Citation: Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 363-384. doi: 10.3934/mbe.2014.11.363
[1] | Ying Liu, Weidong Ji, Yi Yin, Zhengrong Yang, Shu Yang, Chao Zhou, Yongli Cai, Kai Wang, Zhihang Peng, Daihai He, Weiming Wang . An analysis on the trend of AIDS/HIV incidence in Chongqing and Shenzhen, China from 2005–2015 based on Age-Period-Cohort model. Mathematical Biosciences and Engineering, 2021, 18(5): 6961-6977. doi: 10.3934/mbe.2021346 |
[2] | Hao Wang, Yang Kuang . Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99. doi: 10.3934/mbe.2007.4.85 |
[3] | Mario Santana-Cibrian, Manuel A. Acuña-Zegarra, Jorge X. Velasco-Hernandez . Lifting mobility restrictions and the effect of superspreading events on the short-term dynamics of COVID-19. Mathematical Biosciences and Engineering, 2020, 17(5): 6240-6258. doi: 10.3934/mbe.2020330 |
[4] | Marco Roccetti . Drawing a parallel between the trend of confirmed COVID-19 deaths in the winters of 2022/2023 and 2023/2024 in Italy, with a prediction. Mathematical Biosciences and Engineering, 2024, 21(3): 3742-3754. doi: 10.3934/mbe.2024165 |
[5] | Islam A. Moneim, David Greenhalgh . Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences and Engineering, 2005, 2(3): 591-611. doi: 10.3934/mbe.2005.2.591 |
[6] | Hisashi Inaba . The Malthusian parameter and $R_0$ for heterogeneous populations in periodic environments. Mathematical Biosciences and Engineering, 2012, 9(2): 313-346. doi: 10.3934/mbe.2012.9.313 |
[7] | Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403 |
[8] | Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457 |
[9] | Z. Feng . Final and peak epidemic sizes for SEIR models with quarantine and isolation. Mathematical Biosciences and Engineering, 2007, 4(4): 675-686. doi: 10.3934/mbe.2007.4.675 |
[10] | Xin Liu, Yingyuan Xiao, Xu Jiao, Wenguang Zheng, Zihao Ling . A novel Kalman Filter based shilling attack detection algorithm. Mathematical Biosciences and Engineering, 2020, 17(2): 1558-1577. doi: 10.3934/mbe.2020081 |
[1] | Bull. Math. Biol., 73 (2011), 116-150. |
[2] | Biophys. J., 7 (1967), 329-351. |
[3] | Nat. Rev. Mol. Cell. Biol., 10 (2009), 207-217. |
[4] | Bull. Math. Biol., 68 (2006), 1011-1031. |
[5] | Cambridge Monographs on Applied and Computational Mathematics, 15, Cambridge University Press, Cambridge, 2004. |
[6] | Immunol. Rev., 216 (2007), 119-129. |
[7] | J. Immunol., 170 (2003), 4963-4972. |
[8] | Cell. Res., 10 (2000), 179-192. |
[9] | Population Studies, 37 (1983), 75-89. |
[10] | Grune and Stratton, 1959. |
[11] | J. Immunol., 179 (2007), 950-957. |
[12] | Nat. Immunol., 1 (2000), 239-244. |
[13] | Journal of Computational Physics, 22 (1976), 403-434. |
[14] | Math. Biosci., 86 (1987), 67-95. |
[15] | Proc. Natl. Acad. Sci. USA, 106 (2009), 13457-13462. |
[16] | Proc. Natl. Acad. Sci. USA, 104 (2007), 5032-5037. |
[17] | Working Paper Series 9, Institute of Population Problems, Tokyo, 1992. |
[18] | Math. Popul. Studies, 1 (1988), 49-77. |
[19] | J. Math. Biol., 65 (2012), 309-348. |
[20] | Math. Biosci., 216 (2008), 77-89. |
[21] | J. Math. Biol., 1 (1974/75), 17-36. |
[22] | J. Theor. Biol., 229 (2004), 455-476. |
[23] | J. Theor. Biol., 215 (2002), 201-213. |
[24] | J. Math. Biol., 54 (2007), 57-89. |
[25] | Theor. Biol. Med. Model., 4 (2007). |
[26] | Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1989. |
[27] | Proc. Edinburgh. Math. Soc., 44 (1926), 98-130. |
[28] | Bull. Math. Biol., 74 (2012), 300-326. |
[29] | Nature, 441 (2006), 1068-1074. |
[30] | Cell, 132 (2008), 598-611. |
[31] | J. Comput. Appl. Math., 177 (2005), 269-286. |
[32] | 8th Edition, Immunobiology: The Immune System (Janeway), Garland Science, 2012. |
[33] | J. Math. Biol., 66 (2013), 807-835. |
[34] | Methods Mol. Biol., 296 (2005), 95-112. |
[35] | Nat. Immunol., 2 (2001), 925-931. |
[36] | in Studies in Mathematical Biology Part II: Populations and Communities (ed. S. Levin), Studies in Mathematical Biology, 16, The Mathematical Association of America, Washington, D.C., 1978, 389-410. |
[37] | Acta Pathol. Microbiol. Scand., 41 (1957), 161-182. |
[38] | Proc. Natl. Acad. Sci. USA, 70 (1973), 1263-1267. |
[39] | Journal of Statistical Software, 33 (2010), 1-25. |
[40] | Publ. Res. Inst. Math. Sci., 9 (1973/74), 721-741. |
[41] | Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. |
[42] | SIAM J. Appl. Math., 57 (1997), 1281-1310. |
[43] | BMC Bioinformatics, 8 (2007). |
[44] | PLoS One, 5 (2010), e12775. |
1. | Yasumasa Saisho, Dependence of mating rate on variance of eclosion time of cicadas (cicadidae), 2018, 305, 00255564, 55, 10.1016/j.mbs.2018.08.006 | |
2. | Hoa Quynh Nguyen, Hortense Serret, Yoonhyuk Bae, Seongmin Ji, Soyeon Chae, Ye Inn Kim, Jeongjoo Ha, Yikweon Jang, Not all cicadas increase thermal tolerance in response to a temperature gradient in metropolitan Seoul, 2020, 10, 2045-2322, 10.1038/s41598-020-58276-0 | |
3. | Minoru Moriyama, Hideharu Numata, Ecophysiological responses to climate change in cicadas, 2019, 44, 0307-6962, 65, 10.1111/phen.12283 |