Osteoarthritis (OA) is the most common degenerative joint disease caused by osteoblastic lineage cells. However, a comprehensive molecular program for osteoblasts in human OA remains underdeveloped. The single-cell gene expression of osteoblasts and microRNA array data were from human. After processing the single-cell RNA sequencing (scRNA-seq) data, it was subjected to principal component analysis (PCA) and T-Stochastic neighbor embedding analysis (TSNE). Differential expression analysis was aimed to find marker genes. Gene-ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis and Gene set enrichment analysis (GSEA) were applied to characterize the molecular function of osteoblasts with marker genes. Protein–protein interaction (PPI) networks and core module were established for marker genes by using the STRING database and Cytoscape software. All nodes in the core module were considered to be hub genes. Subsequently, we predicted the potential miRNA of hub genes through the miRWalk, miRDB and TargetScan database and experimentally verified the miRNA by GSE105027. Finally, miRNA-mRNA regulatory network was constructed using the Cytoscape software. We characterized the single-cell expression profiling of 4387 osteoblasts from normal and OA sample. The proportion of osteoblasts subpopulations changed dramatically in the OA, with 70.42% of the pre-osteoblasts. 117 marker genes were included and the results of GO analysis show that up-regulated marker genes enriched in collagen-containing extracellular matrix were highly expressed in the pre-osteoblasts cluster. Both KEGG and GSEA analyses results indicated that IL-17 and NOD-like receptor signaling pathways were enriched in down-regulated marker genes. We visualize the weight of marker genes and constructed the core module in PPI network. In potential mRNA-miRNA regulatory network, hsa-miR-449a and hsa-miR-218-5p may be involved in the development of OA. Our study found that alterations in osteoblasts state and cellular molecular function in the subchondral bone region may be involved in the pathogenesis of osteoarthritis.
Citation: Changxiang Huan, Jiaxin Gao. Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
[1] | Ailing Xiang, Liangchen Wang . Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator. Electronic Research Archive, 2022, 30(5): 1954-1972. doi: 10.3934/era.2022099 |
[2] | Jialu Tian, Ping Liu . Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis. Electronic Research Archive, 2022, 30(3): 929-942. doi: 10.3934/era.2022048 |
[3] | Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304 |
[4] | Xuemin Fan, Wenjie Zhang, Lu Xu . Global dynamics of a predator-prey model with prey-taxis and hunting cooperation. Electronic Research Archive, 2025, 33(3): 1610-1632. doi: 10.3934/era.2025076 |
[5] | Shuxia Pan . Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27(0): 89-99. doi: 10.3934/era.2019011 |
[6] | Yuan Tian, Yang Liu, Kaibiao Sun . Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297 |
[7] | Érika Diz-Pita . Global dynamics of a predator-prey system with immigration in both species. Electronic Research Archive, 2024, 32(2): 762-778. doi: 10.3934/era.2024036 |
[8] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[9] | Pinglan Wan . Dynamic behavior of stochastic predator-prey system. Electronic Research Archive, 2023, 31(5): 2925-2939. doi: 10.3934/era.2023147 |
[10] | Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230 |
Osteoarthritis (OA) is the most common degenerative joint disease caused by osteoblastic lineage cells. However, a comprehensive molecular program for osteoblasts in human OA remains underdeveloped. The single-cell gene expression of osteoblasts and microRNA array data were from human. After processing the single-cell RNA sequencing (scRNA-seq) data, it was subjected to principal component analysis (PCA) and T-Stochastic neighbor embedding analysis (TSNE). Differential expression analysis was aimed to find marker genes. Gene-ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis and Gene set enrichment analysis (GSEA) were applied to characterize the molecular function of osteoblasts with marker genes. Protein–protein interaction (PPI) networks and core module were established for marker genes by using the STRING database and Cytoscape software. All nodes in the core module were considered to be hub genes. Subsequently, we predicted the potential miRNA of hub genes through the miRWalk, miRDB and TargetScan database and experimentally verified the miRNA by GSE105027. Finally, miRNA-mRNA regulatory network was constructed using the Cytoscape software. We characterized the single-cell expression profiling of 4387 osteoblasts from normal and OA sample. The proportion of osteoblasts subpopulations changed dramatically in the OA, with 70.42% of the pre-osteoblasts. 117 marker genes were included and the results of GO analysis show that up-regulated marker genes enriched in collagen-containing extracellular matrix were highly expressed in the pre-osteoblasts cluster. Both KEGG and GSEA analyses results indicated that IL-17 and NOD-like receptor signaling pathways were enriched in down-regulated marker genes. We visualize the weight of marker genes and constructed the core module in PPI network. In potential mRNA-miRNA regulatory network, hsa-miR-449a and hsa-miR-218-5p may be involved in the development of OA. Our study found that alterations in osteoblasts state and cellular molecular function in the subchondral bone region may be involved in the pathogenesis of osteoarthritis.
This paper is devoted to the existence of weak solutions to the Cauchy problem for the two-component Novikov equation [18]
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,nt+uvnx+(2uvx+vux)n=0,n=v−vxx. | (1) |
Note that this system reduces respectively to the Novikov equation [23]
mt+3uuxm+u2mx=0, | (2) |
when
mt+2uxm+umx=0, | (3) |
when
The CH equation was proposed as a nonlinear model describing the unidirectional propagation of the shallow water waves over a flat bottom [1]. Based on the Hamiltonian theory of integrable systems, it was found earlier by using the method of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by using the tri-Hamiltonian duality approach related to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV) equation [9,25]. The CH equation exhibits several remarkable properties. One is the the existence of the multi-peaked solitons on the line
The Novikov equation (2) can be viewed as a cubic generalization of the CH equation, which was introduced by Novikov [23,24] in the classification for a class of equations while they possesses higher-order generalized symmetries. Eq. (2) was proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14], and is equivalent to the first equation in the negative flow of the Sawada-Kotera hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits peaked solitons over the line
As the two-component generalization of Novikov equation (2), the so-called Geng-Xue system [11]
mt+3vuxm+uvmx=0,nt+3uvxn+uvnx=0, | (4) |
has been studied extensively [11,13]. The integrability [11,19], dynamics and structure of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and wave breaking phenomena of the Cauchy problem of (4) were discussed. The single peakons and multi-peakons of system (4) were constructed in [21] by using compatibility of Lax-pair, which are not the weak solutions in the sense of distribution. Furthermore, the Geng-Xue system does not have the
The main object in this work is to investigate the existence of weak solutions to system (1). It is of great interest to understand the effect from interactions among the two-components, nonlinear dispersion and various nonlinear terms. More specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas from previous works on CH and Novikov equations. The weak solution of the Cauchy problem associated with (1) is established in Theorem 3.1.
The remainder of this paper is organized as follows. In the next section 2, we review some basic results and lemmas as well as invariant properties of momentum densities
In this section, we recall the local well-posedness, some properties of strong and weak solutions to equation (1) and several approximation results.
First, we introduce some notations. Throughout the paper, we denote the convolution by
With
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,x∈R,nt+uvnx+(2uvx+vux)n=0,n=v−vxx,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (5) |
Note that if
{ut+uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx)=0,t>0,x∈R,vt+uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux)=0,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (6) |
Next we recall the local well-posedness and the conservation laws.
Lemma 2.1. [12] Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
Moreover, the solution depends continuously on the initial data, i.e. the mapping
Lemma 2.2. [12] Let
∫R(u2(t,x)+u2x(t,x))dx=∫R(u20+u20x)dx,∫R(v2(t,x)+v2x(t,x))dx=∫R(v20+v20x)dx,∫R(u(t,x)v(t,x)+ux(t,x)vx(t,x))dx=∫R(u0v0+u0xv0x)dx. |
Moreover, we have
|u(t,x)|≤√22‖u0‖1,|v(t,x)|≤√22‖v0‖1. |
Note that equation (1) has the solitary waves with corner at their peaks. Obviously, such solitons are not strong solutions to equation (6). In order to provide a mathematical framework for the study of these solitons, we define the notion of weak solutions to equation (6). Let
Fu(u,v)=uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx),Fv(u,v)=uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux). |
Then equation (6) can be written as
{ut+Fu(u,v)=0,vt+Fv(u,v)=0,u(0,x)=u0(x),v(0,x)=v0(x). | (7) |
Lemma 2.3. [22] Let
f,g∈L2((0,T);H1(R))anddfdt,dgdt∈L2((0,T);H−1(R)), |
then
⟨f(t),g(t)⟩−⟨f(s),g(s)⟩=∫ts⟨df(τ)dτ,g(τ)⟩dτ+∫ts⟨dg(τ)dτ,f(τ)⟩dτ |
for all
Throughout this paper, let
ρn=(∫Rρ(ξ)dξ)−1nρ(nx),x∈R,n≥1, |
where
ρ(x)={e1x2−1,for|x|<1,0,for|x|≥1. |
Next, we recall two crucial approximation results and two identities.
Lemma 2.4. [7] Let
[ρn∗(fμ)−(ρn∗f)(ρn∗μ)]→0,asn→∞inL1(R). |
Lemma 2.5. [7] Let
ρn∗(fg)−(ρn∗f)(ρn∗g)→0,asn→∞inL∞(R). |
Lemma 2.6. [7] Assume that
ddt∫R|ρn∗u|dx=∫R(ρn∗ut)sgn(ρn∗u)dx |
and
ddt∫R|ρn∗ux|dx=∫R(ρn∗uxt)sgn(ρn∗ux)dx. |
Consider the flow governed by
{dq(t,x)dt=(uv)(t,q),t>0,x∈R,q(0,x)=x,x∈R. | (8) |
Applying classical results in the theory of ODEs, one can obtain the following useful result on the above initial value problem.
Lemma 2.7. [12] Let
qx=exp(∫t0(uv)x(s,q(s,x))ds),∀(t,x)∈[0,T)×R. |
Furthermore, setting
m(t,q)=exp(−∫t0(2vux+uvx)(s,q(s,x))ds)m0,n(t,q)=exp(−∫t0(2uvx+vux)(s,q(s,x))ds)n0,∀(t,x)∈[0,T)×R. |
Theorem 2.8. Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)). |
Set
(i).m(t,⋅)≥0,n(t,⋅)≥0,u(t,⋅)≥0,v(t,⋅)≥0and|ux(t,⋅)|≤u(t,⋅),|vx(t,⋅)|≤v(t,⋅)onR;(ii).‖u(t,⋅)‖L1≤‖m(t,⋅)‖L1,‖u(t,⋅)‖L∞≤√22‖u(t,⋅)‖1=√22‖u0‖1,and‖v(t,⋅)‖L1≤‖n(t,⋅)‖L1,‖v(t,⋅)‖L∞≤√22‖v(t,⋅)‖1=√22‖v0‖1;(iii).‖ux(t,⋅)‖L1≤‖m(t,⋅)‖L1and‖vx(t,⋅)‖L1≤‖n(t,⋅)‖L1. |
Moreover, if
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1and‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
Proof. Let
u(t,x)=e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy, | (9) |
and
ux(t,x)=−e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy. | (10) |
From the above two relations and
|ux(t,x)|≤u(t,x)≤√22‖u(t,x)‖1. |
In view of Lemma 2.2, we obtain that
u(t,x)≤√22‖u0‖1,∀(t,x)∈R+×R. |
Since
((mn)13)t+((mn)13uv)x=0, |
it immediately follows that
ddt∫Rm(t,x)dx=−∫∞−∞(uvmx+(2vux+uvx)m)dx=∫∞−∞(vuxm−(uvm)x)dx≤‖u‖L∞‖v‖L∞∫∞−∞m(t,x)dx≤‖u0‖1‖v0‖1∫∞−∞m(t,x)dx. |
Since
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1. |
Similarly, we find
‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
This completes the proof of Theorem 2.8.
In this section, we will prove that there exists a unique global weak solution to equation (6), provided the initial data
Theorem 3.1. Let
u,v∈W1,∞(Rx×R)∩L∞(R+;H1(R)) |
with the initial data
Proof. First, we shall prove
‖u0‖L1=‖P∗m0‖L1=sup‖f‖L∞≤1∫Rf(x)(P∗m0)(x)dx=sup‖f‖L∞≤1∫Rf(x)∫RP(x−y)dm0(y)dx=sup‖f‖L∞≤1∫R(P∗f)(y)dm0(y)≤sup‖f‖L∞≤1‖P‖L1‖f‖L∞‖m0‖M(R)=‖m0‖M(R). | (11) |
Similarly, we have
‖v0‖L1≤‖n0‖M(R). | (12) |
We first prove that there exists a corresponding
Let us define
un0⟶u0H1(R),n→∞,vn0⟶v0H1(R),n→∞, | (13) |
and for all
‖un0‖1=‖ρn∗u0‖1≤‖u0‖1,‖vn0‖1≤‖v0‖1,‖un0‖L1=‖ρn∗u0‖L1≤‖u0‖L1,‖vn0‖L1≤‖v0‖L1, | (14) |
in view of Young's inequality. Note that for all
mn0=un0−un0,xx=ρn∗m0≥0,andnn0=vn0−vn0,xx=ρn∗v0≥0. |
Comparing with the proof of relation (11) and (12), we get
‖mn0‖L1≤‖m0‖M(R),and‖nn0‖L1≤‖n0‖M(R),n≥1. | (15) |
By Theorem 2.8, we obtain that there exists a global strong solution
un=un(⋅,un0),vn=vn(⋅,vn0)∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
for every
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1=‖un0‖1≤‖u0‖1,‖vnx(t,⋅)‖L∞≤‖vn(t,⋅)‖L∞≤‖vn(t,⋅)‖1=‖vn0‖1≤‖v0‖1. | (16) |
By the above inequality, we have
‖un(t,⋅)vn(t,⋅)unx(t,⋅)‖L2≤‖un(t,⋅)‖L∞‖vn(t,⋅)‖L∞‖unx(t,⋅)‖L2≤‖un(t,⋅)‖21‖vn(t,⋅)‖1≤‖u0‖21‖v0‖1. | (17) |
Similarly, we have
‖vn(t,⋅)un(t,⋅)vnx(t,⋅)‖L2≤‖v0‖21‖u0‖1. | (18) |
By Young's inequality and (16), for all
‖Px∗(12(unx)2vn+ununxvnx+(un)2vn)+12P∗((unx)2vnx)‖L2≤‖Px‖L2‖12(unx)2vn+ununxvnx+(un)2vn‖L1+12‖P‖L2‖(unx)2vnx‖L1≤12‖unx‖2L2‖vn‖L∞+12‖un‖L∞‖unx‖L2‖vnx‖L2+‖un‖2L2‖vn‖L∞+12‖vnx‖L∞‖unx‖2L2≤52‖un‖21‖vn‖1≤52‖u0‖21‖v0‖1. | (19) |
Similarly, we get
‖Px∗(12(vnx)2un+vnunxvnx+(vn)2un)+12P∗((vnx)2unx)‖L2≤52‖v0‖21‖u0‖1. | (20) |
Combining (17)-(20) with equation (6) for all
‖ddtun(t,⋅)‖L2≤72‖u0‖21‖v0‖1,and‖ddtvn(t,⋅)‖L2≤72‖v0‖21‖u0‖1. | (21) |
For fixed
∫T0∫R([un(t,x)]2+[unx(t,x)]2+[unt(t,x)]2)dxdt≤(‖u0‖21+494‖u0‖41‖v0‖21)T,∫T0∫R([vn(t,x)]2+[vnx(t,x)]2+[vnt(t,x)]2)dxdt≤(‖v0‖21+494‖v0‖41‖u0‖21)T. | (22) |
It follows that the sequence
unk⇀uweaklyinH1(0,T)×R)fornk→∞ | (23) |
and
unk⟶u,a.e.on(0,T)×Rfornk→∞, | (24) |
for some
V[unkx(t,⋅)]=‖unkxx(t,⋅)‖L1≤‖unk(t,⋅)‖L1+‖mnk(t,⋅)‖L1≤2‖mnk(t,⋅)‖L1≤2e‖unk0‖1‖vnk0‖1t‖mnk0‖L1≤2e‖u0‖1‖v0‖1t‖m0‖M(R) |
and
‖unkx(t,⋅)‖L∞≤‖unk(t,⋅)‖1=‖unk0(t,⋅)‖1≤‖u0‖1. |
Applying Helly's theorem, we obtain that there exists a subsequence, denoted again by
V[ˆu(t,⋅)]≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
Since for almost all
unkx⟶uxa.e.on(0,T)×Rfornk→∞, | (25) |
and for a.e.
V[ux(t,⋅)]=‖uxx(t,⋅)‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
We can analogously extract a subsequence of
vnk⟶va.e.on(0,T)×Rfornk→∞andvnkx⟶vxa.e.on(0,T)×Rfornk→∞. | (26) |
By Theorem 2.8
‖12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnx‖L1≤3‖u0‖21‖v0‖1. |
For fixed
Px∗[12(unx)2vn+ununxvnx+(un)2vn]+P∗(12(unx)2vnx)⟶Px∗[12u2xvn+uuxvx+u2v]+P∗(12u2xvx),asn→∞. | (27) |
We can analogously obtain that
Px∗[12(vnx)2un+vnvnxunx+(vn)2un]+P∗(12(vnx)2unx)⟶Px∗[12v2xun+vvxux+v2u]+P∗(12v2xux),asn→∞. | (28) |
Combining (24)-(26) with (27) and (28), we deduce that
Since
u∈Cw,loc(R+;H1(R)). |
For a.e.
‖u(t,⋅)‖L∞≤‖u(t,⋅)‖1≤lim infnk→∞‖un(t,⋅)‖1=lim infnk→∞‖unk0(t,⋅)‖1≤lim infnk→∞‖P‖1‖mnk0(t,⋅)‖L1≤‖m0‖M(R), | (29) |
for a.e.
u∈L∞(R+×R)∩L∞(R+;H1(R)). |
Note that by Theorem 2.8 and (15), we have
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1≤‖P‖1‖mn0(t,⋅)‖L1≤‖m0(t,⋅)‖M(R). | (30) |
Combining this with (25), we deduce that
ux∈L∞(R+×R). |
This shows that
u∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Taking the same way as
v∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Please note that we use the subsequence of
Now, by a regularization technique, we prove that
{ρn∗ut+ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+12ρn∗P∗(u2xvx)=0,ρn∗vt+ρn∗(uvvx)+ρn∗Px∗(12v2xv+vuxvx+v2u)+12ρn∗P∗(v2xux)=0. | (31) |
By differentiation of the first equation of (31), we obtain
ρn∗uxt+ρn∗(uvux)x+ρn∗Px∗(12u2xvx)+ρn∗Pxx∗(12u2xv+uuxvx+u2v)=0. | (32) |
Note that
ρn∗uxt+ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx)=0. | (33) |
Take these two equation (32) and (33) into the integration below, we obtain
12ddt∫R(ρn∗u)2+(ρn∗ux)2dx=∫R(ρn∗u)(ρn∗ut)+(ρn∗ux)(ρn∗uxt)dx=−∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (34) |
Note that
limn→∞‖ρn∗u−u‖L2=limn→∞‖ρn∗(uvux)−uvux‖L2=0. |
Therefore, by using H
∫R(ρn∗u)(ρn∗(uvux))dx⟶∫Ru2vuxdx,asn→∞. |
Similarly, for a.e.
∫R(ρn∗u)(ρn∗Px∗(12u2xv+uuxvx+u2v))dx⟶∫RuPx∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗u)(ρn∗P∗(12u2xvx))dx⟶∫RuP∗(12u2xvx)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗P∗(12u2xv+uuxvx+u2v))dx⟶∫RuxP∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗(12u2xv+uuxvx+u2v))dx⟶∫Rux(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗Px∗(12u2xvx))dx⟶∫RuxPx∗(12u2xvx)dx,asn→∞, |
as
∫R(ρn∗ux)(ρnx∗(uvux))dx=−∫R(ρn,xx∗u)(ρ∗(uvux))dx+∫R(ρn,xx∗u)(ρn∗uv)(ρn∗ux)dx+12∫R(ρn∗ux)2(ρn∗(uv)x)dx. | (35) |
Observe that
∫R(ρn∗ux)2(ρn∗(uv)x)dx⟶∫Ru2x(uv)xdx,asn→∞. |
On the other hand
‖ρnxx∗u‖L1≤‖uxx‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R),∀t∈[0,T). |
As
‖(ρn∗uv)(ρn∗ux)−(ρn∗(uvux))‖L∞→0,n→∞. |
Therefore,
∫R(ρn,xx∗u)((ρn∗uv)(ρn∗ux)−ρn∗(uvux))dx→0,n→∞. |
In view of the above relations and (35), we obtain
∫R(ρn∗ux)(ρnx∗(uvux))dx→12∫Ru2x(uv)xdx,n→∞. | (36) |
Let us define
Eun(t)=∫R(ρn∗u)2+(ρn∗ux)2dx, | (37) |
and
Gun(t)=−2∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−2∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. |
We have proved that for fixed
{ddtEun(t)=Gun(t),n≥1,Gun(t)→0,n→∞. | (38) |
Therefore, we get
Eun(t)−Eun(0)=∫t0Gun(s)ds,t∈[0,T),n≥1. | (39) |
By Young's inequality and H
|Gun(t)|≤Ku(T),n≥1. |
In view of (38) and (39), an application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞(Eun(t)−Eun(0))=0. |
By (24) and the above relation, for fixed
Eu(u)=limn→∞Eun(t)=limn→∞Eun(0)=Eu(u0). |
By Theorem 2.8, we infer that for all fixed
Next, we prove that
By differentiation of the second equation of (31), we obtain this relation:
ρn∗vxt+ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux)=0. | (40) |
In view of (31), (33) and (40), we obtain
ddt∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx=∫R(ρn∗u)(ρn∗vt)+(ρn∗ux)(ρn∗vxt)+(ρn∗ut)(ρn∗v)+(ρn∗uxt)(ρn∗vx)dx=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u) |
+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (41) |
We can analogously get the similar convergence like the case
It is nature to define
Hn(t)=∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx, | (42) |
and
Gu,vn(t)=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u)+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (43) |
And it is easy to get
Hn(t)−Hn(0)=∫t0Gu,vn(s)ds,t∈[0,T),n≥1. | (44) |
Similarly, we get this estimate by using Young's inequality and Holder's inequality:
|Gu,vn(t)|≤Ku,v(T),n≥1. |
An application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
\begin{eqnarray*} \begin{aligned} \lim\limits_{n\rightarrow\infty}[H_n(t)-H_n(0)] = 0. \end{aligned} \end{eqnarray*} |
By these convergence above, for fixed
\begin{eqnarray*} \begin{aligned} H(u, v) = \lim\limits_{n\rightarrow\infty}H_n(t) = \lim\limits_{n\rightarrow\infty}H_n(0) = H(u_0, v_0), \end{aligned} \end{eqnarray*} |
which indicates that
Since
\begin{eqnarray*} \begin{aligned} \|m(t, \cdot)\|\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|m_0\|_{{\mathcal {M}}(\mathbb R)}. \end{aligned} \end{eqnarray*} |
For any fixed
\begin{eqnarray*} \begin{aligned} (u(t, \cdot)-u_{xx}(t, \cdot))\in {\mathcal {M}}(\mathbb R). \end{aligned} \end{eqnarray*} |
Therefore, in view of (24) and (25), we obtain that for all
\begin{eqnarray*} \begin{aligned} u^{n_k}(t, \cdot)-u^{n_k}_{xx}(t, \cdot)\rightarrow u(t, \cdot)-u_{xx}(t, \cdot)\quad {\rm in} \quad D'(\mathbb R). \end{aligned} \end{eqnarray*} |
Since
\begin{eqnarray*} \begin{aligned} u(t, \cdot)-u_{xx}(t, \cdot) \in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*} |
Similarly, we arrive at the conclusion:
\begin{eqnarray*} \begin{aligned} v(t, \cdot)-v_{xx}(t, \cdot)\in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*} |
Finally, we show the uniqueness of the weak solutions of equation (6). Let
\begin{eqnarray*} \begin{aligned} (f, g)\in W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R))\times W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R)) \end{aligned} \end{eqnarray*} |
Note that
\begin{eqnarray*} \begin{aligned} &\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|m_0\|_{{\mathcal {M}}(\mathbb R)}, \\ &\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|n_0\|_{{\mathcal {M}}(\mathbb R)}\quad {\rm for} \quad{\rm a.e.}\quad t\in[0, T). \end{aligned} \end{eqnarray*} |
Define
\begin{eqnarray*} \begin{aligned} M(T) = \sup\limits_{t\in[0, T)}&\left\{\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right.\\ &\qquad\qquad\qquad\left.+\|\bar{u}(t, \cdot)-\bar{u}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|\bar{v}(t, \cdot)-\bar{v}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right\}. \end{aligned} \end{eqnarray*} |
Then for fixed
\begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^1}\leq \|P\|_{L^1}M(T) = M(T), \\ &\|u_x(t, \cdot)\|_{L^1}\leq \|P_x\|_{L^1}M(T) = M(T), \\ &\|v(t, \cdot)\|_{L^1}, \|v_x(t, \cdot)\|_{L^1}, \|\bar{u}(t, \cdot)\|_{L^1}, \|\bar{u}_x(t, \cdot)\|_{L^1}, \|\bar{v}(t, \cdot)\|_{L^1}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^1}\leq M(T). \end{aligned} \end{eqnarray} | (45) |
On the other hand, from (29) and (30), we have
\begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|u_x(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|v(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|v_x(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|\bar{u}(t, \cdot)\|_{L^\infty}, \|\bar{u}_x(t, \cdot)\|_{L^\infty}, \|\bar{v}(t, \cdot)\|_{L^\infty}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^\infty}\leq N. \end{aligned} \end{eqnarray} | (46) |
Let us define
\begin{eqnarray*} \begin{aligned} \hat{u}(t, x) = u(t, x)-\bar{u}(t, x)\quad {\rm{and}}\quad \hat{v}(t, x) = v(t, x)-\bar{v}(t, x), \quad (t, x)\in[0, T)\times\mathbb R. \end{aligned} \end{eqnarray*} |
Convoluting equation (6) for
\begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_t{\rm{sgn}}(\rho_n\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx\\ & -\int_{\mathbb R}\rho_n\ast P_{xx}{\rm{*}}({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ &-\int_{\mathbb R}\rho_n\ast{\frac 12}P\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx. \end{aligned} \end{eqnarray} | (47) |
Using (46) and Young's inequality, we infer that for a.e.
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (48) |
where
\begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_{xt}{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right)_x{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &\qquad\qquad+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &I_1+I_2+I_3. \end{aligned} \end{eqnarray} | (49) |
For the term
\begin{eqnarray*} \begin{aligned} &I_1\\ = &-\int_{\mathbb R}\rho_n\ast(\hat{u}_xvu_x+\hat{u}u_xv_x+\hat{u}vu_{xx}+\bar{u}_xu_{x}\hat{v}+\bar{u}u_{xx}\hat{v}+\bar{u}u_x\hat{v}_x\\ &\qquad\qquad\qquad\qquad+\bar{u}_x\bar{v}\hat{u}_x+\bar{u}\bar{v}_x\hat{u}_x+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}\rho_n\ast(\hat{u}vu_{xx}+\bar{u}u_{xx}\hat{v}+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &-\int_{\mathbb R}(\rho_n\ast\hat{u}v)(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx-\int_{\mathbb R}(\rho_n\ast\bar{u}\hat{v})(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}(\rho_n\ast\bar{u}\bar{v})(\rho_n\ast \hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t) \end{aligned} \end{eqnarray*} |
\begin{eqnarray} \begin{aligned}&\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &+\int_{\mathbb R}(\rho_n\ast(\hat{u}v)_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+\int_{\mathbb R}(\rho_n\ast(\bar{u}\hat{v})_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad+\int_{\mathbb R}(\rho_n\ast(\bar{u}\bar{v})_x)(\rho_n\ast \hat{u}_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right) +R_n(t), \end{aligned} \end{eqnarray} | (50) |
where C is a constant depending on
\begin{eqnarray} \left\{ \begin{aligned} &R_n(t)\longrightarrow 0, \qquad n\rightarrow\infty, \\ &|R_n(t)|\leq \kappa(T), \;\;\, n\geq 1, \;\;t\in[0, T). \end{aligned} \right. \end{eqnarray} | (51) |
For the second term
\begin{eqnarray} \begin{aligned} &I_2\\ = -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast\left({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\right.\\ &\qquad+\left.\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& 2\int_{\mathbb R}\rho_n\ast\left|{\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right|dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (52) |
For the final term
\begin{eqnarray} \begin{aligned} I_3 = -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (53) |
Adding these three terms, we obtain
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (54) |
For these terms
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right), \\ &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (55) |
From (48), (54) and (55), we infer that
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (56) |
If
\begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{\int^t_0C+\tilde{R}_n(\tau)d\tau}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} | (57) |
where
\begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{Ct}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} | (58) |
As
[1] |
B. Abramoff, F. E. Caldera, Osteoarthritis: pathology, diagnosis, and treatment options, Med. Clin. North Am., 104 (2020), 293-311. https://doi.org/10.1016/j.mcna.2019.10.007 doi: 10.1016/j.mcna.2019.10.007
![]() |
[2] |
R. C. Lawrence, D. T. Felson, C. G. Helmick, L. M. Arnold, H. Choi, R. A. Deyo, et al., Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part Ⅱ, Arthritis Rheum., 58 (2008), 26-35. https://doi.org/10.1002/art.23176 doi: 10.1002/art.23176
![]() |
[3] |
S. Glyn-Jones, A. J. Palmer, R. Agricola, A. J. Price, T. L. Vincent, H. Weinans, et al., Osteoarthritis, Lancet, 386 (2015), 376-387. https://doi.org/10.1016/s0140-6736(14)60802-3 doi: 10.1016/s0140-6736(14)60802-3
![]() |
[4] |
C. Buckland-Wright, Subchondral bone changes in hand and knee osteoarthritis detected by radiography, Osteoarthritis Cartilage, 12 (2004), S10-19. https://doi.org/10.1016/j.joca.2003.09.007 doi: 10.1016/j.joca.2003.09.007
![]() |
[5] |
E. Dall'Ara, C. Ohman, M. Baleani, M. Viceconti, Reduced tissue hardness of trabecular bone is associated with severe osteoarthritis, J. Biomech., 44 (2011), 1593-1598. https://doi.org/10.1016/j.jbiomech.2010.12.022 doi: 10.1016/j.jbiomech.2010.12.022
![]() |
[6] |
D. M. Findlay, G. J. Atkins, Osteoblast-chondrocyte interactions in osteoarthritis, Curr. Osteoporosis Rep., 12 (2014), 127-134. https://doi.org/10.1007/s11914-014-0192-5 doi: 10.1007/s11914-014-0192-5
![]() |
[7] |
I. Prasadam, S. Farnaghi, J. Q. Feng, W. Gu, S. Perry, R. Crawford, et al., Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes: role of integrinβ1 and focal adhesion kinase signaling cues, Arthritis Res. Ther., 15 (2013), R150. https://doi.org/10.1186/ar4333 doi: 10.1186/ar4333
![]() |
[8] |
S. K. Tat, J. P. Pelletier, N. Amiable, C. Boileau, D. Lajeunesse, N. Duval, et al., Activation of the receptor EphB4 by its specific ligand ephrin B2 in human osteoarthritic subchondral bone osteoblasts, Arthritis Rheum., 58 (2008), 3820-3830. https://doi.org/10.1002/art.24029 doi: 10.1002/art.24029
![]() |
[9] | S. K. Tat, J. P. Pelletier, D. Lajeunesse, H. Fahmi, M. Lavigne, J. Martel-Pelletier, The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappaB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells, Clin. Exp. Rheumatol., 26 (2008), 295-304. |
[10] |
I. Prasadam, R. Crawford, Y. Xiao, Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes-possible pathogenic role in osteoarthritis, J. Rheumatol., 39 (2012), 621-634. https://doi.org/10.3899/jrheum.110777 doi: 10.3899/jrheum.110777
![]() |
[11] |
S. J. Rice, K. Cheung, L. N. Reynard, J. Loughlin, Discovery and analysis of methylation quantitative trait loci (mQTLs) mapping to novel osteoarthritis genetic risk signals, Osteoarthritis Cartilage, 27 (2019), 1545-1556. https://doi.org/10.1016/j.joca.2019.05.017 doi: 10.1016/j.joca.2019.05.017
![]() |
[12] |
S. J. Rice, F. Beier, D. A. Young, J. Loughlin, Interplay between genetics and epigenetics in osteoarthritis, Nat. Rev. Rheumatol., 16 (2020), 268-281. https://doi.org/10.1038/s41584-020-0407-3 doi: 10.1038/s41584-020-0407-3
![]() |
[13] |
P. Y. Huang, J. G. Wu, J. Gu, T. Q. Zhang, L. F. Li, S. Q. Wang, et al., Bioinformatics analysis of miRNA and mRNA expression profiles to reveal the key miRNAs and genes in osteoarthritis, J. Orthop. Surg. Res., 16 (2021), 63. https://doi.org/10.1186/s13018-021-02201-2 doi: 10.1186/s13018-021-02201-2
![]() |
[14] |
J. Luo, X. Luo, Z. Duan, W. Bai, X. Che, Z. Shan, et al., Comprehensive analysis of lncRNA and mRNA based on expression microarray profiling reveals different characteristics of osteoarthritis between Tibetan and Han patients, J. Orthop. Surg. Res., 16 (2021), 133. https://doi.org/10.1186/s13018-021-02213-y doi: 10.1186/s13018-021-02213-y
![]() |
[15] |
J. Xu, Y. Zeng, H. Si, Y. Liu, M. Li, J. Zeng, et al., Integrating transcriptome-wide association study and mRNA expression profile identified candidate genes related to hand osteoarthritis, Arthritis Res. Ther., 23 (2021), 81. https://doi.org/10.1186/s13075-021-02458-2 doi: 10.1186/s13075-021-02458-2
![]() |
[16] |
C. Li, J. Luo, X. Xu, Z. Zhou, S. Ying, X. Liao, et al., Single cell sequencing revealed the underlying pathogenesis of the development of osteoarthritis, Gene, 757 (2020), 144939. https://doi.org/10.1016/j.gene.2020.144939 doi: 10.1016/j.gene.2020.144939
![]() |
[17] |
Z. Wu, L. Shou, J, Wang, X. Xu, Identification of the key gene and pathways associated with osteoarthritis via single-cell RNA sequencing on synovial fibroblasts, Medicine (Baltimore), 99 (2020), e21707. https://doi.org/10.1097/md.0000000000021707 doi: 10.1097/md.0000000000021707
![]() |
[18] |
Q. Sun, S. Liu, J. Feng, Y. Kang, Y. Zhou, S. Guo, Current status of microRNAs that target the wnt signaling pathway in regulation of osteogenesis and bone metabolism: A review, Med. Sci. Monit., 27 (2021), e929510. https://doi.org/10.12659/msm.929510 doi: 10.12659/msm.929510
![]() |
[19] | T. E. Swingler, L. Niu, P. Smith, P. Paddy, L. Le, M. J. Barter, et al., The function of microRNAs in cartilage and osteoarthritis, Clin. Exp. Rheumatol., 37 (2019), 40-47. |
[20] |
H. Tao, L. Cheng, R. Yang, Downregulation of miR-34a promotes proliferation and inhibits apoptosis of rat osteoarthritic cartilage cells by activating PI3K/Akt pathway, Clin. Interv. Aging, 15 (2020), 373-385. https://doi.org/10.2147/cia.S241855 doi: 10.2147/cia.S241855
![]() |
[21] |
X. Qiu, Y. Liu, H. Shen, Z. Wang, Y. Gong, J. Yang, et al., Single-cell RNA sequencing of human femoral head in vivo, Aging (Albany NY), 13 (2021), 15595-15619. https://doi.org/10.18632/aging.203124 doi: 10.18632/aging.203124
![]() |
[22] |
Y. Gong, J. Yang, X. Li, C. Zhou, Y. Chen, Z. Wang, et al., A systematic dissection of human primary osteoblasts in vivo at single-cell resolution, Aging (Albany NY), 13 (2021), 20629-20650. https://doi.org/10.18632/aging.203452 doi: 10.18632/aging.203452
![]() |
[23] |
A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol., 36 (2018), 411-420. https://doi.org/10.1038/nbt.4096 doi: 10.1038/nbt.4096
![]() |
[24] |
S. Lall, D. Sinha, S. Bandyopadhyay, D. Sengupta, Structure-aware principal component analysis for single-cell RNA-seq data, J. Comput. Biol., (2018). https://doi.org/10.1089/cmb.2018.0027 doi: 10.1089/cmb.2018.0027
![]() |
[25] |
F. Pont, M. Tosolini, J. J. Fournié, Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets, Nucleic Acids Res., 47 (2019), e133. https://doi.org/10.1093/nar/gkz601 doi: 10.1093/nar/gkz601
![]() |
[26] |
A. N. Tikhonova, I. Dolgalev, H. Hu, K. K. Sivaraj, E. Hoxha, Á. Cuesta-Domínguez, et al., The bone marrow microenvironment at single-cell resolution, Nature, 569 (2019), 222-228. https://doi.org/10.1038/s41586-019-1104-8 doi: 10.1038/s41586-019-1104-8
![]() |
[27] |
Y. Matsushita, M. Nagata, K. M. Kozloff, J. D. Welch, K. Mizuhashi, N. Tokavanich, et al., A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration, Nat. Commun., 11 (2020), 332. https://doi.org/10.1038/s41467-019-14029-w doi: 10.1038/s41467-019-14029-w
![]() |
[28] |
X. Qiu, Q. Mao, Y. Tang, L. Wang, R. Chawla, H. A. Pliner, et al., Reversed graph embedding resolves complex single-cell trajectories, Nat. Methods, 14 (2017), 979-982. https://doi.org/10.1038/nmeth.4402 doi: 10.1038/nmeth.4402
![]() |
[29] |
G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, Omics, 16 (2012), 284-287. https://doi.org/10.1089/omi.2011.0118 doi: 10.1089/omi.2011.0118
![]() |
[30] |
P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498-2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303
![]() |
[31] |
M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. https://doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
![]() |
[32] |
N. Maruotti, A. Corrado, F. P. Cantatore, Osteoblast role in osteoarthritis pathogenesis, J. Cell Physiol., 232 (2017), 2957-2963. https://doi.org/10.1002/jcp.25969 doi: 10.1002/jcp.25969
![]() |
[33] |
I. Titorencu, V. Pruna, V. V. Jinga, M. Simionescu, Osteoblast ontogeny and implications for bone pathology: an overview, Cell Tissue Res., 355 (2014), 23-33. https://doi.org/10.1007/s00441-013-1750-3 doi: 10.1007/s00441-013-1750-3
![]() |
[34] |
A. D. Theocharis, D. Manou, N. K. Karamanos, The extracellular matrix as a multitasking player in disease, Febs J., 286 (2019), 2830-2869. https://doi.org/10.1111/febs.14818 doi: 10.1111/febs.14818
![]() |
[35] |
H. Z. Li, H. D. Lu, Transcriptome analyses identify key genes and potential mechanisms in a rat model of osteoarthritis, J. Orthop. Surg. Res., 13 (2018), 319. https://doi.org/10.1186/s13018-018-1019-3 doi: 10.1186/s13018-018-1019-3
![]() |
[36] |
Y. Shi, X. Hu, J. Cheng, X. Zhang, F. Zhao, W. Shi, et al., A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development, Nat. Commun., 10 (2019), 1914. https://doi.org/10.1038/s41467-019-09839-x doi: 10.1038/s41467-019-09839-x
![]() |
[37] |
J. Y. Li, M. Yu, A. M. Tyagi, C. Vaccaro, E. Hsu, J. Adams, et al., IL-17 receptor signaling in osteoblasts/osteocytes mediates PTH-induced bone loss and enhances osteocytic RANKL production, J. Bone Miner Res., 34 (2019), 349-360. https://doi.org/10.1002/jbmr.3600 doi: 10.1002/jbmr.3600
![]() |
[38] |
Z. Wang, J. Tan, L. Lei, W. Sun, Y. Wu, P. Ding, et al., The positive effects of secreting cytokines IL-17 and IFN-γ on the early-stage differentiation and negative effects on the calcification of primary osteoblasts in vitro, Int. Immunopharmacol., 57 (2018), 1-10. https://doi.org/10.1016/j.intimp.2018.02.002 doi: 10.1016/j.intimp.2018.02.002
![]() |
[39] |
H. Kitaura, A. Marahleh, F. Ohori, T. Noguchi, W. R. Shen, J. Qi, et al., Osteocyte-related cytokines regulate osteoclast formation and bone resorption, Int. J. Mol. Sci., 21 (2020). https://doi.org/10.3390/ijms21145169 doi: 10.3390/ijms21145169
![]() |
[40] |
N. Udagawa, M. Koide, M. Nakamura, Y. Nakamichi, T. Yamashita, S. Uehara, et al., Osteoclast differentiation by RANKL and OPG signaling pathways, J. Bone Miner Metab., 39 (2021), 19-26. https://doi.org/10.1007/s00774-020-01162-6 doi: 10.1007/s00774-020-01162-6
![]() |
[41] |
M. Croes, F. C. Öner, D. van Neerven, E. Sabir, M. C. Kruyt, T. J. Blokhuis, et al., Proinflammatory T cells and IL-17 stimulate osteoblast differentiation, Bone, 84 (2016), 262-270. https://doi.org/10.1016/j.bone.2016.01.010 doi: 10.1016/j.bone.2016.01.010
![]() |
[42] |
S. Shen, Y. Wu, J. Chen, Z. Xie, K. Huang, G. Wang, et al., CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene, Ann. Rheum. Dis., 78 (2019), 826-836. https://doi.org/10.1136/annrheumdis-2018-214786 doi: 10.1136/annrheumdis-2018-214786
![]() |
[43] |
Y. Chao, L. Zhang, X. Zhang, C. Ma, Z. Chen, Expression of MiR-140 and MiR-199 in synovia and its correlation with the progression of knee osteoarthritis, Med. Sci. Monit., 26 (2020), e918174. https://doi.org/10.12659/msm.918174 doi: 10.12659/msm.918174
![]() |
[44] |
B. Zhang, M. Sun, J. Wang, C. Ma, T. Hao, G. Liu, et al., MiR-671 ameliorates the progression of osteoarthritis in vitro and in vivo, Pathol. Res. Pract., 215 (2019), 152423. https://doi.org/10.1016/j.prp.2019.04.015 doi: 10.1016/j.prp.2019.04.015
![]() |
[45] |
Z. Rasheed, H. A. Al-Shobaili, N. Rasheed, A. A. Al Salloom, O. Al-Shaya, A. Mahmood, et al., Integrated study of globally expressed microRNAs in IL-1β-stimulated human osteoarthritis chondrocytes and osteoarthritis relevant genes: A microarray and bioinformatics analysis, Nucleosides Nucleotides Nucleic Acids, 35 (2016), 335-355. https://doi.org/10.1080/15257770.2016.1163380 doi: 10.1080/15257770.2016.1163380
![]() |
[46] |
A. Soyocak, H. Kurt, M. Ozgen, D. Turgut Cosan, E. Colak, H. V. Gunes, miRNA-146a, miRNA-155 and JNK expression levels in peripheral blood mononuclear cells according to grade of knee osteoarthritis, Gene, 627 (2017), 207-211. https://doi.org/10.1016/j.gene.2017.06.027 doi: 10.1016/j.gene.2017.06.027
![]() |
[47] | G. Wang, Y. Zhang, X. Zhao, C. Meng, L. Ma, Y. Kong, MicroRNA-411 inhibited matrix metalloproteinase 13 expression in human chondrocytes, Am. J. Transl. Res., 7 (2015), 2000-2006. |
[48] |
E. Nemoto, T. Honda, S. Kanaya, H. Takada, H. Shimauchi, Expression of functional Toll-like receptors and nucleotide-binding oligomerization domain proteins in murine cementoblasts and their upregulation during cell differentiation, J. Periodontal. Res., 43 (2008), 585-593. https://doi.org/10.1111/j.1600-0765.2008.01096.x doi: 10.1111/j.1600-0765.2008.01096.x
![]() |
![]() |
![]() |
1. | Byungsoo Moon, Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation, 2021, 14, 1937-1632, 4409, 10.3934/dcdss.2021123 | |
2. | K.H. Karlsen, Ya. Rybalko, Global semigroup of conservative weak solutions of the two-component Novikov equation, 2025, 86, 14681218, 104393, 10.1016/j.nonrwa.2025.104393 |