Research article Special Issues

On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem


  • Received: 16 June 2022 Revised: 20 July 2022 Accepted: 21 July 2022 Published: 28 July 2022
  • In this paper, we investigate a class of boundary value problems involving Caputo fractional derivative $ {{}^C\mathcal{D}^{\alpha}_{a}} $ of order $ \alpha \in (2, 3) $, and the usual derivative, of the form

    $ \begin{equation*} ({{}^C\mathcal{D}^{\alpha}_{a}}x)(t)+p(t)x'(t)+q(t)x(t) = g(t), \quad a\leq t\leq b, \end{equation*} $

    for an unknown $ x $ with $ x(a) = x'(a) = x(b) = 0 $, and $ p, \; q, \; g\in C^2([a, b]) $. The proposed method uses certain integral inequalities, Banach's Contraction Principle and Krasnoselskii's Fixed Point Theorem to identify conditions that guarantee the existence and uniqueness of the solution (for the problem under study) and that allow the deduction of Ulam-Hyers and Ulam-Hyers-Rassias stabilities.

    Citation: Luís P. Castro, Anabela S. Silva. On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10809-10825. doi: 10.3934/mbe.2022505

    Related Papers:

  • In this paper, we investigate a class of boundary value problems involving Caputo fractional derivative $ {{}^C\mathcal{D}^{\alpha}_{a}} $ of order $ \alpha \in (2, 3) $, and the usual derivative, of the form

    $ \begin{equation*} ({{}^C\mathcal{D}^{\alpha}_{a}}x)(t)+p(t)x'(t)+q(t)x(t) = g(t), \quad a\leq t\leq b, \end{equation*} $

    for an unknown $ x $ with $ x(a) = x'(a) = x(b) = 0 $, and $ p, \; q, \; g\in C^2([a, b]) $. The proposed method uses certain integral inequalities, Banach's Contraction Principle and Krasnoselskii's Fixed Point Theorem to identify conditions that guarantee the existence and uniqueness of the solution (for the problem under study) and that allow the deduction of Ulam-Hyers and Ulam-Hyers-Rassias stabilities.



    加载中


    [1] K. Diethelm, A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (eds. F. Keil, W. Mackens, H. Voss and J. Werther), Springer, Heidelberg, (1999), 217–224. https://doi.org/10.1007/978-3-642-60185-9_24
    [2] W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8 doi: 10.1016/S0006-3495(95)80157-8
    [3] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
    [4] F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180–7186. https://doi.org/10.1063/1.470346 doi: 10.1063/1.470346
    [5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 1993.
    [7] A. Jajarmi, A. Yusuf, D. Baleanu, M. Inc, A new fractional HRSV model and its optimal control: a non-singular operator approach, Phys. A, 547 (2020), 1–11. https://doi.org/10.1016/j.physa.2019.123860 doi: 10.1016/j.physa.2019.123860
    [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2016.
    [9] M. Ahmad, A. Zada, J. Alzabut, Hyers–Ulam stability of coupled system of fractional differential equations of Hilfer–Hadamard type, Demonstr. Math., 52 (2019), 283–295. https://doi.org/10.1515/dema-2019-0024 doi: 10.1515/dema-2019-0024
    [10] Y. Guo, X. Shu, Y. Li, F. Xu, The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1<\beta<2$, Boundary Value Probl., 59 (2019), 1–18. https://doi.org/10.1186/s13661-019-1172-6 doi: 10.1186/s13661-019-1172-6
    [11] C. Yang, C. Zhai, Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a sum operator, Electron. J. Differ. Equations, 70 (2012), 1–8. Available from: https://www.researchgate.net/publication/265759303.
    [12] A. Zada, J. Alzabut, H. Waheed, P. Loan-Lucian, Ulam–Hyers stability of impulsive integro-differential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equations, 2020 (2020). https://doi.org/10.1186/s13662-020-2534-1
    [13] X. Zhao, C. Chai, W. Ge, Positive solutions for fractional four-point boundary value problems, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3665–3672. https://doi.org/10.1016/j.cnsns.2011.01.002 doi: 10.1016/j.cnsns.2011.01.002
    [14] C. Zhai, L. Xu, Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2820–2827. https://doi.org/10.1016/j.cnsns.2014.01.003 doi: 10.1016/j.cnsns.2014.01.003
    [15] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, 1940.
    [16] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [17] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064
    [18] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [19] M. Akkouchi, Stability of certain functional equations via a fixed point of Ćirić, Filomat, 25 (2011), 121–127. https://doi.org/10.2298/FIL1102121A doi: 10.2298/FIL1102121A
    [20] S. András, A. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput., 219 (2013), 4853–4864. https://doi.org/10.1016/j.amc.2012.10.115 doi: 10.1016/j.amc.2012.10.115
    [21] R. Bellman, The stability of solutions of linear differential equations, Duke Math. J., 10 (1943), 643–647. https://doi.org/10.1215/S0012-7094-43-01059-2 doi: 10.1215/S0012-7094-43-01059-2
    [22] L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equations within weighted spaces, Lib. Math., 33 (2013), 21–35. http://doi.org/10.14510/lm-ns.v33i2.50 doi: 10.14510/lm-ns.v33i2.50
    [23] L. P. Castro, A. M. Simões, Different types of Hyers-Ulam-Rassias stabilities for a class of integro-differential equations, Filomat, 31 (2017), 5379–5390. https://doi.org/10.2298/FIL1717379C doi: 10.2298/FIL1717379C
    [24] L. P. Castro, A. M. Simões, Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric, Math. Methods Appl. Sci., 41 (2018), 7367–7383. https://doi.org/10.1002/mma.4857 doi: 10.1002/mma.4857
    [25] E. Pourhadi, M. Mursaleen, A new fractional boundary value problem and Lyapunov-type inequality, J. Math. Inequal., 15 (2021), 81–93. https://doi.org/10.7153/JMI-2021-15-08 doi: 10.7153/JMI-2021-15-08
    [26] M. A. Krasnoselskii, Two remarks on the method of successive approximations (in Russian), Usp. Mat. Nauk, 10 (1955), 123–127.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1296) PDF downloads(138) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog