Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons

  • Received: 01 October 2012 Accepted: 29 June 2018 Published: 01 October 2013
  • MSC : Primary: 60J60, 60J70; Secondary: 92-08.

  • With the aim to describe the interaction between a couple of neurons a stochastic model is proposed and formalized. In such a model, maintaining statements of the Leaky Integrate-and-Fire framework, we include a random component in the synaptic current, whose role is to modify the equilibrium point of the membrane potential of one of the two neurons and when a spike of the other one occurs it is turned on. The initial and after spike reset positions do not allow to identify the inter-spike intervals with the corresponding first passage times. However, we are able to apply some well-known results for the first passage time problem for the Ornstein-Uhlenbeck process in order to obtain (i) an approximation of the probability density function of the inter-spike intervals in one-way-type interaction and (ii) an approximation of the tail of the probability density function of the inter-spike intervals in the mutual interaction. Such an approximation is admissible for small instantaneous firing rates of both neurons.

    Citation: Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189

    Related Papers:

    [1] Jakub Cupera . Diffusion approximation of neuronal models revisited. Mathematical Biosciences and Engineering, 2014, 11(1): 11-25. doi: 10.3934/mbe.2014.11.11
    [2] Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003
    [3] Roberta Sirovich, Luisa Testa . A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences and Engineering, 2016, 13(3): 597-611. doi: 10.3934/mbe.2016010
    [4] Virginia Giorno, Serena Spina . On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285
    [5] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1
    [6] Alessia Civallero, Cristina Zucca . The Inverse First Passage time method for a two dimensional Ornstein Uhlenbeck process with neuronal application. Mathematical Biosciences and Engineering, 2019, 16(6): 8162-8178. doi: 10.3934/mbe.2019412
    [7] Robert P. Gilbert, Philippe Guyenne, Ying Liu . Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences and Engineering, 2013, 10(2): 319-344. doi: 10.3934/mbe.2013.10.319
    [8] Massimiliano Tamborrino . Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences and Engineering, 2016, 13(3): 613-629. doi: 10.3934/mbe.2016011
    [9] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences and Engineering, 2016, 13(3): 483-493. doi: 10.3934/mbe.2016002
    [10] Kyle Wendling, Cheng Ly . Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity. Mathematical Biosciences and Engineering, 2019, 16(4): 2023-2048. doi: 10.3934/mbe.2019099
  • With the aim to describe the interaction between a couple of neurons a stochastic model is proposed and formalized. In such a model, maintaining statements of the Leaky Integrate-and-Fire framework, we include a random component in the synaptic current, whose role is to modify the equilibrium point of the membrane potential of one of the two neurons and when a spike of the other one occurs it is turned on. The initial and after spike reset positions do not allow to identify the inter-spike intervals with the corresponding first passage times. However, we are able to apply some well-known results for the first passage time problem for the Ornstein-Uhlenbeck process in order to obtain (i) an approximation of the probability density function of the inter-spike intervals in one-way-type interaction and (ii) an approximation of the tail of the probability density function of the inter-spike intervals in the mutual interaction. Such an approximation is admissible for small instantaneous firing rates of both neurons.


    [1] Neural Comp., 13 (2001), 2763-2797.
    [2] Advances in Applied Probability, 19 (1987), 784-990.
    [3] Neural Comput., 22 (2010), 2558-2585.
    [4] Methodol. Comput. Appl. Probab., 13 (2011), 29-57.
    [5] Biol. Cybern., 95 (2006), 1-19.
    [6] in Computer Aided Systems Theory – EUROCAST 2005, Lecture Notes in Computer Science, 3643, Springer, Berlin-Heidelberg, 2005, 436-446.
    [7] BioSystems, 79 (2005), 109-116.
    [8] Adv. Appl. Prob., 33 (2001), 453-482.
    [9] Neural Computation, 23 (2011), 421-434.
    [10] Adv. Appl. Prob., 22 (1990), 883-914.
    [11] Phys. Rev. Lett., 68 (2001), 4179-4182.
    [12] in Computer Aided Systems Theory – EUROCAST 2007, Lecture Notes in Computer Science, 4739, Springer, Berlin-Heidelberg, 2007, 146-153.
    [13] Scientiae Mathematicae Japonicae, 67 (2008), 241-266. Available from: http://www.jams.or.jp/scm/contents/e-2008-2/2008-12.pdf.
    [14] in Network Science, Springer, London, 2010, 217-242.
    [15] Brain Research, 1434 (2012), 243-256.
    [16] Phys. Rev. E., 70 (2004), 1-4.
    [17] Progress of Theoretical Physics, 114 (2005), 1-18.
    [18] in Computational and Ambient Intelligence, Lecture Notes in Computer Science, 4507, Springer, Berlin-Heidelberg, 2007, 23-30.
    [19] Neural Comput., 19 (2007), 3262-3292.
  • This article has been cited by:

    1. M.F. Carfora, E. Pirozzi, Linked Gauss-Diffusion processes for modeling a finite-size neuronal network, 2017, 161, 03032647, 15, 10.1016/j.biosystems.2017.07.009
    2. G. Ascione, M.F. Carfora, E. Pirozzi, A stochastic model for interacting neurons in the olfactory bulb, 2019, 185, 03032647, 104030, 10.1016/j.biosystems.2019.104030
    3. Giacomo Ascione, Yuliya Mishura, Enrica Pirozzi, Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications, 2021, 23, 1387-5841, 53, 10.1007/s11009-019-09748-y
    4. Enrica Pirozzi, Maria Francesca Carfora, 2015, Stochastic modeling of the firing activity of coupled neurons periodically driven, 1-60133-018-9, 195, 10.3934/proc.2015.0195
    5. Giuseppe D’Onofrio, Claudio Macci, Enrica Pirozzi, Asymptotic Results for First-Passage Times of Some Exponential Processes, 2018, 20, 1387-5841, 1453, 10.1007/s11009-018-9659-7
    6. Aniello Buonocore, Luigia Caputo, Giuseppe D’Onofrio, Enrica Pirozzi, Closed-form solutions for the first-passage-time problem and neuronal modeling, 2015, 64, 0035-5038, 421, 10.1007/s11587-015-0248-6
    7. Giuseppe D’Onofrio, Enrica Pirozzi, Marcelo O. Magnasco, 2015, Chapter 22, 978-3-319-27339-6, 166, 10.1007/978-3-319-27340-2_22
    8. Angelo Pirozzi, Enrica Pirozzi, 2019, Chapter 100665-1, 978-1-4614-7320-6, 1, 10.1007/978-1-4614-7320-6_100665-1
    9. Giuseppe D'Onofrio, Enrica Pirozzi, Successive spike times predicted by a stochastic neuronal model with a variable input signal, 2016, 13, 1551-0018, 495, 10.3934/mbe.2016003
    10. Enrica Pirozzi, A Symmetry-Based Approach for First-Passage-Times of Gauss-Markov Processes through Daniels-Type Boundaries, 2020, 12, 2073-8994, 279, 10.3390/sym12020279
    11. Alexander Vidybida, Olha Shchur, Relation Between Firing Statistics of Spiking Neuron with Delayed Fast Inhibitory Feedback and Without Feedback, 2018, 17, 0219-4775, 1850005, 10.1142/S0219477518500050
    12. Mario Abundo, Enrica Pirozzi, On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes, 2019, 7, 2227-7390, 991, 10.3390/math7100991
    13. Angelo Pirozzi, Enrica Pirozzi, 2022, Chapter 100665, 978-1-0716-1004-6, 1674, 10.1007/978-1-0716-1006-0_100665
    14. M. F. Carfora, 2023, Chapter 8, 978-3-031-33049-0, 137, 10.1007/978-3-031-33050-6_8
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2534) PDF downloads(441) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog