. doi: 10.3934/mbe.2015.12.393
    [8] Nikolaos Kazantzis, Vasiliki Kazantzi . Characterization of the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using singular invariance PDEs: Application to immobilized enzyme and cell bioreactors. Mathematical Biosciences and Engineering, 2010, 7(2): 401-419. doi: 10.3934/mbe.2010.7.401
    [9] Ying Xu, Jinyong Cheng . Secondary structure prediction of protein based on multi scale convolutional attention neural networks. Mathematical Biosciences and Engineering, 2021, 18(4): 3404-3422. doi: 10.3934/mbe.2021170
    [10] Yi Hu, Petia M. Vlahovska, Michael J. Miksis . Electrohydrodynamic assembly of colloidal particles on a drop interface. Mathematical Biosciences and Engineering, 2021, 18(3): 2357-2371. doi: 10.3934/mbe.2021119
  • In the present note we discuss in details the Riemann problem for a one-dimensional hyperbolic conservation law subject to a point constraint. We investigate how the regularity of the constraint operator impacts the well--posedness of the problem, namely in the case, relevant for numerical applications, of a discretized exit capacity. We devote particular attention to the case in which the constraint is given by a non--local operator depending on the solution itself. We provide several explicit examples.
       We also give the detailed proof of some results announced in the paper [Andreianov, Donadello, Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop], which is devoted to existence and stability for a more general class of Cauchy problems subject to Lipschitz continuous non--local point constraints.


    [1] J. Hyperbolic Differ. Equ., 9 (2012), 105-131.
    [2] In preparation, 2014.
    [3] Numerische Mathematik, 115 (2010), 609-645.
    [4] Mathematical Models and Methods in Applied Sciences, 24 (2014), 2685-2722.
    [5] Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.
    [6] Fire Safety Journal, 44 (2009), 532-544.
    [7] J. Differential Equations, 234 (2007), 654-675.
    [8] Comm. Partial Differential Equations, 28 (2003), 1371-1389.
    [9] Math. Methods Appl. Sci., 28 (2005), 1553-1567.
    [10] Nonlinear Analysis: Real World Applications, 10 (2009), 2716-2728.
    [11] J. Math. Anal. Appl., 38 (1972), 33-41.
    [12] Grundlehren der Mathematischen Wissenschaften, 325, Springer-Verlag, Berlin, 2000.
    [13] Indiana Univ. Math. J., 31 (1982), 471-491.
    [14] Zeitschrift für angewandte Mathematik und Physik, 64 (2013), 223-251.
    [15] Applied Mathematical Sciences, 18, Springer-Verlag, New York, 1996.
    [16] SIAM J. Appl. Math., 55 (1995), 625-640.
    [17] Mat. Sb. (N.S.), 81 (1970), 228-255.
    [18] Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002.
    [19] Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
    [20] Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
    [21] J. Hyperbolic Differ. Equ., 4 (2007), 729-770.
    [22] Operations Res., 4 (1956), 42-51.
    [23] J. Differential Equations, 246 (2009), 408-427.
    [24] Arch. Ration. Mech. Anal., 160 (2001), 181-193.
  • This article has been cited by:

    1. Marco Di Francesco, Simone Fagioli, Massimiliano Daniele Rosini, Giovanni Russo, Deterministic particle approximation of the Hughes model in one space dimension, 2017, 10, 1937-5077, 215, 10.3934/krm.2017009
    2. Edda Dal Santo, Carlotta Donadello, Sabrina F. Pellegrino, Massimiliano D. Rosini, Representation of capacity drop at a road merge via point constraints in a first order traffic model, 2019, 53, 0764-583X, 1, 10.1051/m2an/2019002
    3. Massimiliano D. Rosini, Julien Y. Rolland, Ulrich Razafison, Carlotta Donadello, Boris P. Andreianov, Solutions of the Aw-Rascle-Zhang system with point constraints, 2016, 11, 1556-1801, 29, 10.3934/nhm.2016.11.29
    4. Boris Andreianov, Carlotta Donadello, Massimiliano Daniele Rosini, A second-order model for vehicular traffics with local point constraints on the flow, 2016, 26, 0218-2025, 751, 10.1142/S0218202516500172
    5. Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano D. Rosini, Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux, 2018, 116, 00217824, 309, 10.1016/j.matpur.2018.01.005
    6. E. Dal Santo, M. D. Rosini, N. Dymski, M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, 2017, 40, 01704214, 6623, 10.1002/mma.4478
    7. Maria Laura Delle Monache, Paola Goatin, Stability estimates for scalar conservation laws with moving flux constraints, 2017, 12, 1556-181X, 245, 10.3934/nhm.2017010
    8. Mohamed Benyahia, Massimiliano D. Rosini, A macroscopic traffic model with phase transitions and local point constraints on the flow, 2017, 12, 1556-181X, 297, 10.3934/nhm.2017013
    9. Mohamed Benyahia, Massimiliano D. Rosini, Lack of BV bounds for approximate solutions to a two‐phase transition model arising from vehicular traffic, 2020, 43, 0170-4214, 10381, 10.1002/mma.6304
    10. Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano Daniele Rosini, 2018, Chapter 5, 978-3-030-05128-0, 103, 10.1007/978-3-030-05129-7_5
    11. Jennifer Weissen, Oliver Kolb, Simone Göttlich, A combined first and second order model for a junction with ramp buffer, 2022, 8, 2426-8399, 349, 10.5802/smai-jcm.90
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3010) PDF downloads(483) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog