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Abstract: In this paper we study a certain kind of generalized linear Diophantine problem of
Frobenius. Let a;, as, ..., a; be positive integers such that their greatest common divisor is one. For a
nonnegative integer p, denote the p-Frobenius number by g,(a;, a,, . .., a;), which is the largest integer
that can be represented at most p ways by a linear combination with nonnegative integer coefficients of
ai,a,...,a;.. When p = 0, the O-Frobenius number is the classical Frobenius number. When [ = 2, the
p-Frobenius number is explicitly given. However, when / = 3 and even larger, even in special cases, it
is not easy to give the Frobenius number explicitly. It is even more difficult when p > 0, and no specific
example has been known. However, very recently, we have succeeded in giving explicit formulas for
the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where [ = 3.
In this paper, we show the explicit formula for the Fibonacci triple when p > 0. In addition, we give
an explicit formula for the p-Sylvester number, that is, the total number of nonnegative integers that
can be represented in at most p ways. Furthermore, explicit formulas are shown concerning the Lucas
triple.

Keywords: linear Diophantine problem of Frobenius; Frobenius numbers; Sylvester numbers; the
number of representations; Apéry set; Fibonacci numbers

1. Introduction

The linear Diophantine problem of Frobenius is to find the largest integer which is not expressed
by a nonnegative linear combination of given positive relatively prime integers a;, as,...,a;. Such
a largest integer is called the Frobenius number [3], denoted by g(A) = g(a;,as,...,a;), where A =
{a;,as,...,a;}. In the literature on the Frobenius problem, the Sylvester number or genus n(A) =
n(ay,a,,...,a;), which is the total number of integers that cannot be represented as a nonnegative
linear combination of ay, a,, ..., a; [4].

There are many aspects to studying the Frobenius problem. For example, there are algorithmic
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aspects to find the values or the bounds, complexity of computations, denumerants, numerical
semigroup, applications to algebraic geometry and so on (see e.g., [5, 6]). Nevertheless, one of the
motivations for our p-generalizations originates in the number of representations d(n; ay, as, . . ., a;) to
ayx; + ax; + - -+ + a;x; = n for a given positive integer n. This number is equal to the coefficient of x"
in 1/(1 = x*)(1 — x*®)---(1 — x*) for positive integers ay, ay,...,a; with gcd(ay,as,...,a;) = 1 [4].
Sylvester [7] and Cayley [8] showed that d(n;a;,as,...,a;) can be expressed as the sum of a
polynomial in n of degree kK — 1 and a periodic function of period aja,---a;. In [9], the explicit
formula for the polynomial part is derived by using Bernoulli numbers. For two variables, a formula
for d(n; ay, a,) is obtained in [10]. For three variables in the pairwise coprime case d(n; ay, a,, as). For
three variables, in [11], the periodic function part is expressed in terms of trigonometric functions,
and its results have been improved in [12] by using floor functions so that three variables case can be
easily worked with-in the formula.

In this paper, we are interested in one of the most general and most natural types of Frobenius
numbers, which focuses on the number of representations. For a nonnegative integer p, the largest
integer such that the number of expressions that can be represented by a;,a;,...,q; is at most p is
denoted by g,(A) = g,(ai,as,...,a;) and may be called the p-Frobenius number. That is, all integers
larger than g,(A) have at least the number of representations of p + 1 or more. This generalized
Frobenius number g,(A) is called the p-Frobenius number [1, 2], which is also called the k-Frobenius
number [13] or the s-Frobenius number [14]. When p = 0, g(A) = go(A) is the original Frobenius
number. One can consider the largest integer g,,(a1, a2, . . ., a;) that has exactly p distinct representations
(see e.g., [13, 14]). However, in this case, the ordering g5 < g7 < --- may not hold. For example,
817(2,5,7) =43 > g1.(2,5,7) = 42. In addition, for some j, gj. may not exist. For example, g3,(2,5,7)
does not exist because there is no positive integer whose number of representations is exactly 22.
Therefore, in this paper we do not study g;(A) but g,(A).

Similarly to the p-Frobenius number, the p-Sylvester number or the p-genus
ny(A) = ny(ay,az,...,a) is defined by the cardinality of the set of integers which can be represented
by ay,as,...,a; at most p ways. When p = 0, n(A) = no(A) is the original Sylvester number.

In this paper, we are interested in one of the most crucial topics, that is, to find explicit formulas
of indicators, in particular, of p-Frobenius numbers and p-Sylvester numbers. In the classical case,
that is, for p = 0, explicit formulas of g(a;, a») and n(a,, a,) are shown when / = 2 [4, 3]. However,
for [ > 3, g(A) cannot be given by any set of closed formulas which can be reduced to a finite set of
certain polynomials [15]. For [ = 3, there are several useful algorithms to obtain the Frobenius number
(see e.g., [16, 17, 18]). For the concretely given three positive integers, if the conditions are met, the
Frobenius number can be completely determined by the method of case-dividing by A. Tripathi [19].
Although it is possible to find the Frobenius number by using the results in [19], it is another question
whether the Frobenius number can be given by a closed explicit expression for some special triplets,
and special considerations are required. Only for some special cases, explicit closed formulas have
been found, including arithmetic, geometric, Mersenne, repunits and triangular (see [20, 21, 22] and
references therein).

For p > 0, if [ = 2, explicit formulas of g,(ai, a,) and n,(a,, a,) are still given without any difficulty
(see e.g., [23]). However, if [ > 3, no explicit formula had been given even in a special case. However,
quite recently, we have succeeded in giving explicit formulas for the case where the sequence is of
triangular numbers [1] or of repunits [2] for the case where [ = 3.
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In this paper, we give an explicit formula for the p-Frobenius number for the Fibonacci number
triple (F;, Fis2, Fivx) (i, k > 3). Here, the n-th Fibonacci number F), is defined by F,, = F,_1 + F,_»
(n > 2) with F; = 1 and Fy = 0. Our main result (Theorem 5 below) is a kind of generalizations
of [24, Theorem 1] when p = 0. However, when p > 0, the exact situation is not completely similar
to the case where p = 0, and the case by case discussion is necessary. As analogues, we also show
explicit formulas of g,(L;, Lis2, Lisx) for Lucas numbers L, with i,k > 3. Here, Lucas numbers L,
satisfy the recurrence relation L, = L, | + L, » (n > 2) with Ly = 2 and L; = 1. By using our
constructed framework, we can also find explicit formulas of the p-Sylvester numbers n,(F;, Fi.2, Fi)
and n,(L;, Lis, Li+x). Our result (Theorem 13) can extend the result in [24, Corollary 2]. The main idea
is to find the explicit structure of the elements of an Apéry set [25]. In addition, we use a complete
residue system, studied initially by Selmer [26]. By using Apéry sets, we construct the first least set of
the complete residue system, then the second least set of the complete residue system, and the third,
and so on. As a basic framework, we use a similar structure in [2]. We can safely say that one of our
theorems (Theorem 5 below) is a kind of generalization of [24, Theorem 1]. Nevertheless, for each
nonnegative integer p, the exact situation is not completely similar, but the case by case discussion is
necessary.

2. Preliminaries

Without loss of generality, we assume that @, = min{a,,a,,...,q;}. Foreach0 <i < a; — 1, we
introduce the positive integer mgp ) congruent to i modulo a; such that the number of representations of
mﬁp ) is bigger than or equal to p + 1, and that of m; — a; is less than or equal to p. Note that m(oo) is

defined to be 0. The set

Ap(A:p) = Ap(ar. ay, ..., a; p) = {m{,m”, ... .m® |},

is called the p-Apéry set of A = {a;,as,...,a;} for a nonnegative integer p, which is congruent to the
set
{0,1,...,a1 =1} (mod a;).
When p = 0, the 0-Apéry set is the original Apéry set [25].
It is hard to find any explicit formula of g,(a;,as,...,a;) when [ > 3. Nevertheless, the following
convenient formulas are known (see [28]). After finding the structure of mi.p ), we can obtain
p-Frobenius or p-Sylvester numbers for triple (F;, Fia, Fiyi)-

Lemma 1. Let k, p and u be integers withk > 2, p > 0 and p > 1. Assume that gcd(ay, ay, .. .,a;) = 1.

We have
gy(ai,ar,...,a;) = max m? —a,, 2.1
P 0<j<aj—1 7
-1
1 % a; -1
ny(ay, az,...,a;) = —Zmi.p)—T. (2.2)
a =0

Remark. When p = 0, (2.1) is the formula by Brauer and Shockley [27]:

glay,az,...,a;) = ( max mj) -a, 2.3)

I<j<a;—1
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where m; = m{” (1 < j < a; — 1) with my = 0. When p = 0, (2.2) is the formula by Selmer [26]:

a;—1
1

Cll—l
n(ay,az,...,a;) = — m; — . 2.4)
1,42 I al].z:; j D)

Note that my = mgo) = 0. A more general form by using Bernoulli numbers is given in [28], as well
as the concept of weighted sums [29, 30].

It is necessary to find the exact situation of 0-Apéry set Ap(F;, 0), the least complete residue system,
which was initially studied in [26]. Concerning Fibonacci numbers, we use the framework in [24].
Throughout this paper, for a fixed integer i, we write

Ap(Fi; p) = (m” . m, ... .m{" )

for short. Then, we shall construct the set of the least complete residue system Ap(F;;0). That is,
mj # my, (mod F;) (0 < j < h < F; — 1), and if for a positive integer M, M = jand M # m;
(0 < j < F;—1),then M > m;. Then, for the case p = 1 we shall construct the second set of the least
complete residue system Ap(F;; 1). That is, ma.l) * mgll) (mod F;) (O < j<h< Fi—1), mil) = m;
(mod F;) (0 < j < F;— 1), and there does not exist an integer M such that mi.l) >M>m;and M = j
(mod F;). Similarly, for p = 2, we shall construct the third set of the least complete residue system
Ap(F;;2). Thatis, m'? # m” (mod F)) (0 < j<h<F;—1),m? =m!” (mod F)) (0 < j<F;-1),
and there does not exist an integer M such that mf) > M > mfil) and M = j (mod F;).

By using a similar frame as in [24], we first show an analogous result about Lucas triple
(L;, Livo, Liyi) when p = 0. As a preparation we shall show the result when p = 0, with a sketch of the
proof. The results about Fibonacci numbers can be applied to get those about Lucas numbers. When
p = 0, by setting integers rand £ as L, — 1 = rF, + { withr > 0 and 0 < ¢ < F; — 1 and by using the
identity L, = L,F,_pn1 + Ln1F,_n, we can get an analogous identity of the Fibonacci one in [24,
Theorem 1].

Theorem 1. For integers i,k > 3 and r = | (L; — 1)/ F], we have

go(Li, Liva, Livk)
(Li—=DLjyo — Li(rFy o+ 1) ifr=0,0orr>1and

= (Li = rFy) Lz > Fr oL,
(rFy = DLiys — Li((r = DF;2 + 1)  otherwise.

Proof. Consider the linear representation

try + = XLiyo + yLigk
= (x+yF)Liy2 — yFioLi  (x,y 20).

Then, by gcd(L;, L;1») = 1, we can prove that the above table represents the least complete residue
system {0, 1,...,L; — 1} (mod L;).
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t0,0 . . tFk—l,O
tO,l . ce tFk—l,l

tO,r—l e e tFk—l,r—l
tO,r e tf,r

That is, we can prove that none of two elements among this set is not congruent modulo F;, and if
there exists an element congruent to any of the elements among this set, then such an element is bigger
and not in this set.

When r = 0, the largest element among all the #,,’s in this table is #,o. When r > 1, the largest
element is either tg,_,_; or ty,. Since tp_1,-1 < t;, is equivalent to Fy_,L; < (L; — rFy)L;2, the
result is followed by the identity (2.3). The first case is given by #,, — L;, and the second is given by
tre-1,-1 — Ly

3. Main results when p = 1

Now, let us begin to consider the case p > 1. We shall obtain the Frobenius number using Lemma 1
(2.1). For this it is necessary to know the structure of the elements of the p-Apéry set, and the structure
of the elements of the p-Apéry set depends on the structure of the elements of the (p — 1)-Apéry set.
Therefore, in the case of p = 1, the structure of the elements of the 1-Apéry set is analyzed from the
structure of the elements of the 0-Apéry set, which is the original Apéry set, thereby obtaining the
1-Frobenius number. When p = 1, we have the following.

Theorem 2. Fori > 3, we have

gi(Fi, Fiso, Fisy) = QFi = D)Fin - F; (k>i+2), (3.1)
g1(Fi, Fiso, Frin1) = (Fip — DFip + Fajy — F;, (3.2)
81(Fi, Fisa, Fo)) = (Fi = 1)Fipo + Fy; — F. (3.3)

Whenr = |(F;— 1)/Fy] = 1, thatis, kK <i— 1, we have

g1(Fi, Fiia, Fik)
(Fi—rFy=DFi+(r+ DF iy = F;  if (Fi—rF)Fin > Fi)F;,
(Fx = DFi2 + rFiq — F; if (Fi —rFFiy < FraoF,.

(3.4)

Remark. Whenr>1landk=i—-1,i—2,i—3,i—4,i— 5, we have more explicit formulas.
g1(Fi, Fiyp, Fyi ) = (Fio— DFip +2F0i = F; (i 24),
81(Fi, Fisa, Foi0) = (Fis = DFina +3F 0 — F; (i 25),
(Fie— DFia+5Fy 35— F; (i27)
Finp+4Fy ;- Fi(=149) (i=6),
81(Fi, Fisa, Foia) = (Fies + Fiig = D)Fip + TFy4 — Fi,

g1(Fy, Fig, Fri3) = {
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(Fies—= DFip + 11Fy 5= F; (i > 10)
81(Fi, Fivp, Foios) = {12F5; s — F; (i=9)
11F2,'_5—Fl' (128)
Proof. Put the linear representation
tey 1= XFio + yFig
= (X +yF)Fi2 —yFiaoF; (x,y20).

For given F; and Fy, integers r and ¢ are determined uniquely as F;—1 = rF;+{ with0 < £ < F;—1.

Table 1. Ap(F;;0) and Ap(F;; 1) forr > 1.

fo,0 I to I IF-1,0 I
e e ro  IRe10 e e D2F-1,0
1,1 5N TF-1.1 7 tFer1,1 BF-1,1
o2 to e o Ipe12 : : :
: : -2 IFerlr—2 s | F-1-2
for-1 liy-1 s R 70 TP W Y 7 e (tFkH,’,r—]] ‘
for e e, 728 P [tn—u]
fore1 o0t [t(,’,r+l)

The second set Ap(F;; 1) can be yielded from the first set Ap(F;; 0) as follows. Assume that r > 1.
Only the first line {ty0, 110, - . . , tr,—1,0) moves to fill the last gap in the (r+1)-st line, and the rest continue
to the next (r + 2)-nd line. Everything else from the second line shifts up by 1 and moves to the next

right block (When r = 1, the new right block consists of only one line ¢, o, - , fr,+c0, but this does
not affect the final result).

fo,1 = IF0, 1 = tpe+1,05 ces Ip—11 = bE-10o
lop = Ip1, o = tpe+Lls -y IR E b1,
for-1 = tFpr—2, -1 = IFer1,r-25 cos IR-1-1 = DE-1r-2
tO,r = tFk,r—la ey t[,r = tFk+€,r—1’
100 =textyrs  +ovs  IF—0-20 = tr—1
pe—t-10 = log+1s  +-vs  IF—1,0 = Tore-

The first group is summarized as

tx,y = tFk+x,y—l (mOd Fl)
forO<x<F;—land1 <y<r—-1or0<x<¢andy = r. This congruence is valid because
try = (X +YF)Fir2 — yFio F;
=(Fr+x+ Q- DF)Fi2 = (y— DFioF; = trixy-1  (mod Fy).

The second group is valid because for 0 < x < F, — € — 2,

teo = xFi
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=+ 1+x+rF)Fi—rFioF; =4, (mod F;).
The third group is valid because for 0 < x < ¢,

tre—t-14x0 = (Fr =€ =1+ X)Fis
=(x+ T+ DF)Fi— 0+ DFoF; =ty (mod F)).

Table 2. Ap(F;;0) and Ap(F;; 1) forr =0and 2¢ + 1 > F;.

oo l‘z,o‘tm,o (l‘n-mH
fog et (hml—ﬂ,]]‘

Assume that r = 0. The first set Ap(F;;0) consists of only the first line. If 2¢ + 1 > Fy, then the
second set Ap(F;; 1) can be yielded by moving to fill the last gap in the line, the rest continuing to the
next line.

foo = tr+1,05 cees tp—0-20 = 1p-10>

IF—t-10 = To1, e fro = tyvi-r1  (mod Fy).
They are valid because for0 < j < Fy — € -2,

tio = jFipo = (Fi + j)Fi
=({l+1~=jpFio=1tn1-j0 (mod F),

and forO0 < j <20+ 1-Fy,
tr—t-14j0 = (Fr =€ =1+ )Fip

=+ F)Fi2— FioFi=1;; (mod F;).

Table 3. Ap(F;;0) and Ap(F;; 1) forr=0and 2+ 1 < F;, — 1.

‘fo,o t[,O‘tHl,O [l‘zm.o]‘

If 2¢ + 1 < F; — 1, then the second set Ap(F;; 1) can be yielded by moving to fill the last gap in the
line only.

100 = te10s  ---s  leo = lpr1o  (mod Fj).

They are valid because for 0 < j < ¢,

tio = jFi2 = (Fi + j)Fis2
=+ j+DFiys =110 (mod Fy).

Next, we shall decide the maximal element in the second set Ap(F;; 1) (and also in the first set
Ap(Fi;0)).
Case 1 (1) Assume that r = 0 and 2¢ + 1 < F; — 1. The second condition is equivalent to 2F; < F,
which is equivalent to i < k — 2. The largest element in the second set Ap(F;; 1), which is congruent to
{0,1,...,F;— 1} (mod F)), is given by 10 = QF; — D)F .
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Case 1 (2) Assume that r = 0 and 2¢ + 1 > F;. The second condition is equivalent to 2F; — 1 > F,

which is equivalent to i > kK — 1 > 3. In this case there are two possibilities for the largest element in

the second set Ap(Fy; 1): tp 10 = (Fx = 1)Fi Of typ1-p,1 = 2F; = 1)Fip — Fr» F;. However, because

of i >k—12>3,always tp,_10 < tar+1-F1-

Case 2 Assume that » > 1. This condition is equivalent to F; — 1 > Fy, which is equivalentto i > k + 1.
In this case there are four possibilities for the largest element in the second set Ap(F; 1):

b2 = (rFy = DF o = (r = 2)F; 0 F;,
threr—1 = (Fi = DFiyy — (r = DF o F,
tre-1r = ((r+ DFy = )Fia — rFy o F,
tepe1 = (Fi+ Fr— DF i — (r + DF o F

However, it is clear that typ, 1,2 < tp_1,. Becausei > k + 1, tp4r,—1 < tg,—1,. Thus, the only
necessity is to compare f,_;, and t,1, and tg 1, > t7,41 1s equivalent to (F; — rFy)Fiyn > FroF.

Finally, rewriting the forms in terms of F;;, and F;;; and applying Lemma 1 (2.1), we get the result.
Namely, the formula (3.1) comes from Case 1 (1). The formulas (3.2) and (3.3) come from Case 1 (2)
when k = i+ 1 and k = i, respectively. The general formula (3.4) comes from Case 2.

4. Thecasep =2

When p = 2, we have the following.

Theorem 3. Fori > 3, we have

&Fi, Fiy,Fiy) = GF;— DFio - F; (k>i+3), 4.1)
Fio—1DFi 0+ Fyp— F; | is od.

g2(Fo Foug, Fopng) = | L2 ™ i+ Faiea (1is odd) 4.2)
(Fisa = DFi2 — F; (i is even),

8 (Fi, Fivo, Foin1) = (Fi = DF i + Faiy — Fj, (4.3)

8 (Fi, Fiyo, Fy)) = QF; — )Fin = Fj, 4.4)

Fi_4—1)F; +3F,'_ - F; [ > 5

&(Fi, Fipp, Fhiy) = (Fia = DFur o (l, ) 4.5)
Fia +2F5 — Fi(=31) (i=4).

Whenr = |(F;— 1)/Fy] =22, thatis, k <i— 2, we have

82(Fi, Fisa, Fivk)
_Fi—rFy = DFia+ (r+2)Fu — F; if (Fi —rF)Fia =2 FioF 4.6)
(Fi= DFuz + (r + DF i = Fy if (Fi = rF)Fis2 < FioFi. '
Remark. When k =i —2 and k = i — 3, we can write this more explicitly as
8(Fi, Fiso, Foin) = (Fiis — DFia +4Fy 0 - F; (i 25), 4.7)
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(Fice—= DFip +6Fy 3 —F; (i>7)

(4.8)
Fiop +5F5i3 - Fi(=183)  (i=6),

8(Fi, Fip, Fhi3) = {

respectively. The formulas (4.7) and (4.8) hold when r = 2 and r = 4, respectively.

Proof. When p = 2, the third least complete residue system Ap(F;;2) is determined from the second
least complete residue system Ap(F;; 1). When r > 2, some elements go to the third block.

Table 4. Ap(F;; p) (p =0,1,2) forr =0 and F; > 3¢ + 3.

| Istblock | 2ndblock | 3rdblock |

Fi

Fi

Fi

‘ ‘ ‘ t3[+2,0‘

Casel (1) Letr =0and Fy >3 +3 =3F,. Sincefor{ +1 < j <20 +1,

tio = jFizo = (Fi+ )Fi
=+ j+ DFiy2 =trejs1o (mod F),

the third set Ap(F};2) is given by
{t2041,05 - - - » l3es20}  (mod Fy).
As the maximal element is f3,420, by (2.1), we have

&(Fi, Fip, Fi) = GF; = )Fin — F;.

Table 5. Ap(Fi;p) (p=0,1,2)forr =0and 20 +2 < F, <30+ 2.

‘ ‘ IF-1,0

13042-F,1

Case 1 2) Letr = Oand 2F; = 20 +2 < F) < 30 +2 = 3F; — 1. Since tjy = trsjr10 (mod F;)
(C+1<j<Fi—-¢-2),andfor0< j<3(+2-F,,

tr—t-14j0 = (Fx =0 =1+ DFio = (Fy = Fi + )Fi2
=(Fr+ DFia=(+F)Fio+ FroF =t (mod F;),

the third set Ap(F;2) is
{t2041,00 - - s tr—1.0s 0,15 - - > B3ps2-F, 1} (mod F).
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Table 6. Ap(Fi; p) (p =0,1,2) forr =0and F; <20+ 1.

Daes10 ‘

‘ 8

The first elements f#410,...,tr,-10 are in the last of the first line, and the last elements
f01s»--->13042-F,1 are in the first part of the second line. Hence, the maximal element is
tr-10 = (Fx = DFip Of B3040 g1 = BF; — 1)Fip — Fi o F;. Therefore, when 3F; — Fi)Fi2 > FioFi,
&Fi, Fiyo, Fiyp) = @GF — DFiyy — (Fir2 + DF. When QF; - FFi, < FiaF,
&(Fi, Fiy, Fiy) = (Fy— 1)Fipo — F.

Casel (3)Letr=0and F, <20+ 1=2F;—1.Sincefor{ +1 < j< F; -1

tio = jFi = (Fi+ )Fin
=0+ 1+ Fipr— FiooFi = te_p14j1  (mod Fy),

andfor0< j <20+ 1~ F;

tirn =+ F)Fio — FiF;
= (Fr+ pDFi =tr4jo (mod Fy),

the third set Ap(F;2) is

{taeso-Feds s te1s tr0s - - - B2ev1 0} (Mod F).

The first elements #¢42-F, 1, . - . » 7,1 are in the second line of the first block, and the last elements are
1705 - - - » Iap+10 10 the first line of the second block. So, the maximal elementis#,; = (F;+ Fy—1)Fin—
F._,F;or Iypv10 = (QF; — 1)F;;». Since F;, < 2F; — 1, Only when k =i + 1, we have gz(Fi, Fipo, Fiyp) =
(F,' + F - 1)Fi+2 — (Fk_g + I)F, When k < i, we have gz(F,', Fi,, F,'+k) = (ZF, — 1)Fi+2 - F;.

Table 7. Ap(Fi; p) (p = 0,1,2) for r = 1 and Fy, > 20 + 2.

hF--10

A

D12 ‘

Case2 (1) Let r = 1 and 2¢ + 2 < F;, that is, %F,- < F; < F; — 1. This case happens only when i = 4
andk=3.Sincefor{+1 < j<F; -1

tin=(j+ F)Fio — FioF;
= (Fr+ DFi =tr4jo (mod Fy),

forO0<j<¢
tio=(+2F)Fi - 2F»F;
=(Fr+ j+ F)Fi— FroF; =t (mod F)),
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andfor0<j< ¢
trevjo = (Fr+ PFio = (Fi+ j+ F)F i
=+ 1+ j+2F)Fi = 2F;oF; = tr4jp, (mod F;),
the third set Ap(F;2) is

{trse41,00 - - s R 1,05t 15 - - o5 Bt 1 Bow1 20 - - - > Tapr1 2} (moOd F) .

The first elements tg,,¢410, - - -, f2r,—1,0 are in the first line of the second block, the second elements
tp.1s- -, tr+¢1 are in the second line of the second block, and the last elements #7415, ..., 012 1N
the third line of the first block. So, the maximal element is one of t,r,_1 0 = 2F — 1)Fi2, tpe1 =
(Fi+ Fy— )F;p — Fi_»F; or Iyy1p = QF;,— D)Fp —2F oF;. Asi=4and k = 3, 12 = 34 is the
largest. Hence, g>(F;, Fi2, Fivx) = QF; = 1) Fi1n — 2F; > + 1)F;, that is, g,(Fy, Fe, F7) = 34 - F4 = 31.

Table 8. Ap(Fi;p) (p =0,1,2) forr =1and F; <20+ 1.

DF--10

TR+,

IF-12

Devi-Fi.3

Case2 (2) Letr =1and 2¢ + 1 > Fy, thatis, (F; — 1)/2 < Fy < (2F; — 1)/3. This relation holds only
when k =i—1 > 4. Since L1 = Ipe+jo (mod F) ) ({+1 < ] <Fi-1), Lio = I+ (mod F,) (0 < ] <),
tFk+j,0 = lg+]+j’2 (mod Fl) (O < ] < Fk —{ - 2), and for 0 < ] <20+1- Fk

br—t-14j0 = QFr = =1+ ))Fiya = GF, — Fi + ))Fip
=(j+3F)Fi, - 3F;2F; =tj3 (mod F),
the third set Ap(F;2) is
{tres1.05 - s 1,05 LR 1> - - o EEL4L1
Los12s - o5 tF—12:1035 - - s Taer1-F, 3} (mod Fj).

So, the maximal element is one of bhr,-10 = QF, — DF,;y,, Ipve1 = (F;+ Fy — D)F;, — Fi o F,,
tr-12 = BFy = DFipp = 2F o F; or tyrs1_p3 = QF; = DFiy = 3F0F . Ask=i-12>4,ty1p3 =
(2Fl — 1)F,’+2 - 3Fl'_3F,' is the largest. HCDCC, gz(Fi, Fl‘+2, F2,‘_1) = (2F, - 1)F,’+2 — (3F,'_3 + I)Fl
Case 3 Let r > 2. The part

IFls e s DR =105 - o o s B r=25 s 0P =125 T r=15 - - s TPt -1
in the second block among the second set Ap(F;; 1) corresponds to the part
DE0s o s B3F 1,05+« s D2Fp =35+ « s B3F— 1,735 D2F 525+« s DFt 02
in the third block among the third least set Ap(F;; 2)* because

trevjn = (Fix + J+ hE)F i — hF o F;

“When r = 2, only the last shorter line remains, and #37,_; 3 in table 9 does not appear. However, this does not affect the result.
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Table 9. Ap(F;;p) (p =0,1,2) forr > 2.

B3F-1,-3
DF+tr-2

DF-1,-1

tFk+[,r

LE—1,r41

Irrs2

= 2F+ j+ (h— DF)Fiy = (h— D)FF;
= br+jn-1 (mod F;)
forO0< j<Fy,—landl1 <h<r-2or0<j<{¢andh =r—1. The part ts,1,,...,tr_1, in the

first block among the second set Ap(F;; 1) corresponds to the part t¢, 1 ¢41 -1, .. ., tar,—1 -1 10 the second
block among the third set Ap(F;;2) because forell + 1 < j< F,— 1

tir =(J+rF)F i —rF ) F;
=(Fe+ j+ (= DF)Fi, — (r— DFF;
=tp+j—1 (mod F;).

The part 7,11, ..., -+ In the first block among the second set Ap(F;; 1) corresponds to the part
tF.rs - - > tr.+e, 10 the second block among the third set Ap(F;;2) because for 0 < j < ¢

tire1 = (J+(r+ DF)Fi, — (r+ DF o F;
=(Fy+ j+rFFi, —rFoF;
= trjr (mod Fj).

The first line tg ,...,tF—¢-2, 2F—t-15- - - > t2r—10 1n the second block among the second set
Ap(F; 1) corresponds to two parts #7111, ..., tr—1,+1 and fo,42, ..., t 42 in the first block among the
third set Ap(F;;2) because for0 < j < Fy — € —2

tresjo = (Fr+ PFip = (Fi+ Fy + Fip — (r + DF o F;
=({l+1+j+(r+ DF)Fi—(r+ 1)F»F;

= ter14jrer (mod Fy),
and for0 < j < ¢,

bpe-t-11j0 = QFy =€ =1+ Fiyy = QF, = Fi + rFp + ) Fipn
= (] + (I" + Z)Fk)FHZ - (r+ 2)Fk_2Fi
=tjr+2 (mod Fy).

Hence, the third set Ap(F;; 2) is given by
{02F 05 o - s B3R =105 - o5 TFr=35 -+ + s BB = 1r=3s D2F =25+ + s DDF =25
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LR attl—1s - o s F—1r—15 LF s o o o s LRyl

Loslptls e oo Em1 a1 B0 p42s - -5 Lo ps2)  (MoOd F) .
There are six candidates for the maximal element:

Br-1,-3 = (FFy = DF0 = (r = 3)Fi 0 F;,
bratr—2 = (Fi = DFyp — (r = 2)FiaFi,
tr-1-1 = ((r + DFy = DFpp = (r = DF o Fy,
trever = (Fi+ Fr = DFip — rFi o F;,
tre-trn1 = (r+ 2)F = D)Fipo = (r + DF o F;,
ftrva = (Fi+ 2F = DFiyp — (r + 2)Fi o F;.

However, it is easy to see that the first four values are less than the last two. Hence, if (F; —
rF)Fiy > FioF;, then gy(F, Fiuo, Fi) = trpo — Fi = (Fiy + 2F — DF i — ((r + 2)F3, + 1)F;. If
(Fi—=rF)Fi < FyoF;, then go(Fy, Fivo, Fi) = tp—1 01— Fi = (1 +2)Fi = 1)Fipy = ((r+ 1) + 1) Fi, F.

Finally, we rewrite the form as the linear combination of F;;, and F;,; and apply Lemma 1 (2.1).
The formula (4.1) comes from Case 1 (1). The formula (4.2) comes from Case 1 (2). The formulas
(4.3) and (4.4) come from Case 1 (3). The formula (4.5) comes from Case 2 (1) (2). The general
formula (4.6) comes from Case 3.

5. The case p =3

When p = 3, we have the following.

Theorem 4. Fori > 3, we have

g&(Fi, Fiyo, Fiyy) = (4F; — DFo - F;  (k>i+3), (5.1)
83(Fi, Fisa, Fois0) = (Fi — DF i + Faip — i,
83(Fi, Fiya, Fois) = (Fi+ Fig — D)Fip + Foipy — Fy,
83(Fi, Fiva, Fo)) = (Fi — )Fi0 + 2Fy — F;,
g3(Fi, Fiya, Foi1) = (Fig — DFip +3Fy 1 — F; (i24),
(Fies = DFi2 +5Fy 20— F; (i26)

Fi’Fi ’Fi— = 5.2
gl fien P2 {Fi+2+4F2,~_2—Fi<: )  ((=59). 2

When r = |(F; — 1)/ Fy] > 3, that is, k < i — 3, we have

83(Fi, Fiia, Fivk)
_JFi—rFy = DFuo+ (r+3)Fuw — F; if (Fi —rF)Fip 2 FioF (5.3)
(Fi = DF 2+ (r + 2)F . — F; if (Fi = rF)F i < FioF; . '

Proof. When p = 3, the fourth least complete residue system Ap(F;;3) is determined from the third
least complete residue system Ap(F;;2). When r > 3, some elements go to the fourth block. The proof
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Table 10. Ap(F;; p) (p =0,1,2,3) for r > 3.

® ®

CI®)

O

(SISO

EEE

of the cases r = 0, 1,2 is similar to that of Theorem 3 and needs more case-by-case discussions, and it
is omitted.

In the table, @ denotes the area of the n-th least set of the complete residue system Ap(F;;n — 1).
Here, each mi."_l), satisfying mi.”_l) = j (mod F;) (0 £ j < F; — 1), can be expressed in at least n
ways, but mi."_l) — F; can be expressed in at most n — 1 ways. As illustrated in the proof of Theorem
3, two areas (lines) of @ in the first block correspond to the first line of ® in the third block, two
areas (lines) of @ in the second block correspond to two areas (lines) of @ in the first block, two areas
(lines) of ® in the third block correspond to two areas (lines) of ® in the second block, and the area
of @ in the fourth block correspond to the area of ® in the third block except the first line. Eventually,
the maximal element of the fourth set of the complete residue system is from the first block, that is,
Ip 142 = ((I’ + 3)F; — 1)Fi+2 —(r+2)F;_,F;or torez = (F;+3F,— 1)F;» — (r + 3)F_,F;. Hence, if
(Fi—=rF)Fiy > FioF;, then g3(Fi, Fiio, Fisi) = top3—Fi = (Fi+3F = D) F o = ((r+3)Fia + 1)F,. If
(Fi=rF)Fix < FioF;, then g3(Fi, Fiia, Fig) = tp—1 00— Fi = (r+3)Fi = 1) Fia = (r +2) Fr o + 1) F;.
Notice that r > 3 implies that k < i — 3.

6. General p case
Repeating the same process, when r is big enough that r > p, that is, k is comparatively smaller

than i, as a generalization of (3.4), (4.6) and (5.3), we can have an explicit formula.

Theorem 5. Let i > 3 and p be a nonnegative integer. When r = | (F; — 1)/ F] = p with (r, p) # (0,0),
we have

gp(Fi, Fir, Fig)
_JFi=rFr = DFi + (r+ p)Fi— Fi if (Fi = rF)F i 2 FioFj;
(Fx=DFix+(r+p—-DFiu—F;  if(F;—rF)Fi2 < FioF;.

Remark. When p = 0, Theorem 5 reduces to [24, Theorem 1] except r = 0.
On the other hand, k is comparatively larger than i. As a generalization of (3.1), (4.1) and (5.1), we
can also have the following formula.

Proposition 1. For i,k > 3, we have

gp(Fia Fi+2, Fi+k) = gp(Fia Fi+2) (k =i+ h)
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when (p,h) = (3,4), (4,4), (5,5), (6,5), (7,5), (8,5), (9,6), (10,6), (11,6), (12,6), (13,6), (14,6),
(15,7), (16,7), (17,7), (18,7), (19,7), (20,7), (21,7), (22,7), (23,7), (24,8), ....

The proof depends on the fact
(p+ DFiFiy— Fi— Fisp < Foiypp (i 23).
Nevertheless, such /’s are not necessarily sharp because even if (p + 1)F;Fiyo — Fi — Fiio > Foip,
it is possible to have g,(Fi, Fii2, Fiv) = 8,(Fi, Fiso) (k > 1+ h).

7. Lucas numbers

The formulas about Fibonacci numbers can be applied to obtain those about Lucas numbers. The
discussion is similar, though the value |(L; — 1)/F}] is different from | (F; — 1)/F;]. So, we list the
results only.

When p = 1, we have the following.

Theorem 6. Fori > 3, we have
g1(Li,Liss, Lisy) = QL= D)Lipr = L; (k>i+4),
81(Li, Liva, Lojy3) = (Fiyz — 1)Livo — L;,
81(Li, Liva, Lojo) = BFiy — 1)Ly + Lyjn — L; .
Whenr =|(L;— 1)/Fy] =2 1, thatis, k < i+ 1, we have

81(Li, Liyo, Livi)
_JWLi=rFy=DLio+ (r+ DLiyg — L if (Li — rFy)Liva 2 FiaLy,
\Fr = DLia + rLii — L if (Li = rF)Liss < FioL.

When p = 2, we have the following.
Theorem 7. Fori > 3, we have
82(Lis Liso, Livk) = BLi — DLio = Ly (k2i+4),
82(Li, Liya, Loiv3) = (Li — 1)Liya + Lois — L,
(Li = D)Ly + Loipzr — Li (i is odd)
2L, - 1)Lix - L; (i is even),
82(Li, L2, Loiv1) = 2F -y — D)Ly + 2Lpi1 — Ly,
82(Li, Lisa, Loi) = Liva + 3Ly — Li(= 61) (i =3).

82(Li, Lizo, Loio) = {

When r = |(L; — 1)/ F] > 2, that is, k < i excepti =k = 3, we have

8(Li, Liva, Livk)
_J@Li=rFr=DLia + (r + 2)Liyy — Ly if (Li = rFy)Liv2 = FroLi,
(Fr— DL + (r + 1)Liyy — L; if (L = rFy)Liys < FrooL.
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When p = 3, we have the following.

Theorem 8. Fori > 3, we have
g3(Li, Liya, Ligy) = (4L — DLy — L; (k>=i+5),
83(Li, Liva, Loiva) = (4F iy — Fio — 1)Liys + Lojrs — Ly,
83(Li, Liva, Loiy3) = (4F iy — DLiyo — Ly,
83(Lis Liva, Loiyn) = (Fi + 2F; 3 — 1)Lis + 210145 — L,
83(Li, Liva, Loiy1) = (Fioy — D) Liys + 31041 — Ly,
(2Fi3— DLy +4Ly— L (i 24)

Li, Ly, Ly;) =
83(la: Livz, L) {3L,-+2+2L2i—L,-(: 69)  (i=3).

When r = |(L; — 1)/ F;] > 3, that is, k <i— 1, we have

83(Li, Lizo, Livi)
{(Li —rFy =1Ly +(r+3)Lix — L if (Li — rFy)Lisr > Fy oL,

(Fie—DLixp + (r +2)Liy — L; if (Li = rFi)Liyr < FiohL.

For general p, when r is not less than p, we have an explicit formula.

Theorem 9. Leti > 3 and p be a nonnegative integer. When r = | (L; — 1)/ F;] = p with (r, p) # (0,0),
we have

8p(Li, Lizo, Livy)
_J@Li—rFr—= DLy + (r+ p)Lisg — L if (Li = rFi)Lia > FioLi;
(Fx= DL+ (r+p— DLy — L if (Li —rFp)Liy < FiraL;.

8. The number of representations

By using the table of complete residue systems, we can also find explicit formulas of the p-Sylvester
number, which is the total number of nonnegative integers that can only be expressed in at most p ways.
When p = 0, such a number is often called the Sylvester number.

8.1. Main results when p =1

When p = 1, we have the following.

Theorem 10. Fori > 3, we have
1
m(Fy, Figo, Fipg) = 5(3FiFi+2 —Fi—Fi,+1) (k>i+2), (8.1)

1
m(Fi, Fioo, Foi1) = 5GFiFip = Fi = Fip + 1) = 2F; = Fi)Fis.
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(k=1i,i+1).
Whenr =|(F;,—1)/F] 21, thatis, k <i— 1, we have
n(Fi, Fiya, Figg)
= %(Fi +2F,— )F, —F;+1)—|rF; - WF,{ Fr,.

Proof. Whenr=0and2(+1 < F, - 1,by F; -1 =¢,

Fi-1

(e8]
Z m;” =leao+ -+ 1o
Jj=0

B ((2{’ +1D)26+2) 0+ 1))F
- - i+2

2 2
_ (3Fi - 1)FiFi+2
- : .
Hence, by Lemma 1 (2.2), we have
BF; - DF; F—1
nl(Fi, Fi+2, Fi+k) = +2 _

2 2
1
= §(3FiFi+2_Fi_Fi+2 +1),

which is (8.1).
When r=0and2f+ 1> Fi,by Fi— 1 = ¢,

Fi-1
I

Z mi‘) = (er10 + +m-10) + (o + 000+ Drei-r1)

=0

_ ((Fk - DF, U+ 1))F_ 2

2 2
20+1-F)26+2-F
G k)z( F 2R 0+ 2= FFu
3F;,— 1F;
= (% —2F;F; + F/%)sz + Q2F; — F)F iy .

Since Fiy = FipoFy — FiFy s,

Fi-1
\ 3F;,— 1)F;
Z D = (% —(2F; - Fk)Fk—z) F,.

J
j=0

Hence, by Lemma 1 (2.2), we have

(3F; — DF, Fi—1
nl(Fi7Fi+2’Fi+k) = % - (2Fl - Fk)Fk—Z - T

(8.2)

(8.3)
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1
= §(3FiFi+2 —Fi—Fip+1)-QF - F)F;,

which is (8.2).
When r > 1, by F; — 1 = rF; + £, we have

= Z(ka,h + -+ hpip) t (r—1 + o F e 1)

+ sy + o tpmry) + (fopsr + o0+ trpsn)

:(r—l)(

(2F = DQ2F)  (Fi- 1)Fk) Fooe 0220 Dp g
2 2 2
) ((Fk Ol (R ‘Zl)Fk)FHZ H(C+ D= DF
. ((Fk - DF, 4+ 1))Fi+2 F(Fo—1=0rF.,
2 2
{+1)

+

Fioo +(C+ D)+ DF i

1
= E((V— 1)(3Fk— 1)Fk+(Fi—(l"— I)Fk— 1)(F,‘—(l"— 1)Fk))Fi+2

+ (%Fk + I”(F,' —(r- I)Fk)) Fi
_ %(Fi +2F, — FFs

Hence, by Lemma 1 (2.2), we have

Fk)) FioF;.

m(Fi, Fiya, Figr)
1 -Dr+2 F,—1
R T Vo P il L UL N S
2 2 2
1 -Dr+2
= 5((Fi+2Fk_ 1)Fi+2—Fi+ 1)—(I’Fi— (r)+)Fk)Fk_2,

which is (8.3).

8.2. The case p =2
When p = 2, we have the following.

Theorem 11. Fori > 3, we have

1
ny(Fi, Fiso, Figg) = E(SFI'FHZ -Fi—-Finp+1) (kz2i+3),

(8.4)
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1

no(Fi, Fig, Faiyp) = 5((7Fi+2 —6F, - 1)F;—Fin+ 1),
1

no(Fi, Fig, Faipy) = 5((7Fi+2 —-8F, - 1)F;—Fin+1),

1
no(Fi, Fip, Fay) = 5(3FiFi+2 -Fi-Fi,+1),

1
ny(Fi, Fia, Faioy) = 5((170Fi — DF; + (24F; 1, = 125F; = DFip, + 1).

When r = |(F; — 1)/Fy] > 2, that is, k < i — 2, we have

no(Fi, Fivo, Fivk)

1 1
= 5((Fi+4Fk— 1)F,‘+2—Fi+ 1)— 5(2rF,-—(r+3)(r—2)Fk)Fk_2.

Proof. Whenr =0and F;, > 3¢+ 3,by F; —1 ={, we have

Fi—1
@ - t +---4t
m i = 20 30+2,0
j=0

BC+2)3C+3) Q2+ 1)26+2)
— ( 3 - > Fi
= SF = DFFu.
Hence, by Lemma 1 (2.2), we have
oF, Fi, Fin) = 5(5Fi = Dy = T
= l(5F,-F,-+2 —Fi-Fip+1),

2

which is (8.4).
Whenr=0and 20+ 2 < F;, <30 +2,by Fiyy = Fi o Fy — FiFy_,, we have

Fi-1
2)
Z m;
=0
= (taps20 + - +tp_10) + (fo1 + - + B3pra-Fp 1)
(Fr—DF, Q26+ 1DQR20+2)
= 5 - > Fin

N Bl+2-F)3C+3-Fy)
2

1
= 5(5Fi - DFFi, — BF; — F)FFi,.

Fixa + (30 +3 = Fp)Fiy

(8.5)
(8.6)
(8.7)

(8.8)

(8.9)
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Hence, we have

1 F,—1
m(Fi, Fiio, Fivk) = 5(5Fi -~ DFi — QF; = Fi)Fr — 5

1
= E(SFiFi+2_Fi_Fi+2 +1)-QGF; - FFi.

This case occurs only when k£ = i + 2. Hence, we get (8.5).
When r = 0 and F, < 2€ + 1, we have

Fi-1

2
Z mi') = (tr 0+ +hr10) + (apr2-F1 + -+ 1e1)
=0

2 2
+(€(€+1) Qt+1-FR2t+2-F)
2 2

B ((2{’+ DRE+2) (Fr - l)Fk)F
- - i+2

)Fi+2 + (Fr— €= DFix
1
= E(Fi +2F,— DFiFiy — (Fy — F)FiF) .

Hence, we have

1 Fi—1
m(Fi, Figo, Fipg) = E(Fi +2F— DF i — (Fr = F)Fi—p — 5

1
= 5((Fi +2F— )Fi—Fi+ 1) = (Fy — F)Fi.

This case occurs only when £ = i + 1. Hence, by rewriting we get (8.6).
Whenr=1and 20+ 2 < F;,by F; — 1 = F + £, we have

Fi-1

2

=0

= (trres10 + -+ ap-10) + (Tr + 0 + Irc1)
+ (fer12 + -+ hr12)

((2Fk—1)(2Fk) (Fk+f)(Fk+€+1))
= > - > Fiin

N ((Fk + f)(f;k +0+1)  (Fk _zl)Fk)F,-+z + (0 + DFiy
N ((2{’ + 1)2(25 +2) W; 1))F,.+2 +2(+ 1)F

1
= §(3Fi - DFiFin —3(F; = F)FFr,.

Hence, we have

1 Fi—1
no(Fi, Fiyg, Figg) = §(3Fi - DFi = 3(F; — Fi)Fr — 5
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1
= 5(3FiFi+2 —F;—Fia+1)=3(Fi = F)Fi.

This case occurs only when k = i. Hence, we get (8.7).
When r = 1 and 2¢ + 1 > F}, we have

Fi-1

it

=0

= (trres10 + -+ ap-10) + (rn + 0 + Irc1)
+ (ferip+ -+ tp12) + oz + - + brv1-F3)

((2Fk—1)(2Fk) (Fk+f)(Fk+€+1))
= > - > Fiio

Fe+OF+€+1) (F,—DF
N (Fr+OF+ €+ )_(k )kF,-+2+(€+1)Fi+k
2 2
Fr-=DF, €+1
+(< - Fi (2+ ))Fi+2+2(Fk—€—1)Fi+k
20+ 1-F)Q2l+2-F
L@ k)z( 2B 300+ 2 - FOFi

1
= §(3Fi -~ DFiFio = (5F; —6F )FiF; .
Hence, we have
1 F,—1
mo(Fi, Fivo, Fivk) = §(3Fi —DFi» —(SF; — 6F)Fi» — 5
1
= §(3FiFi+2 —Fi—Fiiy+1)=(5F, - 6F)F;».

This case occurs only when k =i — 1. Hence, after rewriting, we get (8.8).
When r > 2, by F; — 1 = rF; + {, we have

Fi-
2
J

m

1l
(=)

J
r=3

= Z(szk,h + -+ Bpop) + (p -2+ + Bape—2)
h=0

+ (tprtet—1 + ot hpi-1) + (pr + 0+ Erres)
+ (tpatper + oo tp 1) F (o pen + o0+ 1 p00)
B QBFc—1@F) QFc— 1)(Q2Fy) (r=3)r-2)
=(r-2) - i+ ————
2 2 2
+((2Fk+€)(2Fk+€+ 1) QF.—-1Q2Fy

FyFiy

2 2
N ((2Fk - DQF)  (F+OFc+L+1)
2 2

)Fi+2 +(C+ D(r=2)Fi

)Fi+2 +(Fr—C-1D(r—1DFiy
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+((Fk+£)(Fk+f+ 1) _ (Fk— 1)Fk

) ) )Fi+2+(€+1)rFi+k

(Fe—DF,  (C+1)
- 2 2
R

)Fi+2+(Fk_€_ D(r+ D Fi

Fioo + (€ + 1)(r + 2)F ik

1 1
= E(Fi +4F; - DFFip) — E(szi —(r+3)(r = 2)F)FiFi .

Hence, by Lemma 1 (2.2), we have

no(Fi, Fiio, Fivk)

1 1 F, -1
= E(Fi+4Fk— 1)F,‘+2— E(szi_(r+3)(r_2)Fk)Fk—2_ T

1 1
= 5((Fl'+4Fk— 1)F,‘+2—F,'+ 1)— E(ZFF,'—(F+3)(F—2)Fk)Fk_2,

which is (8.9).

8.3. The case p =3

When p = 3, we have the following. The process is similar, and the proof is omitted.

Theorem 12. Fori > 3, we have

1
n3(Fi, Fia, Figg) = 5(7FiFi+2 —-Fi—-Fip+1) (kz2i+3),

m3(Fi, Fig, Foin) = (Fi— DF iy + Faoip — F;,
n3(Fi, Fio, Foin1) = (Fi+ Fiog — D) Fio + Foip — Fi,

n3(Fi, Fisa, Foi) = %((SFi —DFiya = Fi+ 1) = 2F;F; 5,
n3(Fj, Fisa, Faiy) = %((Fi +4F - DF - Fi+1)=2F\Fi3 (ix24),
n3(Fi, Fizo, Faj) = %((3Fi —D)Fu—Fi+1)—(8F; = 15F;))Fi.y (i >5)
When r = |(F; — 1)/ Fy] = 3, that is, k < i — 3, we have
n3(Fi, Fisa, Fivi)

1 1
= E((Fi+6Fk_ 1)Fi+2—Fi+ 1)— §(2rFi_(r+4)(r_3)Fk)Fk—2-

8.4. General p case

We can continue to obtain explicit formulas of n,(F;, Fi», Fiy) for p = 4,5,....
situation becomes more complicated. We need more case-by-case discussions.
For general p, when r > p, we can have an explicit formula.

. (8.10)

However, the
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Theorem 13. Let i > 3 and p be a nonnegative integer. When r = | (F; — 1)/ F;] > p, we have
ny(Fi, Fia, Figi)

1 1
= 5((Fi+2ka_ 1)F,‘+2 _Fi+ 1)— E(ZI’Fi—(I’+p+ 1)(l”—p)Fk)Fk_2. (811)

Remark. When p = 0, Theorem 13 reduces to [24, Corollary 2].
Sketch of the proof of Theorem 13. We have

= Z (tprn +  + Hpe1)Fi-11)

+ (thk,rfp +ee thk%’,rfp)
+ (F(p-1)Fprtat r—ps1 T+ F Lp- D) Fe=1r—p+1)
+ (Fp-D)Fpr—p+2 T 0+ L p—1) Pyt lir—p+2)

+ ...

+ (tt’+l,r+p—l +-oe tFk—l,r+p—l) + (tO,r+p +--+ tt’,r+p)
1
= 5((r - pX2p+ DFy = DFy + (Fi = (r = p)Fy = D(F: = (r = p)FY)Fis

(r=p-D@-p)
* 2

Fr+r(Fi—(r=p)F)| Fiu

1 1
= E(Fl + 2ka — 1)Fl'F,'+2 — E(sz’ - (I"+p + 1)(1" _p)Fk)FiFk—Z .
Hence, by Lemma 1 (2.2), we have
n,(Fi, Fisa, Fii)
1 1 F,—-1
= E(Fi +2pFi— DFin — 5(2’”Fi —~(r+p+1)(r=pF)Fis- 5
1 1
= 5((Fi +2pFy—DFn—Fi+ 1) - E(szi ~(r+p+1)(r-pF)Fi,
which is (8.11).
9. Example

Consider the Fibonacci triple (Fg, Fg, Fyg). Since Fg — 1 = 2F, + 1, we see that r = 2 and £ = 1.
Then, we can construct the first least set, the second least and 3rd, 4th and 5th least sets of the complete
residue systems as follows.

DAp(Fy; 0) = {0,21,42,55,76,97,110,131} (mod Fy),
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@Ap(Fg; 1) = {63,84,105, 118,139, 152, 165, 186}
®Ap(Fg;2) = {126, 147,160, 173, 194,207,220, 241}
@Ap(Fg; 3) = {168, 181,202,215,228,249,262,275}
®Ap(Fg;4) = {189,210,223,236,257,270, 283,296}

Table 11. Ap(Fs, j) (j =0, 1,2,3,4).

(mod Fg),

(mod Fg),
(mod Ff),
(mod F6) .

0 21 42|63 84 105|126 147168189 210 |
55 76 97 | 118 139 [160 | 181 202 | 223
110 131 [152 [ 173 194 | 215 | 236 257
165 186 | 207 | 228 249 | 270
220 241 | 262 | 283 ]
275 [ 296
0527 4 1[6 3[0]5 2] @) ® (@6 |
7 4 16 3[0[5 2 ©) O® |6
6 3[0[5 2[7[4 1 ©) ©IO)
5 2(7]4 1]6 ® ®|® ®
4 1]6]3] ® 9]
3]0 @16
Therefore, by Lemma 1 (2.1) with (2.3), we obtain that
go(Fe, Fg,Fip) = 131 =8 =123,
g1(Fs, Fg, Fp) = 186 —8 = 178,
82(Fs, Fg, Fg) = 241 — 8 = 233,
g3(Fe, Fg, F1p9) =275 -8 =267,
g4(Fs, Fg, F1p) =296 — 8 = 288.
By Lemma 1 (2.2) with (2.4), we obtain that
O0+21+---+131 8-1
no(Fs, F3, Fi9) = S o) =63,
63+84+---+186 8-1
n(Fe, F3, Fip) = 2 - =123,
126 + 147 +---+241 8-1
ny(Fe, Fg, Fip) = g ) =180,
168 + 181 +---+275 8-1
n3(Fs, Fg, F19) = 3 - =219,
189 +210+---+296 8-1
n4(Fe, Fg, Fip) = 3 - =242.

On the other hand, from (3.4), by (Fg — 2F4)Fg > F,Fg, we get

81(Fe, Fs, F19) = (Fg —2F4 — 1)Fg + 3Fo — F

Mathematical Biosciences and Engineering
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=178.
From (4.6) and (5.2), we get

8:(Fe, Fg,F19) = (Fe —2F4 — 1)Fg + 4F o — Fg
=233,

83(Fe, Fg,F19) = (Fy — )Fg +5F g — F§
=267,

respectively. From (8.3), (8.9) and (8.10), we get

n(Fe, Fg, F1p)
B 2-DR2+2

1
:§(F6+2F4—1)F8—F6+1)—(2F6 >

F4) F,
=123,
ny(Fe, Fg, F1o)

1 1
= 5((F6+4F4— I)Fg —F6+ 1)— 5(4F6 —(2+3)(2—2)F4)F2

= 180,
n3(Fs, Fg, Fio)

1
= 5((3F6 — 1)F8 —Fg + l) - (8F6 — 15F4)F2
=219,
respectively.
10. Open problems
In [31], a more general triple g(F,, F, F.) is studied for distinct Fibonacci numbers with a, b, ¢ > 3.
In [32], the Frobenius number g(a, a+b,2a+3b, ..., Fy_ja+ F,b) is given for relatively prime integers
a and b. Will we be able to say anything in terms of these p-Frobenius numbers?
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