Citation: Roberta Sirovich, Laura Sacerdote, Alessandro E. P. Villa. Cooperative behavior in a jump diffusion model for a simple network of spiking neurons[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 385-401. doi: 10.3934/mbe.2014.11.385
[1] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189 |
[2] | Roberta Sirovich, Luisa Testa . A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences and Engineering, 2016, 13(3): 597-611. doi: 10.3934/mbe.2016010 |
[3] | Jakub Cupera . Diffusion approximation of neuronal models revisited. Mathematical Biosciences and Engineering, 2014, 11(1): 11-25. doi: 10.3934/mbe.2014.11.11 |
[4] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1 |
[5] | Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49 |
[6] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences and Engineering, 2016, 13(3): 483-493. doi: 10.3934/mbe.2016002 |
[7] | Nikita Ratanov . A two-state neuronal model with alternating exponential excitation. Mathematical Biosciences and Engineering, 2019, 16(5): 3411-3434. doi: 10.3934/mbe.2019171 |
[8] | Virginia Giorno, Serena Spina . On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285 |
[9] | Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003 |
[10] | Kyle Wendling, Cheng Ly . Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity. Mathematical Biosciences and Engineering, 2019, 16(4): 2023-2048. doi: 10.3934/mbe.2019099 |
[1] | Stoch. Models, 21 (2005), 967-980. |
[2] | Ann. Appl. Probab., 12 (2002), 1071-1095. |
[3] | Phys. Rev. E, 53 (1996), 3958-3969. |
[4] | Phys. Rev. E, 49 (1994), 4989-5000. |
[5] | J. Neurophysiol., 31 (1968), 574-587. |
[6] | Phys. Rev. E, 58 (1998), 4820-4827. |
[7] | Proceedings of the National Academy of Sciences, 97 (2000), 5557-5561. |
[8] | Phys. Rev. E, 54 (1996), 5575-5584. |
[9] | Phys. Rev. E, 52 (1995), R3321-R3324. |
[10] | The Journal of Neuroscience, 32 (2012), 11132-11143. |
[11] | J. Neurosci., 22 (2002), 7244-7253. |
[12] | Comm. Statist. Simulation Comput., 28 (1999), 1135-1163. |
[13] | NeuroImage, 52 (2010), 947-955. |
[14] | Neuron, 19 (1997), 665-678. |
[15] | Vol. 4, McGraw-Hill, New York, 2000. |
[16] | J. Theor. Biol., 107 (1984), 631-647. |
[17] | Biophysical Journal, 19 (1977), 241-252. |
[18] | Nature Neuroscience, 8 (2005), 202-211. |
[19] | Journal of Statistical Physics, 70 (1993), 309-327. |
[20] | Phys. Rev. Lett., 67 (1991), 656-659. |
[21] | Biosystems, 25 (1991), 179-191. |
[22] | J. Appl. Probab., 22 (1985), 360-369. |
[23] | Biological Cybernetics, 24 (1976), 237-240. |
[24] | Sci. Math. Jpn., 58 (2003), 307-322. |
[25] | Origins: Brain and Self Organization, (1994), 299-331. |
[26] | Phys. Rev. E, 59 (1999), 3427-3443. |
[27] | Cambridge University Press, 2005. |
[28] | Journal of Computational Neuroscience, 1 (1994), 313-321. |
[29] | J. Theor. Neurobiol., 1 (1982), 197-218. |
[30] | Nature, 373 (1995), 33-36. |
[31] | J. Physiol., 509 (1998), 797-815. |
1. | Franco Flandoli, Benjamin Gess, Michael Scheutzow, Synchronization by noise for order-preserving random dynamical systems, 2017, 45, 0091-1798, 10.1214/16-AOP1088 | |
2. | Massimiliano Tamborrino, Laura Sacerdote, Martin Jacobsen, Weak convergence of marked point processes generated by crossings of multivariate jump processes. Applications to neural network modeling, 2014, 288, 01672789, 45, 10.1016/j.physd.2014.08.003 | |
3. | Alexander K. Vidybida, Output Stream of Leaky Integrate-and-Fire Neuron Without Diffusion Approximation, 2017, 166, 0022-4715, 267, 10.1007/s10955-016-1698-2 | |
4. | L. A. da Silva, R. D. Vilela, Colored noise and memory effects on formal spiking neuron models, 2015, 91, 1539-3755, 10.1103/PhysRevE.91.062702 | |
5. | Romi Mankin, Sander Paekivi, Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.012125 | |
6. | Mehrnaz Anvari, M. Reza Rahimi Tabar, Joachim Peinke, Klaus Lehnertz, Disentangling the stochastic behavior of complex time series, 2016, 6, 2045-2322, 10.1038/srep35435 | |
7. | M. Reza Rahimi Tabar, 2019, Chapter 12, 978-3-030-18471-1, 111, 10.1007/978-3-030-18472-8_12 | |
8. | M.F. Carfora, E. Pirozzi, Linked Gauss-Diffusion processes for modeling a finite-size neuronal network, 2017, 161, 03032647, 15, 10.1016/j.biosystems.2017.07.009 | |
9. | Sander Paekivi, Romi Mankin, Bimodality of the interspike interval distributions for subordinated diffusion models of integrate-and-fire neurons, 2019, 534, 03784371, 122106, 10.1016/j.physa.2019.122106 | |
10. | Franco Flandoli, Benjamin Gess, Michael Scheutzow, Synchronization by noise, 2017, 168, 0178-8051, 511, 10.1007/s00440-016-0716-2 | |
11. | Alexandre Melanson, André Longtin, Data-driven inference for stationary jump-diffusion processes with application to membrane voltage fluctuations in pyramidal neurons, 2019, 9, 2190-8567, 10.1186/s13408-019-0074-3 | |
12. | Saket K. Choudhary, Vijender K. Solanki, LIF Neuron with Hypo-exponential Distributed Delay: Emergence of Unimodal, Bimodal, Multimodal ISI Distribution with Long Tail, 2020, 14, 18722121, 148, 10.2174/1872212113666190315165139 | |
13. | Romi Mankin, Astrid Rekker, Sander Paekivi, Statistical moments of the interspike intervals for a neuron model driven by trichotomous noise, 2021, 103, 2470-0045, 10.1103/PhysRevE.103.062201 | |
14. | Guowei Wang, Yan Fu, Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels, 2022, 20, 1551-0018, 3944, 10.3934/mbe.2023184 | |
15. | Giuseppe D’Onofrio, Alessandro Lanteri, Approximating the First Passage Time Density of Diffusion Processes with State-Dependent Jumps, 2022, 7, 2504-3110, 30, 10.3390/fractalfract7010030 | |
16. | M. F. Carfora, 2023, Chapter 8, 978-3-031-33049-0, 137, 10.1007/978-3-031-33050-6_8 | |
17. | Farnik Nikakhtar, Laya Parkavousi, Muhammad Sahimi, M Reza Rahimi Tabar, Ulrike Feudel, Klaus Lehnertz, Data-driven reconstruction of stochastic dynamical equations based on statistical moments, 2023, 25, 1367-2630, 083025, 10.1088/1367-2630/acec63 | |
18. | Ali Asghar Movahed, Houshyar Noshad, Introducing a new approach for modeling a given time series based on attributing any random variation to a jump event: jump-jump modeling, 2024, 14, 2045-2322, 10.1038/s41598-024-51863-5 | |
19. | Giuseppe D’Onofrio, Pierre Patie, Laura Sacerdote, Jacobi Processes with Jumps as Neuronal Models: A First Passage Time Analysis, 2024, 84, 0036-1399, 189, 10.1137/22M1516877 | |
20. | Muhammad Sahimi, Physics-informed and data-driven discovery of governing equations for complex phenomena in heterogeneous media, 2024, 109, 2470-0045, 10.1103/PhysRevE.109.041001 |