Citation: Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 697-722. doi: 10.3934/mbe.2016015
[1] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[2] | Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito . Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233 |
[3] | Tainian Zhang, Zhixue Luo, Hao Zhang . Optimal harvesting for a periodic -dimensional food chain model with size structure in a polluted environment. Mathematical Biosciences and Engineering, 2022, 19(8): 7481-7503. doi: 10.3934/mbe.2022352 |
[4] | Ya Li, Z. Feng . Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences and Engineering, 2010, 7(1): 149-169. doi: 10.3934/mbe.2010.7.149 |
[5] | Suzanne M. O'Regan, John M. Drake . Finite mixture models of superspreading in epidemics. Mathematical Biosciences and Engineering, 2025, 22(5): 1081-1108. doi: 10.3934/mbe.2025039 |
[6] | Peter W. Bates, Jianing Chen, Mingji Zhang . Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Mathematical Biosciences and Engineering, 2020, 17(4): 3736-3766. doi: 10.3934/mbe.2020210 |
[7] | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039 |
[8] | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures. Mathematical Biosciences and Engineering, 2023, 20(7): 11805-11820. doi: 10.3934/mbe.2023525 |
[9] | Z. Jackiewicz, B. Zubik-Kowal, B. Basse . Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences and Engineering, 2009, 6(3): 561-572. doi: 10.3934/mbe.2009.6.561 |
[10] | Yueping Dong, Jianlu Ren, Qihua Huang . Dynamics of a toxin-mediated aquatic population model with delayed toxic responses. Mathematical Biosciences and Engineering, 2020, 17(5): 5907-5924. doi: 10.3934/mbe.2020315 |
[1] | Nonlinear Analysis, 50 (2002), 727-748. |
[2] | Applied Mathematics and Computation, 108 (2000), 103-113. |
[3] | Quarterly of Applied Mathematics, 57 (1999), 261-267. |
[4] | Journal of Biological Dynamics, 5 (2011), 64-83. |
[5] | Nonlinear Analysis and Optimization, 513 (2010), 1-23. |
[6] | Numerical Functional Analysis and Optimization, 18 (1997), 865-884. |
[7] | Environmental Toxicology and Chemistry, 23 (2004), 2343-2355. |
[8] | Journal of Mathematical Biology, 33 (1995), 335-364. |
[9] | Mathematical of Computation, 34 (1980), 1-21. |
[10] | Human and Ecological Risk Assessment, 9 (2003), 907-938. |
[11] | Journal of Mathematical Biology, 30 (1991), 15-30. |
[12] | Integrated Environmental Assessment and Management, 6 (2010), 338-360. |
[13] | Journal of Mathematical Biology, 18 (1983), 25-37. |
[14] | Ecological Modelling, 18 (1983), 291-304. |
[15] | Ecological Modelling, 35 (1987), 249-273. |
[16] | Journal of Theoretical Biology, 334 (2013), 71-79. |
[17] | Nonlinear Analysis: Hybrid System, 18 (2015), 100-116. |
[18] | Chaos, Solitions and Fractals, 45 (2012), 1541-1550. |
[19] | Journal of Mathematical Biology, 30 (1991), 49-61. |
[20] | Mathematical Biosciences, 101 (1990), 75-97. |
[21] | Environmental Pollution, 110 (2000), 375-391. |
[22] | Lecture Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986. |
[23] | Journal of Mathematical Analysis and Applications, 252 (2000), 519-531. |
[24] | Lewis Publishers, Boca Raton, FL, USA, 2001. |
[25] | Human and Ecological Risk Assessment, 9 (2003), 939-972. |
[26] | SIAM Journal on Numerical Analysis, 45 (2007), 352-370. |
[27] | Springer, New York, 1994. |
[28] | Princeton Series in Theoretical and Computational Biology, 2003. |
[29] | Mathematical Biosciences, 133 (1996), 139-163. |
[30] | Bulletin of Mathematical Biology, 77 (2015), 1285-1326. |
[31] | IN: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba. 6 pp. [Last accessed November 21, 2014], Available from: http://ceqg-rcqe.ccme.ca/download/en/191. |
[32] | Available from: https://www.gpo.gov/fdsys/granule/CFR-2012-title40-vol30/CFR-2012-title40-vol30-part423-appA/content-detail.html. |
1. | Angela Peace, Paul C Frost, Nicole D Wagner, Michael Danger, Chiara Accolla, Philipp Antczak, Bryan W Brooks, David M Costello, Rebecca A Everett, Kevin B Flores, Christopher M Heggerud, Roxanne Karimi, Yun Kang, Yang Kuang, James H Larson, Teresa Mathews, Gregory D Mayer, Justin N Murdock, Cheryl A Murphy, Roger M Nisbet, Laure Pecquerie, Nathan Pollesch, Erica M Rutter, Kimberly L Schulz, J Thad Scott, Louise Stevenson, Hao Wang, Stoichiometric Ecotoxicology for a Multisubstance World, 2021, 71, 0006-3568, 132, 10.1093/biosci/biaa160 | |
2. | Azmy S. Ackleh, Robert L. Miller, A numerical method for a nonlinear structured population model with an indefinite growth rate coupled with the environment, 2019, 35, 0749-159X, 2348, 10.1002/num.22418 | |
3. | Azmy S. Ackleh, Robert L. Miller, Second-order finite difference approximation for a nonlinear size-structured population model with an indefinite growth rate coupled with the environment, 2021, 58, 0008-0624, 10.1007/s10092-021-00420-x |