Loading [Contrib]/a11y/accessibility-menu.js

A non-autonomous stochastic predator-prey model

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 October 2013
  • MSC : Primary: 92D25, 60J60; Secondary: 60K37.

  • The aim of this paper is to consider a non-autonomous predator-prey-like system, with a Gompertz growth law for the prey.By introducing random variations in both prey birth and predator death rates,a stochastic model for the predator-prey-like system in a random environment is proposed and investigated.The corresponding Fokker-Planck equation is solved to obtain the joint probability density for the prey and predator populations and the marginal probability densities.The asymptotic behavior of the predator-prey stochastic model is also analyzed.

    Citation: Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 167-188. doi: 10.3934/mbe.2014.11.167

    Related Papers:

    [1] William Wolesensky, J. David Logan . An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate. Mathematical Biosciences and Engineering, 2007, 4(1): 67-84. doi: 10.3934/mbe.2007.4.67
    [2] Dongmei Wu, Hao Wang, Sanling Yuan . Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins. Mathematical Biosciences and Engineering, 2019, 16(4): 2141-2153. doi: 10.3934/mbe.2019104
    [3] Jiang Li, Xiaohui Liu, Chunjin Wei . The impact of fear factor and self-defence on the dynamics of predator-prey model with digestion delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5478-5504. doi: 10.3934/mbe.2021277
    [4] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [5] Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331
    [6] Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610
    [7] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri . Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences and Engineering, 2012, 9(1): 75-96. doi: 10.3934/mbe.2012.9.75
    [8] B. Spagnolo, D. Valenti, A. Fiasconaro . Noise in ecosystems: A short review. Mathematical Biosciences and Engineering, 2004, 1(1): 185-211. doi: 10.3934/mbe.2004.1.185
    [9] Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada . Numerical solution of a spatio-temporal predator-prey model with infected prey. Mathematical Biosciences and Engineering, 2019, 16(1): 438-473. doi: 10.3934/mbe.2019021
    [10] Xiaoying Wang, Xingfu Zou . Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences and Engineering, 2018, 15(3): 775-805. doi: 10.3934/mbe.2018035
  • The aim of this paper is to consider a non-autonomous predator-prey-like system, with a Gompertz growth law for the prey.By introducing random variations in both prey birth and predator death rates,a stochastic model for the predator-prey-like system in a random environment is proposed and investigated.The corresponding Fokker-Planck equation is solved to obtain the joint probability density for the prey and predator populations and the marginal probability densities.The asymptotic behavior of the predator-prey stochastic model is also analyzed.


    [1] Phys Rev. E, 70, 041910 (2004) 1-7.
    [2] Ecological Complexity, 4 (2007), 242-249.
    [3] Theor. Pop. Biol., 5 (1974), 28-41.
    [4] Kybernetik, 15 (1974), 147-157.
    [5] Phys Rev. E, 65, 036204 (2002), 1-7.
    [6] Proceedings of the Royal Society of Edinburgh, 133A (2003), 97-118.
    [7] Theor. Popul. Biol., 7 (1975), 197-207.
    [8] Reviews of Modern Physics, 43, Part 1 (1971), 231-276.
    [9] Dover Publications, Inc., New York, 1958.
    [10] J. Math. Biol., 36 (1998), 389-406.
    [11] Princeton University Press, Princeton, 1973.
    [12] Oxford University Press, 1976.
    [13] in Some Mathematical Questions in Biology. III., Lectures on Mathematics in the Life Sciences, 4, The American Mathematical Society, Providence, Rhode Island, (1972), 101-143.
    [14] Biol. Cybern., 49 (1984), 179-188.
    [15] Biol. Cybern., 50 (1984), 285-299.
    [16] Interdisciplinary Applied Mathematics, 14, Mathematical Biology, Springer, 2001.
    [17] Lecture Notes in Biomathematics, 14, Berlin, Heidelberg, New York, Springer, 1977.
    [18] in Mathematical Ecology (eds. T. G. Hallam and S. A. Levin), (Miramare Trieste, 1982), Biomathematics, 17, Springer Verlag, Berlin, (1986), 191-238.
    [19] Irish Math. Soc. Bulletin, 48 (2002), 57-63.
    [20] Les Grands Classiques Gauthier-Villars, Paris, 1931.
    [21] Rev. Modern Phys., 17 (1945), 323-342.
    [22] Applied Mathematics and Computation, 218 (2011), 3100-3109.
    [23] International Mathematical Forum, 5 (2010), 3309-3322.
    [24] Chin. Phys. Lett., 23 (2006), 742-745.
  • This article has been cited by:

    1. Virginia Giorno, Amelia G. Nobile, Restricted Gompertz-Type Diffusion Processes with Periodic Regulation Functions, 2019, 7, 2227-7390, 555, 10.3390/math7060555
    2. Pengfei Xu, Yanfei Jin, Mean first-passage time in a delayed tristable system driven by correlated multiplicative and additive white noises, 2018, 112, 09600779, 75, 10.1016/j.chaos.2018.04.040
    3. Patricia Román-Román, Juan Serrano-Pérez, Francisco Torres-Ruiz, Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors, 2018, 6, 2227-7390, 85, 10.3390/math6050085
    4. Manalebish Debalike Asfaw, Semu Mitiku Kassa, Edward M. Lungu, Stochastic plant–herbivore interaction model with Allee effect, 2019, 79, 0303-6812, 2183, 10.1007/s00285-019-01425-5
    5. Lina Mi, Yongfeng Guo, Jiaxin Ding, Transient properties of grazing ecosystem driven by Lévy noise and Gaussian noise, 2023, 98, 0031-8949, 095026, 10.1088/1402-4896/acf00c
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2879) PDF downloads(510) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog