Cooperative behavior in a jump diffusion model for a simple network of spiking neurons

  • Received: 01 October 2012 Accepted: 29 June 2018 Published: 01 October 2013
  • MSC : 60G99, 60K40, 90B15, 92B20.

  • The distribution of time intervals between successivespikes generated by a neuronal cell --the interspike intervals(ISI)-- may reveal interesting features of the underlyingdynamics. In this study we analyze the ISI sequence --thespike train-- generated by a simple network of neurons whose outputactivity is modeled by a jump-diffusion process. We prove that,when specific ranges of the involved parameters are chosen, it is possible toobserve multimodal ISI distributions which reveal that the modelednetwork fires with more than one single preferred time interval.Furthermore, the system exhibits resonance behavior, withmodulation of the spike timings by the noise intensity. We also show that inhibition helps the signal transmission between theunits of the simple network.

    Citation: Roberta Sirovich, Laura Sacerdote, Alessandro E. P. Villa. Cooperative behavior in a jump diffusion model for a simple network of spiking neurons[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 385-401. doi: 10.3934/mbe.2014.11.385

    Related Papers:

    [1] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189
    [2] Roberta Sirovich, Luisa Testa . A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences and Engineering, 2016, 13(3): 597-611. doi: 10.3934/mbe.2016010
    [3] Jakub Cupera . Diffusion approximation of neuronal models revisited. Mathematical Biosciences and Engineering, 2014, 11(1): 11-25. doi: 10.3934/mbe.2014.11.11
    [4] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1
    [5] Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49
    [6] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences and Engineering, 2016, 13(3): 483-493. doi: 10.3934/mbe.2016002
    [7] Nikita Ratanov . A two-state neuronal model with alternating exponential excitation. Mathematical Biosciences and Engineering, 2019, 16(5): 3411-3434. doi: 10.3934/mbe.2019171
    [8] Virginia Giorno, Serena Spina . On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285
    [9] Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003
    [10] Kyle Wendling, Cheng Ly . Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity. Mathematical Biosciences and Engineering, 2019, 16(4): 2023-2048. doi: 10.3934/mbe.2019099
  • The distribution of time intervals between successivespikes generated by a neuronal cell --the interspike intervals(ISI)-- may reveal interesting features of the underlyingdynamics. In this study we analyze the ISI sequence --thespike train-- generated by a simple network of neurons whose outputactivity is modeled by a jump-diffusion process. We prove that,when specific ranges of the involved parameters are chosen, it is possible toobserve multimodal ISI distributions which reveal that the modelednetwork fires with more than one single preferred time interval.Furthermore, the system exhibits resonance behavior, withmodulation of the spike timings by the noise intensity. We also show that inhibition helps the signal transmission between theunits of the simple network.


    [1] Stoch. Models, 21 (2005), 967-980.
    [2] Ann. Appl. Probab., 12 (2002), 1071-1095.
    [3] Phys. Rev. E, 53 (1996), 3958-3969.
    [4] Phys. Rev. E, 49 (1994), 4989-5000.
    [5] J. Neurophysiol., 31 (1968), 574-587.
    [6] Phys. Rev. E, 58 (1998), 4820-4827.
    [7] Proceedings of the National Academy of Sciences, 97 (2000), 5557-5561.
    [8] Phys. Rev. E, 54 (1996), 5575-5584.
    [9] Phys. Rev. E, 52 (1995), R3321-R3324.
    [10] The Journal of Neuroscience, 32 (2012), 11132-11143.
    [11] J. Neurosci., 22 (2002), 7244-7253.
    [12] Comm. Statist. Simulation Comput., 28 (1999), 1135-1163.
    [13] NeuroImage, 52 (2010), 947-955.
    [14] Neuron, 19 (1997), 665-678.
    [15] Vol. 4, McGraw-Hill, New York, 2000.
    [16] J. Theor. Biol., 107 (1984), 631-647.
    [17] Biophysical Journal, 19 (1977), 241-252.
    [18] Nature Neuroscience, 8 (2005), 202-211.
    [19] Journal of Statistical Physics, 70 (1993), 309-327.
    [20] Phys. Rev. Lett., 67 (1991), 656-659.
    [21] Biosystems, 25 (1991), 179-191.
    [22] J. Appl. Probab., 22 (1985), 360-369.
    [23] Biological Cybernetics, 24 (1976), 237-240.
    [24] Sci. Math. Jpn., 58 (2003), 307-322.
    [25] Origins: Brain and Self Organization, (1994), 299-331.
    [26] Phys. Rev. E, 59 (1999), 3427-3443.
    [27] Cambridge University Press, 2005.
    [28] Journal of Computational Neuroscience, 1 (1994), 313-321.
    [29] J. Theor. Neurobiol., 1 (1982), 197-218.
    [30] Nature, 373 (1995), 33-36.
    [31] J. Physiol., 509 (1998), 797-815.
  • This article has been cited by:

    1. Franco Flandoli, Benjamin Gess, Michael Scheutzow, Synchronization by noise for order-preserving random dynamical systems, 2017, 45, 0091-1798, 10.1214/16-AOP1088
    2. Massimiliano Tamborrino, Laura Sacerdote, Martin Jacobsen, Weak convergence of marked point processes generated by crossings of multivariate jump processes. Applications to neural network modeling, 2014, 288, 01672789, 45, 10.1016/j.physd.2014.08.003
    3. Alexander K. Vidybida, Output Stream of Leaky Integrate-and-Fire Neuron Without Diffusion Approximation, 2017, 166, 0022-4715, 267, 10.1007/s10955-016-1698-2
    4. L. A. da Silva, R. D. Vilela, Colored noise and memory effects on formal spiking neuron models, 2015, 91, 1539-3755, 10.1103/PhysRevE.91.062702
    5. Romi Mankin, Sander Paekivi, Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.012125
    6. Mehrnaz Anvari, M. Reza Rahimi Tabar, Joachim Peinke, Klaus Lehnertz, Disentangling the stochastic behavior of complex time series, 2016, 6, 2045-2322, 10.1038/srep35435
    7. M. Reza Rahimi Tabar, 2019, Chapter 12, 978-3-030-18471-1, 111, 10.1007/978-3-030-18472-8_12
    8. M.F. Carfora, E. Pirozzi, Linked Gauss-Diffusion processes for modeling a finite-size neuronal network, 2017, 161, 03032647, 15, 10.1016/j.biosystems.2017.07.009
    9. Sander Paekivi, Romi Mankin, Bimodality of the interspike interval distributions for subordinated diffusion models of integrate-and-fire neurons, 2019, 534, 03784371, 122106, 10.1016/j.physa.2019.122106
    10. Franco Flandoli, Benjamin Gess, Michael Scheutzow, Synchronization by noise, 2017, 168, 0178-8051, 511, 10.1007/s00440-016-0716-2
    11. Alexandre Melanson, André Longtin, Data-driven inference for stationary jump-diffusion processes with application to membrane voltage fluctuations in pyramidal neurons, 2019, 9, 2190-8567, 10.1186/s13408-019-0074-3
    12. Saket K. Choudhary, Vijender K. Solanki, LIF Neuron with Hypo-exponential Distributed Delay: Emergence of Unimodal, Bimodal, Multimodal ISI Distribution with Long Tail, 2020, 14, 18722121, 148, 10.2174/1872212113666190315165139
    13. Romi Mankin, Astrid Rekker, Sander Paekivi, Statistical moments of the interspike intervals for a neuron model driven by trichotomous noise, 2021, 103, 2470-0045, 10.1103/PhysRevE.103.062201
    14. Guowei Wang, Yan Fu, Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels, 2022, 20, 1551-0018, 3944, 10.3934/mbe.2023184
    15. Giuseppe D’Onofrio, Alessandro Lanteri, Approximating the First Passage Time Density of Diffusion Processes with State-Dependent Jumps, 2022, 7, 2504-3110, 30, 10.3390/fractalfract7010030
    16. M. F. Carfora, 2023, Chapter 8, 978-3-031-33049-0, 137, 10.1007/978-3-031-33050-6_8
    17. Farnik Nikakhtar, Laya Parkavousi, Muhammad Sahimi, M Reza Rahimi Tabar, Ulrike Feudel, Klaus Lehnertz, Data-driven reconstruction of stochastic dynamical equations based on statistical moments, 2023, 25, 1367-2630, 083025, 10.1088/1367-2630/acec63
    18. Ali Asghar Movahed, Houshyar Noshad, Introducing a new approach for modeling a given time series based on attributing any random variation to a jump event: jump-jump modeling, 2024, 14, 2045-2322, 10.1038/s41598-024-51863-5
    19. Giuseppe D’Onofrio, Pierre Patie, Laura Sacerdote, Jacobi Processes with Jumps as Neuronal Models: A First Passage Time Analysis, 2024, 84, 0036-1399, 189, 10.1137/22M1516877
    20. Muhammad Sahimi, Physics-informed and data-driven discovery of governing equations for complex phenomena in heterogeneous media, 2024, 109, 2470-0045, 10.1103/PhysRevE.109.041001
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2737) PDF downloads(449) Cited by(20)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog