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Abstract: Osteoarthritis (OA) is the most common degenerative joint disease caused by osteoblastic 
lineage cells. However, a comprehensive molecular program for osteoblasts in human OA remains 
underdeveloped. The single-cell gene expression of osteoblasts and microRNA array data were from 
human. After processing the single-cell RNA sequencing (scRNA-seq) data, it was subjected to 
principal component analysis (PCA) and T-Stochastic neighbor embedding analysis (TSNE). 
Differential expression analysis was aimed to find marker genes. Gene-ontology (GO) enrichment, 
Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis and Gene set 
enrichment analysis (GSEA) were applied to characterize the molecular function of osteoblasts with 
marker genes. Protein–protein interaction (PPI) networks and core module were established for marker 
genes by using the STRING database and Cytoscape software. All nodes in the core module were 
considered to be hub genes. Subsequently, we predicted the potential miRNA of hub genes through 
the miRWalk, miRDB and TargetScan database and experimentally verified the miRNA by 
GSE105027. Finally, miRNA-mRNA regulatory network was constructed using the Cytoscape 
software. We characterized the single-cell expression profiling of 4387 osteoblasts from normal and 
OA sample. The proportion of osteoblasts subpopulations changed dramatically in the OA, with 70.42% 
of the pre-osteoblasts. 117 marker genes were included and the results of GO analysis show that up-
regulated marker genes enriched in collagen-containing extracellular matrix were highly expressed in 
the pre-osteoblasts cluster. Both KEGG and GSEA analyses results indicated that IL-17 and NOD-like 
receptor signaling pathways were enriched in down-regulated marker genes. We visualize the weight 
of marker genes and constructed the core module in PPI network. In potential mRNA-miRNA 
regulatory network, hsa-miR-449a and hsa-miR-218-5p may be involved in the development of OA. 
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Our study found that alterations in osteoblasts state and cellular molecular function in the subchondral 
bone region may be involved in the pathogenesis of osteoarthritis. 

Keywords: osteoarthritis; single-cell RNA sequencing; pathogenesis; osteoblasts; miRNA 
 

1. Introduction 

Osteoarthritis is chronic degenerative joint disease, which may affect the cartilage, synovium, 
joint ligaments and subchondral bone [1]. In 2005, approximately 27 million people in the United 
States had OA [2]. The traits of joint lesions are joint space narrowing, osteophytosis, subchondral 
sclerosis and osteophyte formation. The traditional treatment in the later stages of OA is joint 
replacement surgery, obviously, its drawbacks include the inability to effectively treat and prevent 
early-stage OA and the need for invasive the surgery. The exploration of the pathogenesis of early OA, 
and timely prevention and treatment of OA will be beneficial to improve patient survival condition. 
Various biochemical compounds involved in OA development have been regarded as disease 
pathogenesis consisting of several inflammatory response proteins (e.g., interleukin 1β, interleukin 6 
and tumor necrosis factor), matrix-degrading enzymes and toll-like receptors secreted by chondrocytes 
in cartilage [3]. However, some researchers used isotopes and radiography of OA joints to show that 
osteophyte and sclerosis formation in subchondral bone  precede cartilage change [4]. These changes 
may be mediated by osteoblasts, osteocytes and osteoclast in subchondral bone. Abnormal bone 
remodeling, bone matrix mineralization and skeletal architecture construction are dysfunctions in 
osteoarthritic subchondral bone and directly effect on cartilage [5–7]. The irregular expression of 
RANKL had been found in OA osteoblasts [8,9]. osteoblasts may be acted in OA pathogenesis, by 
producing abnormal levels of A disintegrin and metalloproteinase with thrombospondin motifs 
(ADAMTS) and MMPs [10]. Therefore, the molecular mechanisms underlying osteoblasts in OA bone 
should be investigated. 

After extensive research, various genes associated with disease treatment were established, 
including non-coding RNA, DNA methylation, histone modifications and regulatory RNAs [11,12]. 
Earlier studies have searched for potential target genes involved in OA in bulk transcriptome 
profiles [13–15]. The identification and exploration of differential expression genes in osteoblasts 
between normal and OA could expand our overall understanding of the role of osteoblasts in OA 
development. For samples with high heterogeneity such as the joint, traditional high-throughput 
sequencing technologies can only provide the average of transcript levels of all cells in the sample, but 
single-cell transcriptome sequencing can accurately characterize the transcriptome of each cell in the 
sample. Chenlu Li [16] successfully utilized single-cell RNA sequencing and found that COL6A3 and 
ACTG were validated as key marker genes of fibroblastic-like chondrocytes and fibroblasts in OA. 
Zhen Wu [17] found that fibronectin1 as key gene of synovial fibroblasts and the pathway of marker 
genes activated in differential state cells through single-cell expression profiling. Subsequently, we 
explored significant hub genes between subpopulations osteoblasts of normal and OA sample from 
single-cell expression profiling. 

miRNA consists of 20–24 nucleotides, which binds to the target messenger RNA binding to the 3' 
untranslated region of the target RNA, and it can inhibit the translation of the target messenger RNA 
and affect protein expression [18]. miRNAs are recommended as circulating markers for osteoarthritis 
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and are considered as novel therapeutic materials for in clinical treatment [19]. However, limited 
studies have reported the use of miRNA in OA. Coutinho de Almeida R found that 238 target mRNAs 
of 62miRNAs were mainly enriched in the 'nervous system development' mediated by miRNA 
regulatory mechanisms. TAO [20] found that miR34a is overexpressed in cartilage of OA patients and 
regulates the PI3K/AKT pathway. Therefore, an in-depth study of OA mRNA-miRNA regulatory 
mechanisms can provide a comprehensive understanding of the pathogenesis of OA and identify 
potential therapeutic loci. 

In our research, we explored the genomic signatures and marker genes in osteoblasts between 
normal and OA osteoblasts by using scRNA-seq data from osteoblasts cluster derived from OA patient 
and healthy person. After differential expression analysis, we explored the biological functions of the 
differential expression genes. We constructed the PPI network and core module to accurately 
investigate differential gene interactions and screen for hub genes. Then, based on several credible 
databases, we rigorously screened several potential miRNAs and constructed mRNA-miRNA 
regulatory networks, in which partial miRNAs were experimentally validated by GSE175961. 

2. Materials and methods 

2.1. Processing of scRNA-seq data 

The scRNA-seq data of human hip joint tissue of OA and normal were accessed from GSE169396 
and GSE147390 with a reading depth of 10× genomics based on Illumina NextSeq 500 via the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) [21,22]. Four normal 
samples and one OA sample were screened using Seurat package (version 4.0.2) [23]. The cells were 
subjected to 1000 highly variable genes by using the Normalization function and FindVariableFeatures 
function in the Seurat package. After using the FindNeighbors function, FindClusters function and 
RunTSNE function, cells were divided into different clusters according to highly variable genes. 
Finally, normal and osteoarthritic osteoblasts which remarked by marker genes (ALPL and RUNX2) 
were merged into one matrix by using the cbind function of R. 

2.2. Quality control 

We utilized the Seurat package in R 4.1.1 to process osteoblasts matrix with subsequent 
analysis [23]. First, the osteoblasts matrix created the object and excluded low-quality cells by using 
the CreateSeuratObject and subset function. Low-quality osteoblasts were removed according to the 
following criteria: 1) genes identified < 3 cells; 2) cells of total cell expression genes < 200; 3) volume 
of total detected RNA < 500 or > 2500; and 4) The proportion of mitochondria and ribosomal 
expressed genes > 25%. The osteoblasts object was normalized using the NormalizeData function, 
and 1000 highly variable genes were screened out using the FindVariableFeatures function. To 
analyze multidmensinoal and complexity scRNA-seq data, we selected the ScaleData function and 
RunPCA function to linearly scale the data and reduction analysis [24]. 
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2.3. Cell cluster analysis 

To visualize and statistically analyze scRNA-seq data, we tested 20 principal component and 
were chosen for t-SNE. The function of FindNeighbors and FindClusters with the 0.5 clustering 
resolution were used for classification analysis of cell clusters. Then, we performed cluster 
identification and visualization in osteoblasts through RunTSNE function [25]. The osteoblast 
subpopulations, including pre-osteoblasts, mature osteoblasts and undetermined osteoblasts, were 
remarked through experimentally validated marker genes by manual annotation [22,26,27]. 

2.4. Differentially expressed genes trajectory analysis 

The differentially expressed genes (DEGS) between normal and OA osteoblasts were evaluated 
using the FindMarkers function as implemented to identify the DEGS of osteoblasts samples. We filtered 
the marker genes in accordance with cutoff of p_value_adj < 0.05 and |log2[fold change (FC)]| > 1. To 
further demonstrate the differences among different cell clusters, we used the Monocle package in R 4.1.1 
to demonstrate the pseudotime trajectories analysis [28]. Using the differentialGeneTest function to 
selected test genes. Then, the prerequisite object was constructed as Monocle package, and the multi-
dimensional expression profile of cell clusters was reduced to a low-dimensional data and presented 
in the form of different branches by using the method of DDRTree. By using the orderCells function, 
each cell was projected onto a dimension and tracked with branching points according to test genes. 

2.5. Functional enrichement analysis of marker genes 

ClusterProfiler package (version 4.0.5) in R 4.1.1 was utilized to explore the comprehensive 
molecular biology mechanisms and pathway of osteoblasts [29]. GO and KEGG analysis of marker genes 
were identified by enrichGO and enrichKEGG function in ClusterProfiler based on the cutoffvalue < 0.01 
and cutoffvalue < 0.05. However, GSEA used for the analysis of the enrichment of total DEGS arranged 
by logFC from largest to smallest in ClusterProfiler package with the P-value < 0.05. 

2.6. Construction of the PPI network and identification of core module 

The Search Tool for the Retrieval of Interacting Genes (STRING V11.5, https://string-db.org/) 
database was used to identify the hub gene and visualize the PPI among the marker genes. The 
confidence PPI network was set minimum required interaction score > 0.4 and exported the result as 
a tsv.file. The original result was imported to the Cytoscape software (version 3.8.2), and a PPI network 
was constructed according to the co-expression active interaction source [30]. The core module was 
selected by Molecular Complex Detection (MCODE) plugin of Cytoscape with the degree Cutoff = 2, 
node score Cutoff = 0.2, K-core = 7 and max depth = 100. All nodes in the core module were selected 
as hub genes. The KEGG enrichment analysis of hub genes from top 1 module were applied using 
CluePedia plugin of Cytoscape. The KEGG enrichment analysis terms, it should have contained at 
least three genes from top 1 module and at least 3% of all gene characteristic to each term. Regarding 
the statistical method of the enrichment analyses, a cutoff of P value < 0.05 and kappa score of 0.4 
were identified as screening criteria. 
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2.7. Construction of potential miRNA-mRNA regulatory network 

Hub genes were respectively predicted their potential miRNA depending on the three online 
miRNA databases including miRWalk (http://mirwalk.umm.uni-heidelberg.de/), TargetScan 
(http://www.targetscan.org/vert_80/) and miRDB (http://mirdb.org/). Not all miRNAs were selected, 
and the miRNA was found in at three databases to be considered as potential miRNA. The network 
was established according to bindingp score in Cytoscape software [30].  

2.8. Expression levels of miRNA by GSE175961 Dataset 

GSE175961 was downloaded from GEO database and used to analysis the miRNA expression 
levels of miRNA in human knee based on the platform of GPL20712 (Agilent-070156 Human 
miRNA). Significant differential expression levels of miRNAs between healthy and OA knee were 
analyzed by R language limma package [31]. The valid miRNA needs to meet two requirements 
simultaneously: 1) P value < 0.05; 2) The mRNA and miRNA have the opposite expression levels 
between healthy and OA knee. 

3. Results 

3.1. Single-cell RNA-seq profiling of osteoblasts 

After overlap the osteoblasts marker genes (ALPL, RUNX2) and each cluster marker genes with 
normal and osteoarthritis samples, we acquired 885 normal osteoblasts and 4221 osteoarthritic 
osteoblasts derived from four normal individuals and one patient (Figure S1, Table S1). After excluding 
low-quality cells with percentages of both ribosomal and mitochondrial sequencing count > 25%, we 
retained 577 normal osteoblasts and 3810 osteoarthritic osteoblasts for subsequent analysis. We 
combined the sequencing data of 5106 files into one matrix. The results of the quality control were 
presented in the form of violin diagrams, showing the detected gene numbers, the sequencing count 
and proportion of ribosomal and mitochondrial genes in each cell (Figure S2A). A sum of 19,535 
corresponding genes were involved, from which 1000 highly variable genes were selected for cell 
subpopulation analysis, and the top 10 genes were displayed in Figure S2B. Then, we used principal 
component analysis (PCA) to selected optimal principal component and screened remarkably 
correlated genes in each component. According to the distribution of cell clusters in PC_1 and PC_2, 
scRNA-seq data from different sample have no significant batch effects and presented good cell 
clustering effects shown in Figure S2C. Furthermore, we selected 20 PCs with the P value < 0.05 for 
cell subpopulation visualization (Figure S2D). To directly visualize the multidimensional scRNA-seq 
data, we used TSNE projection to precisely classify osteoblasts into seven clusters (Figure 1A). And 
We used the split TSNE projection to show osteoblasts cells from different samples (Figure 1B). The 
manually annotated marker genes of three osteoblasts subpopulations are listed in Table S2. The 
marker genes of three osteoblasts subpopulations expression were shown in Figure 1C. We 
calculated the marker genes of seven clusters with criteria of p_val_adj < 0.05, in which LEPR 
enriched in clusters 0, 1, 2, VCAM1 enriched in clusters 0, 1; clusters; COL1A1, SPP1 and IFITM5 
enriched in cluster 5; BGLAP and IBSP enriched in clusters 3, 4, 5 and NR4A1 and NR4A2 enriched 
in cluster 6 (Table S3). Taking into account the subpopulations marker genes at the cell cluster marker 
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genes and cell expression levels, we annotated cell clusters 0, 1, 2 as pre-osteoblasts clusters 3, 4, 5 as 
mature osteoblast clusters, and 6 as undetermined osteoblast clusters. When the 7-cluster was 
analyzed for differences with pre-osteoblasts cells, most of the differential genes were ribosomal 
genes and therefore the 7-cluster was annotated as pre-osteoblasts clusters (Table S4). Pre-
osteoblasts included 3009 cells; mature osteoblasts included 1208 cells and undetermined 
Osteoblasts included 170 cells (Table S5). Then, we exhibited the trajectory analysis to explore the 
osteoblasts subpopulations differentiation trends. A relatively high proportion of OA osteoblasts 
consisted of pro-osteoblasts compared with normal osteoblasts, but a relatively low proportion 
consisted of mature osteoblasts and undetermined osteoblasts (Figure 1E). Exactly as described by the 
cell annotation results, osteoblasts were correspondingly divided into three directions in the trajectory 
analysis of scRNA-seq results. From the left to the right of the diagram shows the differentiation of 
pre-osteoblasts to mature osteoblasts, with undetermined osteoblasts in the middle (Figure 1F). 

3.2. Global gene expression characteristics of differently expressed genes 

A total of 117 marker genes were included through differential expression analysis between 
normal and osteoarthritic osteoblasts with |avg_log2FC| > 1 and p_value_adj < 0.05 (Table S6).  

GO enrichment analysis was explored the molecular biology functions of marker genes in 
biological processes, cellular component and molecular function category (Figure 2A,B). In the 
biological processes category, up-regulated marker genes were remarkably related with post-
translational protein modification, regulation of leukocyte migration and positive regulation of 
leukocytes migration, while the enrichment items of down-regulated marker genes included humoral 
immune response, defense response to bacterium and neutrophil activation. In the cellular component 
category, most up-regulated marker genes were associated with collagen-containing extracellular 
matrix and down-regulated marker genes were associated with secretory granule lumen, cytoplasmic 
vesicle lumen and vesicle lumen. In the molecular function category, significant enrichment items of 
up-regulated marker genes included enzyme inhibitor activity, receptor ligand activity and signaling 
receptor activator activity, while the enrichment items of down-regulated marker genes included 
glycosaminoglycan binding. The distribution of top-one GO analysis results was shown in Figure 3A,B. 

KEGG enrichment analysis was explored the potential pathways of marker genes. The 
significantly enrichment item of up-regulated marker genes was cholesterol metabolism (P < 0.05, 
Figure 3C). Down-regulated marker genes were significantly activated in the IL-17 signaling pathway, 
malaria, NOD-like receptor signaling pathway, AGE-RAGE signaling pathway, TNF signaling 
pathway, transcriptional mis-regulation in cancer and osteoclast differentiation (P < 0.05, Figure 3D). 
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Figure 1. Identification of three cell cluster revealing high cellular heterogeneity in normal 
and OA sample based on scRNA-seq data. (A) TSNE projection of merged data. The 
merged data divided into senven clusters through TSNE algorithm. (B) TSNE projection 
of osteoblasts from different samples. (C) The marker genes of three osteoblasts 
subpopulations expression levels in seven clusters. (D) Successful classification of three 
osteoblasts subpopulations using the TSNE algorithm model. (E) Proportions of the three 
osteoblasts subpopulations in different samples. (F) Trajectory analysis revealing the 
osteoblasts lineage progression colored according to different cell clusters. The starting 
node located in Pre-osteoblasts clusters. 
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Figure 2. GO enrichment analysis of marker genes. (A) GO analysis for up-regulated 
marker genes in different category. (B) GO analysis for down-regulated marker genes in 
different category. 
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3.3. GSEA analysis 

GSEA is a genetic statistical model that calculates significant biological pathways after ranking 
complete DEGS ordered avg_log2FC. The DEGS significantly enriched in IL-17 signaling pathway, 
NOD-like receptor signaling pathway and ribosome (P < 0.05, Figure 4). As shown in the figure, 
ribosome mostly enriched in down-regulated marker genes in DEGS. IL-17 and NOD-like receptor 
signaling pathway share the same linear trend and peak and they are mostly enriched in down-regulated 
marker genes in DEGS. 

 

Figure 3．KEGG analysis and distribution of top-one GO terms. (A) The distribution of 
top-one GO analysis result of up-regulated marker genes in different category. (B) The 
distribution of top-one GO analysis result of down-regulated marker genes in different 
category. (C) KEGG pathway analysis for up-regulated marker genes. (D) KEGG pathway 
analysis for down-regulated marker genes. 
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Figure 4. Gene set enrichment analysis of differentially expressed genes. (A–C) GSEA 
applied to validate differentially expressed genes characteristics. The genes ranked on the 
left and right represent the upregulation (red) and downregulation (blue) in enrichment 
map. The differentially expressed genes enriched in IL-17 signaling pathway (A), NOD-
like receptor signaling pathway (B), ribosome (C). 
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3.4. The PPI network and identification of core module 

For a good understanding of the interaction correlation of marker genes, we performed STRING 
online database to construct PPI network. Based on the minimum required interaction score = 0.04, 
the network consists of 756 edges and 95 nodes. All the genes were imported into degree algorithm 
method on CytoHubba plugin, and the weight of marker genes with more interactions with other maker 
genes was visualized (Figure 5A). The most significant cluster with highly interconnected regions in 
the PPI network was obtained from MCODE plugin. The module involved 18 nodes and 134 edges 
(Figure 5B). All nodes in the module such as CXCL12, CXCL8, NR4A1, LCN2, JUN, S100A8, IER2, 
ZFP36, HP, SOCS3, CAMP, JUNB, BTG2, FOSB, RETN, IRF1, EGR1, and ATF3 were regarded as 
hub genes for the next functional enrichment analysis by using the ClueGO plugin in Cytoscape. Hub 
genes correspondingly involved in the IL-17 signaling pathway, osteoclast differentiation, TNF 
signaling pathway, AGE-RAGE signaling pathway in diabetic complications and Pertussis and 
rheumatoid arthritis in KEGG enrichment analysis (Figure 5C, Table S7). The connection genes 
between the different KEGG terms include CXCL8, JUN, JUNB, SOCS3, and FOSB. 

 

Figure 5. PPI networks of marker genes and module analysis. (A) Weighting with marker 
genes using degree algorithm. The colors represent the weight of the genes. (B) The core 
module of marker genes using the MCODE plugin. (C) KEGG pathway analysis of hub 
genes using the ClueGO plugin. 
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Figure 6. Construction of potential miRNA-mRNA regulatory network. (A) Potential 
miRNA-mRNA regulatory network. (B–E) The expression levels of mRNA and valid 
miRNA in normal and OA samples. (B) FOSB, (C) hsa-miR-449a, (D) SOCS3, (E) hsa-
miR-218-5p. * < 0.05; ** < 0.01. 
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3.5. The potential miRNA-mRNA regulatory network 

To explore the potential regulatory pathways of miRNA, we searched three online databases, 
namely, TargetScan, miRWalk and miRDB, to predict the corresponding miRNA of hub genes. A 
miRNA can only be a potential miRNA if it is predicted by all three databases at the same time. 
Furthermore, we identified 189 potential miRNAs including SOCS3 intersects 2 potential miRNAs, 
BTG2 intersects 30 potential miRNAs, CXCL12 intersects 64 potential miRNAs, EGR1 intersects 4 
potential miRNAs, FOSB intersects 10 potential miRNAs, IER2 intersects 4 potential miRNAs and JUN 
intersects 1 potential miRNA. To accurately visualize the regulatory network, we imported the 
intersections between mRNA and miRNA into Cytoscape software (Figure 6A). has-miR-449a and has-
miR-218-5p were not only predicted by the database, but were also experimentally validated to be 
potentially regulated in relation to FOSB and SOCS3 based on the principle that miRNA inhibited the 
translation of the target messenger RNA. FOSB expressed high levels in normal sample than in OA 
sample (P < 0.01), but hsa-miR-449a has the opposite profile (P < 0.01, Figures 6B,C). SOCS3 expressed 
high levels in normal samples (P < 0.01), but hsa-miR-218-5p is highly expressed in OA samples (P < 
0.05, Figures 6D,E). 

4. Discussion 

Osteoarthritis is a chronic disease in which lesions in the subchondral bone area are characterized 
by osteophytes formation and sclerosis. OA lesions in the subchondral bone region are mediated by 
osteocytes and bone matrix. The osteoblasts act in bone production and remodeling, regulate skeletal 
architecture and bone matrix mineralization by producing extracellular matrix proteins and induce 
osteoclastogenesis by producing cytokines or direct cell contact [32]. However, with the onset of OA, 
their function changes dramatically in the subchondral bone region. Traditional RNA bulk-sequencing 
mainly obtains the average expression of gene transcripts of all cells in a tissue, but not the expression 
profile of individual cells or a certain type or state of cells, thus obscuring the role of key cell 
subpopulations or intermediate states. scRNA-seq allows us to obtain the gene expression profiles of 
individual cells and analyze them to identify the transcriptional profiles of cell types and subtypes, and 
thus understand the occurrence of OA and explore novel therapeutic loci. In our research, we combined 
osteoblasts clusters from single-cell datasets GSE169396 and GSE147390 into the same object to 
explore gene expression differences, molecular mechanisms and miRNA regulatory networks in OA. 

In the present study, we identified seven clusters and manually annotated them as pro-osteoblasts 
cluster, mature osteoblasts cluster and undetermined osteoblasts cluster according to marker gene. After 
the proposed time series analysis, the osteoblasts subpopulations were divided into three directions, in 
which the pro-osteoblasts cluster was distributed in the lower left, the mature osteoblasts cluster was 
distributed in the lower right and the undetermined osteoblasts cluster was distributed in the upper part, 
which further validated the manual annotation results of the three osteoblasts subpopulations. 
Undetermined osteoblasts may be in an intermediate stage between pre-osteoblasts and mature 
osteoblasts. In the present study, osteoblasts in normal and OA samples shared the same subpopulation 
typology and no subpopulation appeared in separate samples. However, the proportion of subpopulations 
in the samples changed remarkably, and a higher proportion of mature osteoblasts and undetermined 
osteoblasts in normal samples and a high proportion of pre-osteoblasts in osteoarthritic samples. Upon 
the activation of IGF1 and PGE2 hormones, normal pre-osteoblasts further differentiates into mature 
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osteoblasts, while the mineralization of the extracellular matrix occurred [33]. Indira Prasadam et al. [7] 
found that OA osteoblasts were unable to produce normal minerals and extracellular mesenchyme 
resulting in the inability to express SOST and DMP late markers, demonstrating that osteoblasts were in 
an immature state. As an essential survival environment, the extracellular mesenchyme regulates cell 
proliferation, differentiation and migration through multiple signaling pathways. Significant 
abnormalities in the extracellular mesenchyme have been observed in OA [34–36]. In the present study, 
the result of GO analysis show that marker genes were remarkably enriched in collagen-containing 
extracellular matrix. Subsequently, we found that collagen-containing extracellular matrix was highly 
expressed in the pre-osteoblasts and undetermined osteoblasts 2 clusters, which further validated the 
above results. Therefore, the undetermined osteoblasts 2 clusters may be a state between pre-osteoblasts 
and mature osteoblasts. Furthermore, alterations in osteoblasts status and function triggered by the 
abnormal mass of the extracellular mesenchyme may be involved in the occurrence of OA. 

In the bone matrix, overloading of the joint causes microdamage and osteoblasts detecting 
microdamage can initiate repair by osteoblasts and osteoclasts [6]. IL-17 and TNF-a can mediate the 
RNAKL-RANK-OPG system to control the communication between osteoblasts and osteoclasts to 
achieve bone homeostasis [37–40]. Osteoblasts are important cells in the repair of inflammatory bone 
tissue damage. Michiel Croes [41] found that IL-17 greatly promotes osteogenic differentiation of human 
bone marrow mesenchymal stem cells. Zhongxiu Wang [38] treated primary osteoblasts with IL-17 with 
high expression of mRNA levels of ALP and RUNX2 (markers of early osteoblasts differentiation) and 
osteocalcin (marker of late differentiation) in a mouse model. Both GSEA and KEGG analyses results, 
IL-17 signaling pathway was highly activated in down-regulated marker genes. Obtained KEGG analysis 
of the core module and marker genes, IL-17 and TNF signaling pathway were are jointly regulated by 
JUN. Osteoclast differentiation was jointly regulated by IL-17 and TNF signaling pathway by JUN. 
Therefore, we speculate that the abnormal synthesis of IL-17A receptor and TNF-receptor on the surface 
of osteoblasts results in the inability of IL-17 and TNF to affect osteoblasts effectively, resulting in 
impaired bone remodeling and hypofractionation of primary osteoblasts, which in turn causes the clinical 
features of osteoarthritis (e.g., bone redundancy and subchondral osteosclerosis). We hypothesize that 
JUN may be potential therapeutic loci.  

The expression of mRNAs was negatively regulated and repressed by miRNAs. Hence, mRNAs 
and miRNAs have opposite expression trends. miRNA expression can influence the development of OA 
[42–44]. In recent years, Numerous miRNAs have been identified in osteoarthritic cartilage cells [45]. 
Soyocak [46] found that miR-146a and miR-155 expressed higher levels in the osteoarthritis human than 
that of normal persons subjects and increases with the disease duration. Wang [47] found that miR-411 
and matrix metalloproteinase 13 were negatively correlated in cartilage tissue in osteoarthritis, and that 
matrix metalloproteinase 13 was the target gene of miR-411 which overexpression inhibited the 
expression of matrix metalloproteinase 13, thereby delaying the development of OA. In our research, we 
searched for 130 potential miRNAs, among which hsa-miR-449a and hsa-miR-218-5p were obtained 
from the GSE175961 dataset for experimental validation. We found that hsa-miR-449a and FOSB, hsa-
miR-218-5p with SOCS3 all exhibited opposite expression trends in OA samples. Thus, hsa-miR-449a 
and hsa-miR-218-5p may accompany the development and progression of OA. More experiments are 
still needed to validate and define it.  

In addition, cementoblasts, a manner comparable to osteoblasts, expressed various functional TLRs 
and nucleotide-binding oligomerization domain (NOD) proteins [48]. The expressions of TLRs and 
NODs were upregulated upon differentiation in both cementoblasts and osteoblasts in a similar manner. 
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Both GSEA and KEGG analysis, showed the NOD-like receptor signaling pathway located in down-
regulated area. Therefore, low NOD-receptor expression may delay osteoblasts differentiation, which 
still needs further study. 

Our current research still has limitations. Patient details are incomplete, and some clinical 
parameters such as laboratory tests, medical and surgical records cannot be added to the discussion, 
because they cannot be downloaded. Although the genetic profile of osteoblasts and miRNAs are well 
validated, complementary basic experiments are still necessary to reveal the specific mechanisms 
underlying the development of OA. We have shared the code on the GitHub website and expect more 
researchers to communicate with us via email (GitHub: https://github.com/huanchangxiang/Code-of-
scRNA-in-osteoarthritis.git). 

In conclusion, our study is the first to screen marker gene and potential miRNA for OA osteoblasts 
based on single-cell transcriptomics, and in addition to this, we have identified OA osteoblasts 
subpopulations and genetic signatures to explore the role of osteoblasts in the pathogenesis of OA at the 
genetic level. 
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