Diffusion approximation of neuronal models revisited

  • Received: 01 December 2012 Accepted: 29 June 2018 Published: 01 September 2013
  • MSC : 60J60, 60J70, 92C20.

  • Leaky integrate-and-fire neuronal models with reversal potentials have a number of different diffusion approximations, each depending on the form of the amplitudes of the postsynaptic potentials.Probability distributions of the first-passage times of the membrane potential in the original model and itsdiffusion approximations are numerically compared in order to find whichof the approximations is the most suitable one.The properties of the random amplitudes of postsynapticpotentials are discussed.It is shown on a simple example that the quality of the approximation depends directly on them.

    Citation: Jakub Cupera. Diffusion approximation of neuronal models revisited[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 11-25. doi: 10.3934/mbe.2014.11.11

    Related Papers:

    [1] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189
    [2] F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev . "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences and Engineering, 2008, 5(2): 239-260. doi: 10.3934/mbe.2008.5.239
    [3] Virginia Giorno, Serena Spina . On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285
    [4] Roberta Sirovich, Luisa Testa . A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences and Engineering, 2016, 13(3): 597-611. doi: 10.3934/mbe.2016010
    [5] Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001
    [6] Massimiliano Tamborrino . Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences and Engineering, 2016, 13(3): 613-629. doi: 10.3934/mbe.2016011
    [7] Alina Chertock, Pierre Degond, Sophie Hecht, Jean-Paul Vincent . Incompressible limit of a continuum model of tissue growth with segregation for two cell populations. Mathematical Biosciences and Engineering, 2019, 16(5): 5804-5835. doi: 10.3934/mbe.2019290
    [8] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1
    [9] Nikita Ratanov . A two-state neuronal model with alternating exponential excitation. Mathematical Biosciences and Engineering, 2019, 16(5): 3411-3434. doi: 10.3934/mbe.2019171
    [10] Roberta Sirovich, Laura Sacerdote, Alessandro E. P. Villa . Cooperative behavior in a jump diffusion model for a simple network of spiking neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 385-401. doi: 10.3934/mbe.2014.11.385
  • Leaky integrate-and-fire neuronal models with reversal potentials have a number of different diffusion approximations, each depending on the form of the amplitudes of the postsynaptic potentials.Probability distributions of the first-passage times of the membrane potential in the original model and itsdiffusion approximations are numerically compared in order to find whichof the approximations is the most suitable one.The properties of the random amplitudes of postsynapticpotentials are discussed.It is shown on a simple example that the quality of the approximation depends directly on them.


    [1] Springer-Verlag, New York, 1998.
    [2] Phys. Rev. E (3), 73 (2006), 061910, 9 pp.
    [3] Biol. Cybern., 99 (2008), 279-301.
    [4] J. Theor. Neurobiol., 2 (1983), 127-153.
    [5] J. Physiol., 117 (1952), 500-544.
    [6] Mass. MIT Press, Cambridge, 1989.
    [7] Brain Res., 1434 (2012), 136-141.
    [8] J. Theor. Biol., 166 (1994), 393-406.
    [9] J. Theor. Biol., 107 (1984), 631-647.
    [10] Biol. Cybern., 56 (1987), 19-26.
    [11] Biol. Cybern., 73 (1995), 457-465.
    [12] Biosystems, 25 (1991), 179-191.
    [13] J. Theor. Biol., 171 (1994), 225-232.
    [14] Notes taken by Charles E. Smith, Lecture Notes in Biomathematics, Vol. 14, Springer-Verlag, Berlin-New York, 1977.
    [15] Biol. Cybern., 35 (1979), 1-9.
    [16] Phys. Rev. E, 76 (2007), 021919.
    [17] Springer Series in Synergetics, 18, Springer-Verlag, Berlin, 1989.
    [18] Neural Comput., 17 (2005), 2301-2315.
    [19] Springer-Verlag, Berlin, 1978.
    [20] J. Theor. Neurobiol., 3 (1984), 67-77.
    [21] Biophys. J., 5 (1965), 173-194.
    [22] J. Theor. Biol., 77 (1979), 65-81.
    [23] J. Theor. Biol., 83 (1980), 377-387.
    [24] Comput. Biol. Med., 27 (1997), 1-7.
    [25] J. Theor. Biol., 105 (1983), 345-368.
  • This article has been cited by:

    1. Kamil Rajdl, Petr Lansky, Stein’s neuronal model with pooled renewal input, 2015, 109, 0340-1200, 389, 10.1007/s00422-015-0650-x
    2. Giuseppe D’Onofrio, Massimiliano Tamborrino, Petr Lansky, The Jacobi diffusion process as a neuronal model, 2018, 28, 1054-1500, 103119, 10.1063/1.5051494
    3. Massimiliano Tamborrino, Petr Lansky, Shot noise, weak convergence and diffusion approximations, 2021, 418, 01672789, 132845, 10.1016/j.physd.2021.132845
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2753) PDF downloads(473) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog