Research article Special Issues

The $ p $-Frobenius and $ p $-Sylvester numbers for Fibonacci and Lucas triplets


  • Received: 01 August 2022 Revised: 14 November 2022 Accepted: 17 November 2022 Published: 06 December 2022
  • In this paper we study a certain kind of generalized linear Diophantine problem of Frobenius. Let $ a_1, a_2, \dots, a_l $ be positive integers such that their greatest common divisor is one. For a nonnegative integer $ p $, denote the $ p $-Frobenius number by $ g_p (a_1, a_2, \dots, a_l) $, which is the largest integer that can be represented at most $ p $ ways by a linear combination with nonnegative integer coefficients of $ a_1, a_2, \dots, a_l $. When $ p = 0 $, the $ 0 $-Frobenius number is the classical Frobenius number. When $ l = 2 $, the $ p $-Frobenius number is explicitly given. However, when $ l = 3 $ and even larger, even in special cases, it is not easy to give the Frobenius number explicitly. It is even more difficult when $ p > 0 $, and no specific example has been known. However, very recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where $ l = 3 $. In this paper, we show the explicit formula for the Fibonacci triple when $ p > 0 $. In addition, we give an explicit formula for the $ p $-Sylvester number, that is, the total number of nonnegative integers that can be represented in at most $ p $ ways. Furthermore, explicit formulas are shown concerning the Lucas triple.

    Citation: Takao Komatsu, Haotian Ying. The $ p $-Frobenius and $ p $-Sylvester numbers for Fibonacci and Lucas triplets[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3455-3481. doi: 10.3934/mbe.2023162

    Related Papers:

  • In this paper we study a certain kind of generalized linear Diophantine problem of Frobenius. Let $ a_1, a_2, \dots, a_l $ be positive integers such that their greatest common divisor is one. For a nonnegative integer $ p $, denote the $ p $-Frobenius number by $ g_p (a_1, a_2, \dots, a_l) $, which is the largest integer that can be represented at most $ p $ ways by a linear combination with nonnegative integer coefficients of $ a_1, a_2, \dots, a_l $. When $ p = 0 $, the $ 0 $-Frobenius number is the classical Frobenius number. When $ l = 2 $, the $ p $-Frobenius number is explicitly given. However, when $ l = 3 $ and even larger, even in special cases, it is not easy to give the Frobenius number explicitly. It is even more difficult when $ p > 0 $, and no specific example has been known. However, very recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where $ l = 3 $. In this paper, we show the explicit formula for the Fibonacci triple when $ p > 0 $. In addition, we give an explicit formula for the $ p $-Sylvester number, that is, the total number of nonnegative integers that can be represented in at most $ p $ ways. Furthermore, explicit formulas are shown concerning the Lucas triple.



    加载中


    [1] T. Komatsu, The Frobenius number for sequences of triangular numbers associated with number of solutions, Ann. Comb., 26 (2022), 757–779. https://doi.org/10.1007/s00026-022-00594-3 doi: 10.1007/s00026-022-00594-3
    [2] T. Komatsu, The Frobenius number associated with the number of representations for sequences of repunits, C. R. Math. Acad. Sci. Paris, (in press).
    [3] J. J. Sylvester, Mathematical questions with their solutions, Educ. Times, 41 (1884), 21.
    [4] J. Sylvester, On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order, Am. J. Math., 5 (1882), 119–136.
    [5] A. Assi, M. D'Anna, P. A. Garcia-Sanchez, Numerical Semigroups and Applications, 2$^{nd}$ edition, RSME Springer Series, Springer, Cham, 2020.
    [6] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford University Press, Oxford, 2005.
    [7] J. J. Sylvester, On the partition of numbers, Quart. J. Pure Appl. Math., 1 (1857), 141–152.
    [8] A. Cayley, On a problem of double partitions, Philos. Mag., 20 (1860), 337–341. https://doi.org/10.1080/14786446008642957 doi: 10.1080/14786446008642957
    [9] M. Beck, I. M. Gessel, T. Komatsu, The polynomial part of a restricted partition function related to the Frobenius problem, arXiv preprint, (2001), arXiv: math/0306036. https://doi.org/10.48550/arXiv.math/0306036
    [10] A. Tripathi, The number of solutions to $a x+b y = n$, Fibonacci Q., 38 (2000), 290–293.
    [11] T. Komatsu, On the number of solutions of the Diophantine equation of Frobenius–General case, Math. Commun., 8 (2003), 195–206.
    [12] D. S. Binner, The number of solutions to $a x+b y+c z = n$ and its relation to quadratic residues, J. Integer Seq., 23 (2020).
    [13] A. Brown, E. Dannenberg, J. Fox, J. Hanna, K. Keck, A. Moore, et al., On a generalization of the Frobenius number, arXiv preprint, (2010), arXiv: 1001.0207v2. https://doi.org/10.48550/arXiv.1001.0207
    [14] L. Fukshansky, A. Schurmann, Bounds on generalized Frobenius numbers, Eur. J. Comb., 32 (2011), 361–368. https://doi.org/10.1016/j.ejc.2010.11.001 doi: 10.1016/j.ejc.2010.11.001
    [15] F. Curtis, On formulas for the Frobenius number of a numerical semigroup, Math. Scand., 67 (1990), 190–192.
    [16] L. G. Fel, Frobenius problem for semigroups $S(d_1, d_2, d_3)$, Funct. Anal. Other Math., 1 (2006), 119–157. https://doi.org/10.1007/s11853-007-0009-5 doi: 10.1007/s11853-007-0009-5
    [17] S. M. Johnson, A linear Diophantine problem, Canad. J. Math., 12 (1960), 390–398.
    [18] Ø. J. Rødseth, On a linear Diophantine problem of Frobenius, J. Reine Angew. Math., 301 (1978), 171–178. https://doi.org/10.1515/crll.1978.301.171 doi: 10.1515/crll.1978.301.171
    [19] A. Tripathi, Formulae for the Frobenius number in three variables, J. Number Theory, 170 (2017), 368–389. https://doi.org/10.1016/j.jnt.2016.05.027 doi: 10.1016/j.jnt.2016.05.027
    [20] A. M. Robles-Pérez, J. C. Rosales, The Frobenius number for sequences of triangular and tetrahedral numbers, J. Number Theory, 186 (2018), 473–492. https://doi.org/10.1016/j.jnt.2017.10.014 doi: 10.1016/j.jnt.2017.10.014
    [21] J. C. Rosales, M. B. Branco, D. Torrão, The Frobenius problem for Thabit numerical semigroups, J. Number Theory, 155 (2015), 85–99. https://doi.org/10.1016/j.jnt.2015.03.006 doi: 10.1016/j.jnt.2015.03.006
    [22] J. C. Rosales, M. B. Branco, D. Torrão, The Frobenius problem for Mersenne numerical semigroups, Math. Z., 286 (2017), 741–749. https://doi.org/10.1007/s00209-016-1781-z doi: 10.1007/s00209-016-1781-z
    [23] M. Beck, C. Kifer, An extreme family of generalized Frobenius numbers, Integers, 11 (2011), 639–645. https://doi.org/10.1515/integ.2011.048 doi: 10.1515/integ.2011.048
    [24] J. M. Marin, J. Alfonsin, M. P. Revuelta, On the Frobenius number of Fibonacci numerical semigroups, arXiv preprint, (2006), arXiv: math/0606717. https://doi.org/10.48550/arXiv.math/0606717
    [25] R. Apéry, Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris, 222 (1946), 1198–1200.
    [26] E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine Angew. Math., 1977 (1977), 1–17.
    [27] A. Brauer, B. M. Shockley, On a problem of Frobenius, J. Reine. Angew. Math., 211 (1962), 215–220.
    [28] T. Komatsu, Sylvester power and weighted sums on the Frobenius set in arithmetic progression, Discrete Appl. Math., 315 (2022), 110–126. https://doi.org/10.1016/j.dam.2022.03.011 doi: 10.1016/j.dam.2022.03.011
    [29] T. Komatsu, Y. Zhang, Weighted Sylvester sums on the Frobenius set, arXiv preprint, (2021), arXiv: 2105.08274. https://doi.org/10.48550/arXiv.2105.08274
    [30] T. Komatsu, Y. Zhang, Weighted Sylvester sums on the Frobenius set in more variables, arXiv preprint, 2021, arXiv: 2101.04298. https://doi.org/10.48550/arXiv.2101.04298
    [31] L. G. Fel, Symmetric numerical semigroups generated by Fibonacci and Lucas triples, Integers, 9 (2009), 107–116. https://doi.org/10.1515/INTEG.2009.010 doi: 10.1515/INTEG.2009.010
    [32] S. S. Batra, N. Kumar, A. Tripathi, On a linear Diophantine problem involving the Fibonacci and Lucas sequences, Integers, 15 (2015).
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(978) PDF downloads(63) Cited by(2)

Article outline

Figures and Tables

Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog