Citation: Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 167-188. doi: 10.3934/mbe.2014.11.167
[1] | William Wolesensky, J. David Logan . An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate. Mathematical Biosciences and Engineering, 2007, 4(1): 67-84. doi: 10.3934/mbe.2007.4.67 |
[2] | Dongmei Wu, Hao Wang, Sanling Yuan . Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins. Mathematical Biosciences and Engineering, 2019, 16(4): 2141-2153. doi: 10.3934/mbe.2019104 |
[3] | Jiang Li, Xiaohui Liu, Chunjin Wei . The impact of fear factor and self-defence on the dynamics of predator-prey model with digestion delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5478-5504. doi: 10.3934/mbe.2021277 |
[4] | Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164 |
[5] | Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331 |
[6] | Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610 |
[7] | Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri . Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences and Engineering, 2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75 |
[8] | B. Spagnolo, D. Valenti, A. Fiasconaro . Noise in ecosystems: A short review. Mathematical Biosciences and Engineering, 2004, 1(1): 185-211. doi: 10.3934/mbe.2004.1.185 |
[9] | Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada . Numerical solution of a spatio-temporal predator-prey model with infected prey. Mathematical Biosciences and Engineering, 2019, 16(1): 438-473. doi: 10.3934/mbe.2019021 |
[10] | Xiaoying Wang, Xingfu Zou . Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences and Engineering, 2018, 15(3): 775-805. doi: 10.3934/mbe.2018035 |
[1] | Phys Rev. E, 70, 041910 (2004) 1-7. |
[2] | Ecological Complexity, 4 (2007), 242-249. |
[3] | Theor. Pop. Biol., 5 (1974), 28-41. |
[4] | Kybernetik, 15 (1974), 147-157. |
[5] | Phys Rev. E, 65, 036204 (2002), 1-7. |
[6] | Proceedings of the Royal Society of Edinburgh, 133A (2003), 97-118. |
[7] | Theor. Popul. Biol., 7 (1975), 197-207. |
[8] | Reviews of Modern Physics, 43, Part 1 (1971), 231-276. |
[9] | Dover Publications, Inc., New York, 1958. |
[10] | J. Math. Biol., 36 (1998), 389-406. |
[11] | Princeton University Press, Princeton, 1973. |
[12] | Oxford University Press, 1976. |
[13] | in Some Mathematical Questions in Biology. III., Lectures on Mathematics in the Life Sciences, 4, The American Mathematical Society, Providence, Rhode Island, (1972), 101-143. |
[14] | Biol. Cybern., 49 (1984), 179-188. |
[15] | Biol. Cybern., 50 (1984), 285-299. |
[16] | Interdisciplinary Applied Mathematics, 14, Mathematical Biology, Springer, 2001. |
[17] | Lecture Notes in Biomathematics, 14, Berlin, Heidelberg, New York, Springer, 1977. |
[18] | in Mathematical Ecology (eds. T. G. Hallam and S. A. Levin), (Miramare Trieste, 1982), Biomathematics, 17, Springer Verlag, Berlin, (1986), 191-238. |
[19] | Irish Math. Soc. Bulletin, 48 (2002), 57-63. |
[20] | Les Grands Classiques Gauthier-Villars, Paris, 1931. |
[21] | Rev. Modern Phys., 17 (1945), 323-342. |
[22] | Applied Mathematics and Computation, 218 (2011), 3100-3109. |
[23] | International Mathematical Forum, 5 (2010), 3309-3322. |
[24] | Chin. Phys. Lett., 23 (2006), 742-745. |
1. | Virginia Giorno, Amelia G. Nobile, Restricted Gompertz-Type Diffusion Processes with Periodic Regulation Functions, 2019, 7, 2227-7390, 555, 10.3390/math7060555 | |
2. | Pengfei Xu, Yanfei Jin, Mean first-passage time in a delayed tristable system driven by correlated multiplicative and additive white noises, 2018, 112, 09600779, 75, 10.1016/j.chaos.2018.04.040 | |
3. | Patricia Román-Román, Juan Serrano-Pérez, Francisco Torres-Ruiz, Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors, 2018, 6, 2227-7390, 85, 10.3390/math6050085 | |
4. | Manalebish Debalike Asfaw, Semu Mitiku Kassa, Edward M. Lungu, Stochastic plant–herbivore interaction model with Allee effect, 2019, 79, 0303-6812, 2183, 10.1007/s00285-019-01425-5 | |
5. | Lina Mi, Yongfeng Guo, Jiaxin Ding, Transient properties of grazing ecosystem driven by Lévy noise and Gaussian noise, 2023, 98, 0031-8949, 095026, 10.1088/1402-4896/acf00c |