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Abstract: In this paper, we investigate a class of boundary value problems involving Caputo fractional
derivative CZ)Z of order a € (2, 3), and the usual derivative, of the form

CDx)(t) + p(O)X (1) + q(O)x(r) = g(t), a<t<b,

for an unknown x with x(a) = x'(a) = x(b) = 0, and p, ¢, g € C*([a,b]). The proposed method uses
certain integral inequalities, Banach’s Contraction Principle and Krasnoselskii’s Fixed Point Theorem
to identify conditions that guarantee the existence and uniqueness of the solution (for the problem
under study) and that allow the deduction of Ulam-Hyers and Ulam-Hyers-Rassias stabilities.
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1. Introduction

In recent decades, fractional calculus has gained considerable popularity and importance. This is
mainly due to its wide range of applications in different areas of engineering and other scientific fields
such as biology, chemistry, economics, physics, image and signal processing, etc. (cf., for example,
[1-6]). In fact, several studies have shown that fractional derivation allows different occurrences —
such as complex long memory and hereditary properties of many processes — to be described in a much
more satisfactory way when compared to models that consider only classical integer-order derivation
(see, for example, [7, 8]).

Within this scope, different aspects and properties of fractional boundary value problems (FBVP)
have been studied, with special emphasis on the analysis of the existence and uniqueness of solutions,
as well as on different types of stabilities (cf., for example, [9-14]).
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In the present work, we will focus on two important types of stabilities: the Ulam-Hyers and
Ulam-Hyers-Rassias stabilities. In historical terms, it was Ulam who, as far back as 1940, questioned
for the first time the stability of functional equations relating to group homomorphisms (cf. [15]). The
question was initially answered the following year by Hyers in the context of Banach spaces for
additive mappings (cf. [16]). This first result of Hyers was later generalized by T. Aoki [17] for
additive mapping. Much later, in 1978, a generalization of the Ulam-Hyers stability was then
proposed by Rassias [18], for linear mappings. In this case, the Cauchy differences were allowed to be
unlimited, giving rise to the so-called Ulam-Hyers-Rassias stability. Since then, these types of
stabilities, their properties and consequences, have attracted the attention of many mathematicians, as
well as researchers from other more applied areas (cf. [10, 12, 19-24]). Note that if a system is stable
in the Ulam-Hyers or Ulam-Hyers-Rassias sense, then significant properties hold around the exact
solution. In this way, awareness of the existence of such types of stability constitutes an important
tool in many applications in different areas, such as numerical analysis, optimization, biology or even
economics (e.g., specially when determining an exact solution is sometimes quite difficult).

Taking into account [25], we address the study of the Ulam-Hyers and the Ulam-Hyers-Rassias
stabilities for the following Caputo fractional boundary value problem (which also includes the usual
derivative):

D)) + p(OX' (&) + q(O)x(t) = g(t), a<t<b, 2<a<3, (1.1)

with x(a) = x'(a) = x(b) = 0, where p, g and g € C*([a, b)).

To the best of our knowledge, there is no results dealing with the Ulam-Hyers and Ulam-Hyers-
Rassias stabilities of such fractional boundary value problem (FBVP).

The paper is organized as follows: Section 2 contains the necessary definitions from fractional
calculus and the fundamental tools that are used throughout the paper; in Section 3, we focus on
questions about the existence of solutions for the FBVP (1.1), identifying conditions for the existence
of solutions and also for there to be only one solution; in Section 4, we discuss the Ulam-Hyers and
the Ulam-Hyers-Rassias stabilities and introduce conditions for their existence. Finally, examples are
given in Section 5 to illustrate the theoretical results.

2. Preliminaries and background material

In this section, just to have as self-contained work as possible, with the consequent benefit of the
reader in mind, we recall some useful definitions and properties of the theory of fractional calculus [6]
and necessary results in our future proofs.

We denote by C"([a,b]) := (C"([a,b]),|| - |llcr) the space of functions x which are n-times
continuously differentiable on [a,b] endowed with the norm |[xller = Y7 g Sup,epo, IXO@)]. Tt is
well-known that C"([a, b]) is a Banach space.

Definition 1. [8] The Riemann-Liouville fractional integral of order @ € R* of a function u is defined
by

ITu(t) = ﬁ f (t — )% tu(s)ds,

provided the right-hand side is pointwise defined on (a, o), and where I is the well-known Euler
Gamma function (given by I'(a) = fooo le7'dt, @ > 0).
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Definition 2. [8] The Caputo fractional derivative of order a > 0 of a continuous function u is given
by

1 Lou"(s)
M-a)J, @=s= ™
provided that the right-hand side is pointwise defined on (a, o), and where n € N is such thatn — 1 <
a < n.

“Du(t) =

It is clear that if @ € N, then D%u(r) = (£)" u(0).

Proposition 1. [8, Lemma2.22] Letn—1<a <n neN. If f € C"'([a,b]) (or f € AC"'([a,b])),
then the following relation holds true:

O

5 (t — a). (2.1)

n—1
VSVRICENICEDY)
k=0

As explained above, there are some classic and essential results that we will use in this work. We
will recall them here, stating the Banach Contraction Principle, the Krasnoselski Fixed Point Theorem
and the Arzela-Ascoli Theorem.

Theorem 1. (Banach Contraction Principle) Let (X, d) be a generalized complete metric space, and
consider a mapping T : X — X which is a strictly contractive operator, that is,

d(Tx,Ty) < Ld(x,y), Vx,yeX

for some constant 0 < L < 1. Then

(a) the mapping T has a unique fixed point x* = Tx";
(b) the fixed point x* is globally attractive, in the sense that for any starting point x € X, the following
identity holds true:
lim 7"x = x™;

n—oo

(c) we have the following inequalities:

dT"x,x") < L'd(x,x"), n>0, xeX,
1
d(T"x,x") < ﬁd(T”x, T"'%), n=0, xeX;
1
d(x,x*) < ﬁd(x, Tx), xeX

Theorem 2. [26] (Krasnoselskii’s Fixed Point Theorem) Let M be a closed, bounded, convex and
nonempty subset of a Banach space X. Let A and B be operators such that

(i) Ax + By € M whenever x,y € M;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.

Then, there exists z € M such that 7z = Az + Bz.
Theorem 3. (Arzela-Ascoli) Let (X,d) be a compact metric space. A set of functions F in C(X) is

relatively compact if and only if it is bounded and equicontinuous.
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3. Existence and uniqueness of solutions

In this section, we derive the existence and uniqueness of solutions of the FBVP (1.1). To that
purpose, let us introduce some notation and three important results about the solutions of the FBVP
under study (see [25] for related techniques in this context).

Proposition 2. A function x € C*([a, b)) is a solution of the boundary value problem (1.1) if and only
if x satisfies the integral equation

(t — a)?
(b —a)’T(a)

T f (t = )" (p()x'(5) + g(s)x(s) — g(s)) ds.

b
x(1) f (b— 9 (P (5) + q(s)x(s) — g(s)) ds

Proof. From Proposition 1, we can reduce the equation in the problem (1.1) to the following equivalent
integral equation:

x(t) = co+ci(t—a)+ct—a)P - m f (t = )" (p($)X'(5) + g(5)x(s) — g(s)) ds.

Having in mind the boundary conditions, we conclude that ¢y = x(a) = 0 and ¢; = x’'(a) = 0. Thus,
using the condition x(b) = 0, one also obtains

¢ = mf (b= )" (p()x'(5) + q()x(s) — g(s)) ds.

Consequently, we have that

(t - a)?
(b -a)T(a)

T f (t — )" (p()x' () + q()x(s) — g(s)) ds

b
x(1) f (b = )" (P()X'(5) + q(5)x(s) — g(5)) ds

and the proof is complete.

In what follows, we will use the notation

poi= max{lp(l,lg®l},  sup [g(1)] := B, 3.1
t€la,b] te[a,b]

b-a (b-a  (b-a)?
My = Te+D) T@ @ Ta-0 (3-2)

- (-a (b-a)
M = FarD PTesD) *Ta+n (3:3)

Theorem 4. If u(M, + M) < 1, then the FBVP (1.1) has at least one solution in C*([a, b]).
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Proof. From Proposition 2, we know that x € C?([a, b]) is a solution of the FBVP (1.1) if and only if

2 b
x(t) = t-a f (b— )" (p()X'(5) + q(5)x(s) — g(s)) ds

(b -a)T(e) J,

~r | - )™ (p(5)X'(s) + q(s)x(s) — g(s)) ds.
(@ J,

Let us choose a suitable constant R such R > % and consider the set Bg = {x € C*([a, b]) :

lIxllc2= < R}. Then, By is a nonempty bounded closed convex subset in C?([a, b]). Now, we will define
operators P and Q, on Bg, as follows:

Po0) = —ps f (1 = 9 (P(HX(5) + g()x(s) — g(5)) ds,
o = = fb 1 (p(s)¥(5) + qs)x(s) — g(5))d
(QX () = m ; b-y9) p(s)x (s) CI(S X S) —8(S s,

foreacht € [a, b].
For any x,y € Bg, t € [a, b], one has

[(Px)(0)] < %f(t 9 (Ip(lx’ (S)|+|q(S)|IX(S)I)dS+mf(t )" lg(s)lds

< s [ oo onas s o[- gons

ﬁ f (t = )" (X ()] + [x(s)] + |x” (s>|>ds+m f (t= )" Ig(s)lds

IA

< Mﬁfcllszfa(t— ) 1ds+mf(t $)* ds
b -a)
S TarnHETA:

|(Px)'(0)] F( ) f(t " (PO ()] + lg(llx(s)l) ds + e )f(t )" lg(s)lds

IA

IA

F( )f( 82l (9)] + [e(s)Dds + o )f(t $)*lg(s)lds

a2 ’ ’” _ a2
F( ) f(t 72X ()] + x($)] + " ()ds + @) j;(t )" lg(s)lds
(b a)a 1

IA

IA

(uR + ),

and
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(@ —1)(a-2)

T ( f (t = 9" (PO ()] + lg(s)llx(s)]) ds + f (- S)“_3|g(S)IdS)
(@) a a

I(Px)" (D] <

— 1) a-2 ! t
< %( [ = uavoremonas+ [ - s)“‘3|g(s>|ds)
-1 2 t
@ r)(a )(f (t— 9" 3,u(lx'(s)|+I)c(s)|+|x"(S)|)dS+f(l—S)”_3|g(S)|dS)
@ “
(b a)a 2
< O (LR + ).

Thus, we conclude that

IPxllc2 = sup [(Px)(®)| + sup [(Px) (1) + sup |[(Px)”(t)] < Mi(uR + fB).
t€la,b] t€la,b] te€la,b]

In the same way, we get

(t _ a)2 ’ a—1 ’
G- (@ f (b= )" (IpOIX ()] + lg()lx(s)]) ds

Y b
rt s [ -9 leolds

b
% f (b - 5"y (s)|+|x(S)|)ds+ﬁ f (b= 5)""g(s)lds

pllxlle _ gt B a1
@) L(b ds+r( )f(b ) ds

b-a)
T+ HRTA):

IA

I(Qx)()

IA

IA

IA

ot — b
QX' (1)) < t-a f (b = )" (Ip()IIX ()] + lg()llx(s)]) ds

b-a)Xl(e) J,

2|t B al ¢ a—1
+(ba—)21"()f (b—95)""|g(s)lds

f (b = )" (X' ()] + [x(s)ds + f (b~ 5)""|g(s)lds

= oo a>r<a> - >r<>
2(b - a)a1
s R

and

(@)@ < Wf(b—@“ HIpOI ()] + lg(s)lIx(s)]) ds

(b-a

a—1
+m£(5—s) lg(s)|ds

2(b — a)*?
T+ n HEEP
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Thus, we conclude that

1Oyllc2 = sup [(Qy)(®)] + sup [(Qy)' (O] + sup [(Oy)" (D) < Ma(uR + B).

t€la,b] t€la,b] t€la,b]

(M +M>)B

It follows that, for R > 7757,

1Px + Oylic> < IPxllc2 +1QVllc> < (M + Mo)(uR + B) < R,

and we conclude that Px + Qy € Bg, for x,y € Bg.
Let us show that P is a contraction. For every x,y € Bg, we have

|1Px = Pyllcz = S[Upb] |(Px)(1) — (Py)(®)] + S[UIZ))] |(Px)'(t) = (Py) (t)| + S[UIZ] [(Px)" (1) — (Py)" (1)
< Mpllx = yllee.

Since Mu < 1, we conclude that P is a contraction.

Since c((li:fz); € C?([a, b)) for any ¢ € R, we have that Qx € C?([a, b]). Moreover, for any bounded

subset Bg of C%([a, b]) and x € Bg, we have that

|Qxllc2 < My(uR + B)

which shows that the operator Q is uniformly bounded on Byg.
Let us prove that Q is a compact operator on Bg. Take t,1, € [a, b] with t, > t;. One has

(t, —a)* = (1, — a)?
(b -a)yT(a)
(t, —a)* — (1 — a)’

= Ta+1)

b
[(Qx)(12) — (Qx)(11)] f (b = )" (P()x'(5) + q(5)x(s) — g(5)) ds

(UR + B)(b — a)* 2.

It is seen that |(Qx)(t,) — (Qx)(t;)| — 0 as r, — t;. Also, we have

b
[(Qx)'(12) = (Qx)' (1) f (b = )" (P()X'(5) + q(5)x(s) — g(5)) ds

(b -a)’l'(a)
2(t, —a)—2(t) — a)
INa+1)

‘ﬂb—m—Z@—a)

(R + B)(b — a)* .
Again, we have that |(Qx)'(t;) — (Qx)'(#;)| — 0 as t, — t,. Finally, we observe that

I(0x)"(2) = (Qx)" (11)] = 0.

Thus, we conclude that OBy is equicontinuous. By Arzela-Ascoli Theorem, OBy is compact for
each bounded subset Bz C C*([a, b)), and thus, Q is compact.

Applying Krasnoselskii’s Fixed Point Theorem to the operators P and Q, we conclude that there
exists at least one x € By such that x = Px + Qx which is the solution of the FBVP (1.1) and the proof

is complete.
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Theorem 5. If the following condition holds
u(My + M) < 1, (3.4)

then the FBVP (1.1) has a unique solution in x € C*([a, b]).

Proof. From Theorem 4, since u(M; + M,) < 1, the FBVP (1.1) has at least one solution. Let us define
the operator T : C*([a, b]) — C*([a, b]) by

T = =D f (b — 57 ()X (5) + g(sIx(8) — () ds
b - a)’T(a) P 7 §
o f (t — )" (p()x'(5) + g(s)x(s) — g(s)) ds. (3.5)

By the Banach Contraction Principle, we will prove that 7 has a unique fixed point.
Let Bg = {x € C*([a, b)) : ||Ixllc= < R} and choose R such that

(M, + M)
T 1= (M + Myu
We have
Tl = —ar f(b—)“( 12 (5) + q(s)x(s) - g(s))d
X2 = zilipb m S p(s)x'(s q(s)x(s) — g(s))ds
T f (t = )" (p()x'(5) + g(s)x(s) — g(s)) ds
+ ,S‘i% % f (b — )" (p()x'(5) + q(s)x(s) — g(s)) ds

e f (= 12 (p()(5) + q(s)x(s)  g(5)) ds

+t21ipb] (b - a)zr( ) f (b—9)" ! (p()X'(s) + q(5)x(s) — g(s))ds
-1 -2
Jemes® f (1 = 977 (p(8)X'(5) + q()x(s) — g(5)) s
@ .

< (M] + Mz)(/JR +ﬁ)

Thus, ||ITx|lcz < R, i.e., TBg C Bg. Moreover, since p, g, g € C*([a,b]), we conclude that Tx €
C?([a, b]) for any x € C*([a, b]), which proves that T maps C*([a, b]) into itself.
Let us prove that T is strictly contractive. Consider x, y € C*([a, b]). It follows that

Y b
ITx - Tylles = s[upb] Gt [ =9 (O = () a5 ) s
o f (1 = 5 (PIX(S) = Y (5)) + q(s)x(s) — ¥(s) ds

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10809-10825.
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2(t—a)

o —am@

tela,b]

F( ) f (1 = )" (p()(x'(5) = ¥'(5)) + g(5)(x(s) = ¥(5))) ds

b
f (b = )" (P (5) = Y (5)) + g(s)(x(s) = ¥(5)) ds

+l§[1(1£] m [1 (b= ) (p()(X'(5) = ¥ (5)) + g(s)(x(s5) — y(5))) ds
-1 -2 !
—(“F)# f (1= )" (P()(X' (5) — ¥/ (5)) + q(s)(x(s) — ¥(5))) ds
(@) ;
1 b
< T f (b = )" (IpIX'(s) = ¥ ()] + lg(s)llx(s) — y(s)]) ds
@ J.
1 b
o f (b= 5 (Ip(s)IX () = ¥ ()] + lg(s)llx(s) = y(s)]) ds
@ J,
b
+m f (b= 5" (pOIX(5) = ¥ ()] + lg(s)llx(s) — y(s)]) ds
-1
‘;( ; f (b= 52 (IpSIX (5) = ¥ ()] + lg(s)llx(s) — y(s)]) ds
a1 / 1\ —
+m f (b= 9 (IpOIX(s) = Y ()] + lg(s)llx(s) = y(s)]) ds
- Da=-2) (*
+% f (b= 93 (IpIIX(s) = Y ()] + lg(s)llx(s) — y(s)]) ds
(@) ;
b
< % f (b= )" (1x(s) = Y()| + [¥'(5) = Y ()] + [¥"(s) = y"(s)]) ds
Y f (b= )" (1x(s) = ()] + X' (5) = Y ()] + ¥ (s) = ' (s)]) ds
W f (b= )" (Ix(s) = ()] + X' (5) = ' ()] + ¥ (s) = ' (5)]) ds
1
+“(1?‘( )) f (b= )" (1x(s) = Y()| + [¥'(5) = Y ()] + [x"(5) = y"(s)]) ds
m f (b= 5" (Ix(5) = ()| + [ (5) = ¥/ ()] + [ (5) =y (s)]) ds
-1 2
Ha F()Cg’ ) f (b= £ (1x(s) = Y()| + ¥ (5) = Y ()] + () = y"(s)]) s
b-ay _(b-a" b-a" _(b-a)? (b-a) >
(Zr(m D Te+r D T T CTe+D) T Te- 1))'|x_yllcz
= u(M; + M)llx — Yl (3.6)

Since by hypothesis u(M; + M,) < 1, we conclude that T is strictly contractive.

By Banach Contraction Principle, 7 has a unique fixed point in C?([a, b]) which is the unique
solution of the FBVP (1.1).
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4. Ulam-Hyers-Rassias stability analysis

In this section, we analyse the Ulam-Hyers and the Ulam-Hyers-Rassias stabilities of FBVP (1.1).
To that purpose, let us first present the definitions of those notions in the sense of our FBVP.

Definition 3. The FBVP (1.1) is Ulam-Hyers stable if there exists a real constant k > 0 such that, for
each € > 0 and for each solution y € C*([a, b)) of the inequality problem

{ (CO2)@) + p(t)y (1) + q(t)y(®) — g(t)| < €, 1€ [a,b],
Y(a) = y(a) = y(b) =0,

there exists a solution x € C*([a, b]) of the problem (1.1) such that
lly = xllc2 < ke.

Definition 4. The FBVP (1.1) is Ulam-Hyers-Rassias stable with respect to ¢ : [a,b] — R* if there
exists a real constant k, > 0 such that, for each € > 0 and for each solution y € C*([a,b]) of the
inequality problem

{ |(C1)Zy)(t) + p(D)y' (@) + q(0)y(1) — g(t)l <ep(t), te€la,b],
Y'(a) = y(a) = y(b) =0,

there exists a solution x € C*([a, b)) of the problem (1.1) with
ly = xllc> < koep(®), 1€ la,b]

In the next theorem, we present sufficient conditions upon which the FBVP (1.1) is Ulam-Hyers
stable.

Theorem 6. Suppose that u(M; + M,) < 1. Let x(t) be the solution of the FBVP (1.1) and y(t) be such
that y(a) = y'(a) = y(b) = 0 and

| CDEY @) + p()y (1) + qD)y(1) — gD| < €, 1 € [a,b], 4.1)
where € > 0. Then, there exists a constant k > 0 such that
Iy = xllc2 < ke,

which means that the FBVP (1.1) is Ulam-Hyers stable.

Proof. By Theorems 4 and 5, the solution of the FBVP (1.1) exists and is unique. Let x(¢) be that unique
solution of the FBVP (1.1) and suppose y(¢) satisfies inequality (Eq 4.1). It follows that y € C?([a, b])
is a solution of inequality (Eq 4.1) if and only if there exists a function 4 € C*([a, b]), which depends
on y such that

@) k()| <€ tela,b]l,e>0,
(ii) () = (CDLy)(0) + p(O)y' () + g()y(1) — g(1), t € [a, b],
(ii1) y(a) = y'(a) = y(b) = 0.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10809-10825.
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Computing the @-order Riemann-Liouville fractional integral of each member in (ii), according to
Proposition 1, we obtain

) = (@) ~ (@)t - @) ~ 52— + U N0 + U ay)0) — (L5~ YD) = 0
Since y(a) = y'(a) = 0, we have
¥0) = di(t — a)? - ﬁ f (6= 51 (p(5)y (5) + q(s)y(s) — g(s)  h(s)) ds

where d; = 2% (“)

Moreover, attending that y(b) = 0, we have

4= m f (b = )" (p(s)y () + q(s)y(s) = &(s) = h(s))ds

and we conclude that

(t — a)?
(b —a)’T(a)

T )f(t )" (p(s)Y () + q(9)y(s) = 8(5) = h(s)) ds.

b
y(1) f (b= )" (p(5)y'(5) + g(s)y(s) — g(5) = h(s)) ds

Recalling the operator 7, defined in (3.5), from (3.6) we already know that under the present
conditions 7 is a contraction and that

ITx =Tyl < p(My + M)llx = yllc2.

Thus, from Theorem 1, we have

1
- < Ty = Yllc2 4.2
llx = ylle2 < 1—,u(M1+M2)” y = Yle2 (4.2)

Moreover, we have that

Ty =yl = S[UIZ] I(Ty)(®) — y(@)| + s[lllla)] I(Ty) (@) = y' (O + s[ulloﬂ I(Ty)”" (1) = y" (®)l
= sup | t—ay f (b — 5\ h(s)ds — —— f (t — ) h(s)ds
te[ab] (b - ayT(a) ['(a)
2(Z— _ el _ _1 _ a2
+12[1ig] (b—a)ZF( )f(b ) h(s)ds F( ) (t ) “h(s)ds
a1 1)(&’ 2) a 3
+t:[l£] —(b—a)zf(a) L (b—5)"""h(s)ds — F( ) f (r- h(s)ds
1 ¢ a 1 a 1
< @fa(b— |h(s)|ds+ﬁf(b |h(s)|ds

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10809-10825.
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# bb_ (l—lh d Q/_l bb_ (I—Zh d
+(b ~ Il @) L (b — )" |h(s)lds + @ fa (b — $)""lh(s)lds
2 L e (@-D@=-2) ("
T f (b= 9 ids + S f (b — )" Ih(s)lds
2b-a)f 2b-a) b-a 2b-a?  (b-a)
E(F(a/+1) "Te+) | @ | Te+h r(a—l))
= (M; + M))e.

Therefore, taking also (4.2) into account, we obtain

M1 +M2
€
I = u(M, + M>)

and we conclude that the FBVP (1.1) is Ulam-Hyers stable.

llx = yllc> <

In the next theorem, we present sufficient conditions for the FBVP (1.1) to be Ulam-Hyers-Rassias
stable.

Theorem 7. Assume that u(M; + M;) < 1. Let x(t) be the solution of the FBVP (1.1) and y(t) be such
that y(a) = y'(a) = y(b) = 0 and
(CDE@ + p@)Y (1) + gy — g(0)] < ep(1), 1 € [a,b] 4.3)

where € > 0 and ¢ : [a,b] — R* satisfies the property

Lp)b) < (1), tela,b], T=a,a—-1l,a-2, ae(2,3). “4.4)

Then, there exists a constant k, > 0 such that
ly = xllc2 < kpep(r), 1€ [a,bl,

which means that the FBVP (1.1) is Ulam-Hyers-Rassias stable.

Proof. By Theorems 4 and 5, the solution of the FBVP (1.1) exists and is unique. Let x(¢) be the
unique solution of the FBVP (1.1) and suppose that y(¢) satisfies inequality (Eq 4.3). It follows that
y € C?([a, b)) is a solution of inequality (Eq 4.3) if and only if there exists a function f € C?([a, b])
depending on y and such that

@ [f()I < €p(n), 1 € [a,b], € > 0,
(i) f(1) = (CDgy)(®) + p(Oy' () + q(Oy(1) = g(1), t € [a, D],
(i) y(a) = y'(a) = y(b) = 0.

Using (i1), we can proceed similarly as in the proof of the previous theorem and obtain
(t-a)
(b -a)l(e)

1 !
T f (t = )" (p(s)y'(5) + q(s)y(s) — g(s) = f(5)) ds.
@) Jq

b
y(®) f (b= )" (P(s)y'(5) + g(s)y(s) — g(5) = f(5)) ds

Recalling the operator 7', defined in (3.5), having into account condition (4.4), we have
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Ty — yllc

IA

IA

IA

sup [(Ty)(t) = y(©)] + sup [(Ty) (@) = y' @l + sup I(Ty)" () = y" (@)

tefa,b] te[a,b) tela,b]

o Far )f b= (s)ds_mf (6= 2 fds
Sy S

I .y ”f s
o f b= s + f (b — " |f(s)ds

+m f b 5 f(lds + F(‘a) f (b - 511 (s)lds

2 L el (@-D@=-2 ("
+(b — a)zr(a/) L (b —5) |f(S)|ds + T f (b —5) |f(S)|dS

b
ﬁf (b — 5)" ep(s)ds + mf (b — 5)" L ep(s)ds

el a/ 2
(b— )F( ) f () ego(s)ds+ @) f b - ep(s)ds

. (@ - D@=-2) .
(b _ a)21—~( ) f (b - S) 16(,0(S)ds + T‘L (b - S) 3690(5)(15
2 2
€(p(t) + () + 3——@(0) + (1) + = a)zgo(t) + (1), 1 € [a,b]

4b—-a)’+20b-a)+2
(b - a)?

ep(t), t € [a,b].

From the proof of Theorem 5 (cf. (3.6)), we have that the operator 7 is a contraction with

Tx = Tyllcz < u(My + M)||x = yllc2.

Thus, using Banach Contraction Principle (Theorem 1), we obtain that

Taking

4(b—a)*+2(b—a)+2
(b-a)?

I = u(My + M>)

llx = ylle2 < ep(?), t € [a,b].

A(b—a)*+2(b—a)+2
(b—a)?

¢ T u(M, + My’

we have ||x —yllc2 < kpep(2), t € [a, b], and so we conclude that the FBVP (1.1) is Ulam-Hyers-Rassias

stable.
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S. Examples

Consider the following FBVP:

€D + L cos(r (1) + Lsin()x(r) = 2, re |0.3]

x0) =x'(0)=x(3)=0

5.1

1.51

0.51

0 01 02 03 04 05 0.6 07
t

Figure 1. The graphs of (1), I2(1), I3¢(D. I o), 1€[0,3].

In the notation of (1.1), we have in here p(f) = 1 cos(t), ¢(1) = £ sin(?), g(t) = * € C* ([0, %]) and
a = % Moreover, considering the notations (3.1)—(3.3), we realize that
1 58 8

:—’M<—,M<_.
=5 M 0syw 2 3k

Thus,
98

75vVa
and we conclude that the FBVP (5.1) has a unique solution and it is Ulam-Hyers stable.
Consider now ¢(f) = =0, 1> + 2. For any ¢ € [0, %], one has

/I(M1+M2)< <1

s 3 1 3
I5p(1) < @t), Ip(t) < @), I;pt) < (1), t€ [O, Z]

(see Figure 1).
Therefore, from Theorem 7, we conclude that the FBVP (5.1) is Ulam-Hyers-Rassias stable with

respect to ¢.
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6. Conclusions

Fractional calculus has gained considerable popularity and importance during the last few decades,
mainly due to its attractive applications in various areas of science and engineering. In particular,
fractional boundary value problems have been used in the fields of physics, biology, chemistry,
economics, electromagnetic theory, image and signal processing. In fact, boundary problems
involving fractional differential equations model certain situations — such as the study of heredity and
memory problems — better than integer-order differential equations. Given the difficulty in obtaining
exact explicit solutions for such problems, it becomes important to study their eventual different types
of stability, in particular, the Ulam-Hyers and Ulam-Hyers-Rassias stabilities.

In this article, we analyzed a class of fractional boundary value problems involving Caputo’s
fractional derivative as well as the usual (integer) derivative. Using several Functional Analysis
techniques (including, for example, Krasnoselskii’s Fixed Point Theorem), we obtained sufficient
conditions to guarantee the existence of solutions to this class of problems and we also obtained
conditions for the uniqueness of these solutions. Finally, we establish — in the form of sufficient
conditions — the Ulam-Hyers and Ulam-Hyers-Rassias stabilities. At the end, a concrete example was
given to illustrate the obtained theoretical results.

Acknowledgments

The authors thank the Referees for their constructive comments and recommendations which helped
to improve the readability and quality of the paper.

This work is supported by the Center for Research and Development in Mathematics and
Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT -
Fundacio para a Ciéncia e a Tecnologia), reference UIDB/04106/2020.

Additionally, A. Silva is also funded by national funds (OE), through FCT, I.P., in the scope of the
framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016,
of August 29, changed by Law 57/2017, of July 19.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. K. Diethelm, A. D. Freed, On the solution of nonlinear fractional order differential equations
used in the modeling of viscoplasticity, in Scientific Computing in Chemical Engineering
II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (eds.
F. Keil, W. Mackens, H. Voss and J. Werther), Springer, Heidelberg, (1999), 217-224.
https://doi.org/10.1007/978-3-642-60185-9 24

2. W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of self-similar protein
dynamics, Biophys. J., 68 (1995), 46-53. https://doi.org/10.1016/S0006-3495(95)80157-8

3. R Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10809-10825.


http://dx.doi.org/https://doi.org/10.1007/978-3-642-60185-9_24
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(95)80157-8

10824

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

F. Metzler, W. Schick, H. G. Kilian, T. F Nonnenmacher, Relaxation in filled
polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180-7186.
https://doi.org/10.1063/1.470346

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

S. G. Samko, A. A. Kilbas, O. 1. Marichev, Fractional Integrals and Derivatives-Theory and
Applications, Gordon and Breach Science Publishers, Amsterdam, 1993.

A. Jajarmi, A. Yusuf, D. Baleanu, M. Inc, A new fractional HRSV model and
its optimal control: a non-singular operator approach, Phys. A, 547 (2020), 1-11.
https://doi.org/10.1016/j.physa.2019.123860

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Elsevier, Amsterdam, 2016.

M. Ahmad, A. Zada, J. Alzabut, Hyers—Ulam stability of coupled system of fractional
differential equations of Hilfer-Hadamard type, Demonstr. Math., 52 (2019), 283-295.
https://doi.org/10.1515/dema-2019-0024

Y. Guo, X. Shu, Y. Li, F. Xu, The existence and Hyers—Ulam stability of solution for an impulsive
Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay
of order 1 < 8 < 2, Boundary Value Probl., 59 (2019), 1-18. https://doi.org/10.1186/s13661-019-
1172-6

C. Yang, C. Zhai, Uniqueness of positive solutions for a fractional differential equation via a fixed
point theorem of a sum operator, Electron. J. Differ. Equations, 70 (2012), 1-8. Available from:
https://www.researchgate.net/publication/265759303.

A. Zada, J. Alzabut, H. Waheed, P. Loan-Lucian, Ulam—Hyers stability of impulsive integro-
differential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equations, 2020
(2020). https://doi.org/10.1186/s13662-020-2534-1

X. Zhao, C. Chai, W. Ge, Positive solutions for fractional four-point boundary
value problems, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3665-3672.
https://doi.org/10.1016/j.cnsns.2011.01.002

C. Zhai, L. Xu, Properties of positive solutions to a class of four-point boundary value problem of
Caputo fractional differential equations with a parameter, Commun. Nonlinear Sci. Numer. Simul.,
19 (2014), 2820-2827. https://doi.org/10.1016/j.cnsns.2014.01.003

S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, 1940.

D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27
(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950),
64—66. https://doi.org/10.2969/jmsj/00210064

T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72
(1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1

M. Akkouchi, Stability of certain functional equations via a fixed point of Ciri¢, Filomat, 25
(2011), 121-127. https://doi.org/10.2298/FIL1102121A

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10809-10825.


http://dx.doi.org/https://doi.org/10.1063/1.470346
http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.123860
http://dx.doi.org/https://doi.org/10.1515/dema-2019-0024
http://dx.doi.org/https://doi.org/10.1186/s13661-019-1172-6
http://dx.doi.org/https://doi.org/10.1186/s13661-019-1172-6
http://dx.doi.org/https://doi.org/10.1186/s13662-020-2534-1
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2011.01.002
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2014.01.003
http://dx.doi.org/https://doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/https://doi.org/10.2969/jmsj/00210064
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1978-0507327-1
http://dx.doi.org/https://doi.org/10.2298/FIL1102121A

10825

20

21.

22.

23.

24.

25.

26.

é\% AIMS Press

. S. Andrds, A. Mészaros, Ulam-Hyers stability of dynamic equations on time
scales via Picard operators, Appl. Math. Comput., 219 (2013), 4853-4864.
https://doi.org/10.1016/j.amc.2012.10.115

R. Bellman, The stability of solutions of linear differential equations, Duke Math. J., 10 (1943),
643-647. https://doi.org/10.1215/S0012-7094-43-01059-2

L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equations within
weighted spaces, Lib. Math., 33 (2013), 21-35. http://doi.org/10.14510/lm-ns.v33i2.50

L. P. Castro, A. M. Simdes, Different types of Hyers-Ulam-Rassias stabilities for a class of integro-
differential equations, Filomat, 31 (2017), 5379-5390. https://doi.org/10.2298/FIL.1717379C

L. P. Castro, A. M. Simdes, Hyers-Ulam-Rassias stability of nonlinear integral
equations through the Bielecki metric, Math. Methods Appl. Sci., 41 (2018), 7367-7383.
https://doi.org/10.1002/mma.4857

E. Pourhadi, M. Mursaleen, A new fractional boundary value problem and Lyapunov-type
inequality, J. Math. Inequal., 15 (2021), 81-93. https://doi.org/10.7153/IMI-2021-15-08

M. A. Krasnoselskii, Two remarks on the method of successive approximations (in Russian), Usp.
Mat. Nauk, 10 (1955), 123-127.

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

EE; terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10809-10825.


http://dx.doi.org/https://doi.org/10.1016/j.amc.2012.10.115
http://dx.doi.org/https://doi.org/10.1215/S0012-7094-43-01059-2
http://dx.doi.org/http://doi.org/10.14510/lm-ns.v33i2.50
http://dx.doi.org/https://doi.org/10.2298/FIL1717379C
http://dx.doi.org/https://doi.org/10.1002/mma.4857
http://dx.doi.org/https://doi.org/10.7153/JMI-2021-15-08
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries and background material
	Existence and uniqueness of solutions
	Ulam-Hyers-Rassias stability analysis
	Examples
	Conclusions

