Citation: Qi Cui, Ruohan Meng, Zhili Zhou, Xingming Sun, Kaiwen Zhu. An anti-forensic scheme on computer graphic images and natural images using generative adversarial networks[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4923-4935. doi: 10.3934/mbe.2019248
[1] | Zairong Wang, Xuan Tang, Haohuai Liu, Lingxi Peng . Artificial immune intelligence-inspired dynamic real-time computer forensics model. Mathematical Biosciences and Engineering, 2020, 17(6): 7221-7233. doi: 10.3934/mbe.2020370 |
[2] | Hui Yao, Yuhan Wu, Shuo Liu, Yanhao Liu, Hua Xie . A pavement crack synthesis method based on conditional generative adversarial networks. Mathematical Biosciences and Engineering, 2024, 21(1): 903-923. doi: 10.3934/mbe.2024038 |
[3] | Jiajia Jiao, Xiao Xiao, Zhiyu Li . dm-GAN: Distributed multi-latent code inversion enhanced GAN for fast and accurate breast X-ray image automatic generation. Mathematical Biosciences and Engineering, 2023, 20(11): 19485-19503. doi: 10.3934/mbe.2023863 |
[4] | Hao Wang, Guangmin Sun, Kun Zheng, Hui Li, Jie Liu, Yu Bai . Privacy protection generalization with adversarial fusion. Mathematical Biosciences and Engineering, 2022, 19(7): 7314-7336. doi: 10.3934/mbe.2022345 |
[5] | Jinhua Zeng, Xiulian Qiu, Shaopei Shi . Image processing effects on the deep face recognition system. Mathematical Biosciences and Engineering, 2021, 18(2): 1187-1200. doi: 10.3934/mbe.2021064 |
[6] | Song Wan, Guozheng Yang, Lanlan Qi, Longlong Li , Xuehu Yan, Yuliang Lu . Multiple security anti-counterfeit applications to QR code payment based on visual secret sharing and QR code. Mathematical Biosciences and Engineering, 2019, 16(6): 6367-6385. doi: 10.3934/mbe.2019318 |
[7] | Dehua Feng, Xi Chen, Xiaoyu Wang, Xuanqin Mou, Ling Bai, Shu Zhang, Zhiguo Zhou . Predicting effectiveness of anti-VEGF injection through self-supervised learning in OCT images. Mathematical Biosciences and Engineering, 2023, 20(2): 2439-2458. doi: 10.3934/mbe.2023114 |
[8] | Si Li, Limei Peng, Fenghuan Li, Zengguo Liang . Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging. Mathematical Biosciences and Engineering, 2023, 20(6): 9728-9758. doi: 10.3934/mbe.2023427 |
[9] | Xiao Wang, Jianbiao Zhang, Ai Zhang, Jinchang Ren . TKRD: Trusted kernel rootkit detection for cybersecurity of VMs based on machine learning and memory forensic analysis. Mathematical Biosciences and Engineering, 2019, 16(4): 2650-2667. doi: 10.3934/mbe.2019132 |
[10] | Sonam Saluja, Munesh Chandra Trivedi, Ashim Saha . Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions. Mathematical Biosciences and Engineering, 2024, 21(4): 5250-5282. doi: 10.3934/mbe.2024232 |
[1] | A. Alabdulkarim, M. Al-Rodhaan, Y. Tian, et al., A privacy-preserving algorithm for clinical decision-support systems using random forest, bCMC-Comput. Mater. Con., 58(2019), 585–601. |
[2] | P. Yang, R. Ni, Z. Yao, et al., Robust contrast enhancement forensics using convolutional neural networks, (2018), arXiv preprint arXiv:1803.04749. |
[3] | M. C. Stamm and K. J. R. Liu, Forensic estimation and reconstruction of contrast enhancement mapping, IEEE International Conference on Acoustics, Speech and Signal, (2010), 1698–1701. |
[4] | G. Cao, Y. Zhao, R. Ni, et al., Contrast enhancement based forensics in digital images, IEEE T. Inf. Foren. Sec., 9(2014), 515–525. |
[5] | X. Lin, C. T. Li and Y. Hu, Exposing image forgery through the detection of contrast enhancement, IEEE International Conference on Image Processing (ICIP), (2013), 4467–4471. |
[6] | C. Yuan, X. Li, Q. M. Jonathan. Wu, et al., Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis, CMC-Comput. Mater. Con., 53(2017), 357–371. |
[7] | F. Peng and D. L. Zhou, Discriminating natural images and computer generated graphics based on the impact of CFA interpolation on the correlation of PRNU, Digit. Invest., 11(2014), 111–119. |
[8] | M. Long, F. Peng and Y. Zhu, Identifying natural images and computer generated graphics based on binary similarity measures of PRNU, Multimed. Tools. Appl., 78(2019), 489–506. |
[9] | A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, (2015), arXiv preprint arXiv:1511.06434. |
[10] | K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, IEEE International Conference on Computer Vision, (2016), 770–778. |
[11] | Q. Cui, S. McIntosh and H. Sun, Identifying materials of photographic images and photorealistic computer generated graphics based on deep CNNs, CMC-Comput. Mater. Con., 55(2018), 229–241. |
[12] | W. Quan, K. Wang, D. M. Yan, et al., Distinguishing between natural and computer-generated images using convolutional neural networks, IEEE T. Inf. Foren. Sec, 13(2018), 2772–2787. |
[13] | T. Ng, S. Chang, J. Hs, et al., Columbia photographic images and photorealistic computer graphics dataset, ADVENT, Columbia University, (2005). |
[14] | J. Wang, T. Li., X. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE T. Circ. Syst. Vid. Tec., (2018), DOI: 10.1109/TCSVT.2018.2867786. |
[15] | G. Cao, Y. Zhao, R. Ni, et al., Anti-forensics of contrast enhancement in digital images, 12th ACM Workshop on Multimedia and Security, (2010), 25–34. |
[16] | K. Singh, A. Kansal and G. Singh, An improved median filtering anti-forensics with better image quality and forensic undetectability, Multidi. Syst. Sign. P., (2019), 1–24. |
[17] | A. Mehrish, A. V. Subramanyam and S. Emmanuel, Joint spatial and discrete cosine transform domain-based counter forensics for adaptive contrast enhancement. IEEE Access, 7(2019), 27183–27195. |
[18] | P. M. Shelke and R. S. Prasad, An improved anti-forensics JPEG compression using least cuckoo search algorithm, Imaging. Sci. J., 66(2018), 169–183. |
[19] | D. Kim, H. U. Jang, S. M. Mun, et al., Median filtered image restoration and anti-forensics using adversarial networks, IEEE Signal Proc. Let., 25(2018), 278–282. |
[20] | M. C. Stamm and K. R. Liu, Anti-forensics of digital image compression, IEEE T. Inf. Foren. Sec., 6(2011), 1050–1065. |
[21] | P. Yang, R. Ni, Y. Zhao, et al., Robust contrast enhancement forensics using convolutional neural networks, (2018), arXiv preprint arXiv:1803.04749. |
[22] | Y. Luo, H. Zi, Q. Zhang, et al., Anti-forensics of jpeg compression using generative adversarial networks, 26th European Signal Processing Conference (EUSIPCO), (2018), 952–956. |
[23] | H. Li, W. Luo, X. Qiu, et al., Identification of various image operations using residual-based features, IEEE T. Circ. Syst. Vid. Tec., 28(2018), 31–45. |
[24] | R. Böhme and M. Kirchner, Counter-forensics: Attacking image forensics, Digital Image Forensics, Springer, New York, (2013), 327–366. |
[25] | J. Fridrich and J. Kodovsky, Rich models for steganalysis of digital images, IEEE T. Inf. Foren. Sec., 7(2012), 868–882. |
[26] | T. Pevny, P. Bas and J. Fridrich, Steganalysis by subtractive pixel adjacency matrix, IEEE T. Inf. Foren. Sec., 5(2010), 215–224. |
[27] | I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial nets, Advances in Neural Information Processing Systems, (2014), 2672–2680. |
[28] | J. Hayes and G. Danezis, Generating steganographic images via adversarial training, Advances in Neural Information Processing Systems, (2017), 1954–1963. |
[29] | D. Volkhonskiy, I. Nazarov, B. Borisenko, et al., Steganographic generative adversarial networks, (2017), arXiv preprint arXiv:1703.05502. |
[30] | H. Shi, J. Dong, W. Wang, et al., SSGAN: Secure steganography based on generative adversarial networks, Pacific Rim Conference on Multimedia, Springer, Cham, (2017), 534–544. |
[31] | R. Meng, S. G. Rice, J. Wang, et al., A fusion steganographic algorithm based on faster r-cnn, CMC-Comput. Mater. Con., 55(2018), 1–16. |
[32] | S. Ren, K. He, R. Girshick, et al., Faster r-cnn: Towards real-time object detection with region proposal networks, Advances in Neural Information Processing Systems, (2015), 91–99. |
[33] | I. Gulrajani, F. Ahmed, M. Arjovsky, et al., Improved training of wasserstein gans, Advances in Neural Information Processing Systems, (2017), 5767–5777. |
[34] | G. Xu, H. Z. Wu, and Y. Q. Shi, Structural design of convolutional neural networks for steganalysis, IEEE Signal Proc. Let., 23(2016), 708–712. |
[35] | L. Baroffio, L. Bondi, P. Bestagini, et al., Camera identification with deep convolutional networks. IEEE Signal Proc. Let., 24(2016), 259–263. |
[36] | S. Xiang and H. Li, On the effect of batch normalization and weight normalization in generative adversarial networks, (2017), arXiv preprint arXiv:1704.03971. |
[37] | Z. Liu, P. Luo, X. Wang, et al., Deep learning face attributes in the wild, IEEE International Conference on Computer Vision, (2015), 3730–3738. |
[38] | T. Tieleman and G. Hinton, Lecture 6.5-rmsprop, coursera: neural networks for machine learning, University of Toronto, (2012). |
1. | Yangjin Kim, Hyunji Kang, Gibin Powathil, Hyeongi Kim, Dumitru Trucu, Wanho Lee, Sean Lawler, Mark Chaplain, Dominik Wodarz, Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma, 2018, 13, 1932-6203, e0204865, 10.1371/journal.pone.0204865 | |
2. | Yangjin Kim, Junho Lee, Donggu Lee, Hans Othmer, Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model, 2019, 11, 2072-6694, 215, 10.3390/cancers11020215 | |
3. | Christian Engwer, Christian Stinner, Christina Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, 2017, 27, 0218-2025, 1355, 10.1142/S0218202517400188 | |
4. | Markos Antonopoulos, Dimitra Dionysiou, Georgios Stamatakos, Nikolaos Uzunoglu, Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study, 2019, 20, 1471-2105, 10.1186/s12859-019-2997-9 | |
5. | Junho Lee, Donggu Lee, Sean Lawler, Yangjin Kim, Stacey Finley, Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model, 2021, 17, 1553-7358, e1008257, 10.1371/journal.pcbi.1008257 | |
6. | Stefaan W. Verbruggen, Laoise M. McNamara, 2018, 9780128129524, 157, 10.1016/B978-0-12-812952-4.00006-4 | |
7. | Thomas Hillen, Kevin J. Painter, Magdalena A. Stolarska, Chuan Xue, Multiscale phenomena and patterns in biological systems: special issue in honour of Hans Othmer, 2020, 80, 0303-6812, 275, 10.1007/s00285-020-01473-2 | |
8. | Min-Jhe Lu, Chun Liu, John Lowengrub, Shuwang Li, Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth with Chemotaxis, 2020, 82, 0092-8240, 10.1007/s11538-020-00716-z | |
9. | Yangjin Kim, Donggu Lee, Junho Lee, Seongwon Lee, Sean Lawler, Eugene Demidenko, Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model, 2019, 14, 1932-6203, e0211041, 10.1371/journal.pone.0211041 | |
10. | Raluca Eftimie, Joseph J. Gillard, Doreen A. Cantrell, Mathematical Models for Immunology: Current State of the Art and Future Research Directions, 2016, 78, 0092-8240, 2091, 10.1007/s11538-016-0214-9 | |
11. | S. L. Waters, L. J. Schumacher, A. J. El Haj, Regenerative medicine meets mathematical modelling: developing symbiotic relationships, 2021, 6, 2057-3995, 10.1038/s41536-021-00134-2 | |
12. | Vladimir Simic, Miljan Milosevic, Vladimir Milicevic, Nenad Filipovic, Milos Kojic, A novel composite smeared finite element for mechanics (CSFEM): Some applications, 2022, 09287329, 1, 10.3233/THC-220414 | |
13. | Miloš Kojić, Miljan Milošević, Arturas Ziemys, 2023, 9780323884723, 65, 10.1016/B978-0-323-88472-3.00002-5 | |
14. | Gabriella Bretti, Adele De Ninno, Roberto Natalini, Daniele Peri, Nicole Roselli, Estimation Algorithm for a Hybrid PDE–ODE Model Inspired by Immunocompetent Cancer-on-Chip Experiment, 2021, 10, 2075-1680, 243, 10.3390/axioms10040243 | |
15. | Dimitrios G. Patsatzis, Algorithmic asymptotic analysis: Extending the arsenal of cancer immunology modeling, 2022, 534, 00225193, 110975, 10.1016/j.jtbi.2021.110975 | |
16. | Joseph D. Butner, Prashant Dogra, Vittorio Cristini, Thomas S. Deisboeck, Zhihui Wang, 2023, 9780128216248, 251, 10.1016/B978-0-12-821618-7.00244-3 | |
17. | Jonggul Lee, Donggu Lee, Yangjin Kim, Mathematical model of STAT signalling pathways in cancer development and optimal control approaches, 2021, 8, 2054-5703, 10.1098/rsos.210594 | |
18. | Junho Lee, Jin Su Kim, Yangjin Kim, Stacey Finley, Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies, 2021, 17, 1553-7358, e1009457, 10.1371/journal.pcbi.1009457 | |
19. | Aurelio A. de los Reyes, Yangjin Kim, Optimal regulation of tumour-associated neutrophils in cancer progression, 2022, 9, 2054-5703, 10.1098/rsos.210705 | |
20. | Min-Jhe Lu, Wenrui Hao, Chun Liu, John Lowengrub, Shuwang Li, Nonlinear simulation of vascular tumor growth with chemotaxis and the control of necrosis, 2022, 459, 00219991, 111153, 10.1016/j.jcp.2022.111153 | |
21. | Tingzhe Sun, Multi-scale modeling of hippo signaling identifies homeostatic control by YAP-LATS negative feedback, 2021, 208, 03032647, 104475, 10.1016/j.biosystems.2021.104475 | |
22. | Yangjin Kim, Junho Lee, Chaeyoung Lee, Sean Lawler, Role of senescent tumor cells in building a cytokine shield in the tumor microenvironment: mathematical modeling, 2023, 86, 0303-6812, 10.1007/s00285-022-01850-z | |
23. | Rebecca M. Crossley, Philip K. Maini, Tommaso Lorenzi, Ruth E. Baker, Traveling waves in a coarse‐grained model of volume‐filling cell invasion: Simulations and comparisons, 2023, 0022-2526, 10.1111/sapm.12635 | |
24. | Anneke S.K. Verbruggen, Elan C. McCarthy, Roisin M. Dwyer, Laoise M. McNamara, Mechanobiological cues to bone cells during early metastasis drive later osteolysis: a computational mechanoregulation framework prediction, 2024, 29499070, 100100, 10.1016/j.mbm.2024.100100 |