[1]
|
Y. Ding, H. M. Wang, P. C. Shi, et al., Trusted cloud service, Chin. J. Comput., 38 (2015), 133–149.
|
[2]
|
M. Ali, S. U. Khan and A. V. Vasilakos, Security in cloud computing: Opportunities and challenges, Inform. Sciences., 305 (2015), 357–383.
|
[3]
|
Y. Q. Zhang, X. F. Wang, X. F. Liu, et al., Survey on cloud computing security, J. Software, 27 (2016), 1328−1348.
|
[4]
|
J. Wilhelm and T. C. Chiueh, A forced sampled execution approach to kernel rootkit identification, In: International Workshop on Recent Advances in Intrusion Detection; 2007 Sept 5–7; Gold Goast, Australia. Berlin: Springer; 2007: 219–235.
|
[5]
|
N. Zhang, R. Zhang, K. Sun, et al., Memory Forensic Challenges Under Misused Architectural Features, IEEE T. Inf. Foren. Sec., 13 (2018), 2345–2358.
|
[6]
|
A. Cohen, N. Nissim, L. Rokach, et al., SFEM: Structural feature extraction methodology for the detection of malicious office documents using machine learning methods, Expert Syst. Appl., 63 (2016), 324–343.
|
[7]
|
N. Nissim, R. Moskovitch, O. BarAd, et al., ALDROID:Efficient update of Android anti-virus software using designated active learning methods, Knowl. Inf. Syst., 49 (2016), 795–833.
|
[8]
|
N. Nissim, A. Cohen, C. Glezer, et al., Detection of malicious PDF files and directions for enhancements: A state-of-the art survey, Comput. Secur., 48 (2015), 246–266.
|
[9]
|
G. Hoglund and J. Butler, Rootkits: subverting the Windows kernel, Addison-Wesley Professional, New Jersey, 2006.
|
[10]
|
A. Case and G. G. Richard III, Advancing Mac OS X rootkit detection, Digit. Invest., 14 (2015), S25–S33.
|
[11]
|
H. Yang, J. Zhuge, H. Liu, et al., A tool for volatile memory acquisition from Android devices, In: IFIP International Conference on Digital Forensics; 2016 Jan 4-6; New Delhi, India. Cham: Springer; 2016: 365–378.
|
[12]
|
A. Kumara and C. D. Jaidhar, Execution time measurement of virtual machine volatile artifacts analyzers, In: 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS);2015 Dec14-17; Melbourne, VIC, Australia. IEEE; 2015: 314–319.
|
[13]
|
Q. Hua and Y. Zhang, Detecting Malware and Rootkit via Memory Forensics, In:2015 International Conference on Computer Science and Mechanical Automation (CSMA); 2015 Oct 23–25; Hangzhou, China. IEEE; 2015: 92–96.
|
[14]
|
C. W. Tien, J. W. Liao, S. C. Chang, et al., Memory forensics using virtual machine introspection for Malware analysis, In:2017 IEEE Conference on Dependable and Secure Computing; 2017 Aug 7-10; Taipei, Taiwan. IEEE; 2017: 518–519.
|
[15]
|
A. Cohen and N. Nissim, Trusted detection of ransomware in a private cloud using machine learning methods leveraging meta-features from volatile memory, Expert Syst. Appl., 102 (2018), 158–178.
|
[16]
|
N. Nissim, Y. Lapidot, A. Cohen, et al., Trusted system-calls analysis methodology aimed at detection of compromised virtual machines using sequential mining, Knowl.-Based Syst., 153 (2018), 147–175.
|
[17]
|
A. Kumara and C. D. Jaidhar, Automated multi-level malware detection system based on reconstructed semantic view of executables using machine learning techniques at VMM, Future Gener. Comp. Sy., 79 (2018), 431–446.
|
[18]
|
H. Upadhyay, H. A. Gohel, A. Pons, et al., Windows Virtualization Architecture For Cyber Threats Detection. In:2018 1st International Conference on Data Intelligence and Security (ICDIS). 2018 Apr 8-10; South Padre Island, TX, USA.IEEE; 2018: 119–122.
|
[19]
|
R. Mosli, R. Li, B. Yuan, et al., Automated malware detection using artifacts in forensic memory images. In:2016 IEEE Symposium on Technologies for Homeland Security (HST). 2016 May 10-11; Waltham, MA, USA. IEEE; 2016: 1–6.
|
[20]
|
M. A. Kumara and C. D. Jaidhar, Leveraging virtual machine introspection with memory forensics to detect and characterize unknown malware using machine learning techniques at hypervisor, Digit. Invest., 23 (2017), 99–123.
|
[21]
|
J. Bai and J. Wang, Improving malware detection using multi view ensemble learning, Secur. Commun. Netw., 9 (2016), 4227–4241.
|
[22]
|
OpenStack. Available from: https://docs.openstack.org/rocky/.
|
[23]
|
Volatility. Available from: https://www.volatilityfoundation.org/.
|
[24]
|
M. H. Ligh, A. Case, J. Levy, et al., The art of memory forensics: detecting malware and threats in windows, linux, and Mac memory, John Wiley & Sons, New Jersey, 2014.
|
[25]
|
Malshare. Available from: http://www.malshare.com
|
[26]
|
T. Kim, B. Kang, M. Rho, et al., A Multimodal Deep Learning Method for Android Malware Detection Using Various Features. IEEE T. Inform. Foren. Sec., 14 (2019), 773–788.
|
[27]
|
Virustotal. Available from: https://www.virustotal.com/
|
[28]
|
M. Hall, E. Frank, G. Holmes, et al., The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11 (2009): 10–18.
|
[29]
|
Z. Wang, J. Ren, D. Zhang, et al., A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos, Neurocomputing, 287 (2018), 68–83.
|
[30]
|
J. Zabalza, J. Ren, J. Zheng, et al., Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging, Neurocomputing, 185 (2016), 1–10.
|
[31]
|
S. Md Noor, J. Ren, S. Marshall, et al., Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries, Sensors, 17 (2017), 2644.
|
[32]
|
J. Ren, D. Wang and J Jiang, Effective recognition of MCCs in mammograms using an improved neural classifier, Eng. Appl. Artif. Intel., 24 (2011), 638–645.
|