Processing math: 100%

Pattern formation of a predator-prey model with the cost of anti-predator behaviors

  • We propose and analyse a reaction-diffusion-advection predator-prey model in which we assume that predators move randomly but prey avoid predation by perceiving a repulsion along predator density gradient. Based on recent experimental evidence that anti-predator behaviors alone lead to a 40% reduction on prey reproduction rate, we also incorporate the cost of anti-predator responses into the local reaction terms in the model. Sufficient and necessary conditions of spatial pattern formation are obtained for various functional responses between prey and predators. By mathematical and numerical analyses, we find that small prey sensitivity to predation risk may lead to pattern formation if the Holling type Ⅱ functional response or the Beddington-DeAngelis functional response is adopted while large cost of anti-predator behaviors homogenises the system by excluding pattern formation. However, the ratio-dependent functional response gives an opposite result where large predator-taxis may lead to pattern formation but small cost of anti-predator behaviors inhibits the emergence of spatial heterogeneous solutions.

    Citation: Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors[J]. Mathematical Biosciences and Engineering, 2018, 15(3): 775-805. doi: 10.3934/mbe.2018035

    Related Papers:

    [1] Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074
    [2] Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045
    [3] Xuejiao Chen, Yuanfei Li . Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow. Electronic Research Archive, 2023, 31(1): 421-441. doi: 10.3934/era.2023021
    [4] Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104
    [5] Liting Yu, Lenan Wang, Jianzhong Pei, Rui Li, Jiupeng Zhang, Shihui Cheng . Structural optimization study based on crushing of semi-rigid base. Electronic Research Archive, 2023, 31(4): 1769-1788. doi: 10.3934/era.2023091
    [6] Mingjun Zhou, Jingxue Yin . Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, 2021, 29(3): 2417-2444. doi: 10.3934/era.2020122
    [7] Wenya Qi, Padmanabhan Seshaiyer, Junping Wang . A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29(3): 2517-2532. doi: 10.3934/era.2020127
    [8] Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197
    [9] Pan Zhang, Lan Huang . Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay. Electronic Research Archive, 2023, 31(12): 7602-7627. doi: 10.3934/era.2023384
    [10] Karl Hajjar, Lénaïc Chizat . On the symmetries in the dynamics of wide two-layer neural networks. Electronic Research Archive, 2023, 31(4): 2175-2212. doi: 10.3934/era.2023112
  • We propose and analyse a reaction-diffusion-advection predator-prey model in which we assume that predators move randomly but prey avoid predation by perceiving a repulsion along predator density gradient. Based on recent experimental evidence that anti-predator behaviors alone lead to a 40% reduction on prey reproduction rate, we also incorporate the cost of anti-predator responses into the local reaction terms in the model. Sufficient and necessary conditions of spatial pattern formation are obtained for various functional responses between prey and predators. By mathematical and numerical analyses, we find that small prey sensitivity to predation risk may lead to pattern formation if the Holling type Ⅱ functional response or the Beddington-DeAngelis functional response is adopted while large cost of anti-predator behaviors homogenises the system by excluding pattern formation. However, the ratio-dependent functional response gives an opposite result where large predator-taxis may lead to pattern formation but small cost of anti-predator behaviors inhibits the emergence of spatial heterogeneous solutions.


    The Forchheimer model equation describes the flow in a polar medium, which is widely used in fluid mechanics (see [1,2]). Increasing scholars have studied the spatial properties of the solution to the fluid equation defined on a semi-infinite cylinder, and a large number of results have emerged (see [3,4,5,6,7,8,9]).

    In 2002, Payne and Song [3] have studied the following Forchheimer model

    b|u|ui+(1+γT)ui=p,i+giT, in Ω×{t>0}, (1.1)
    ui,i=0, in Ω×{t>0}, (1.2)
    tT+uiT,i=ΔT, in Ω×{t>0}, (1.3)

    where i=1,2,3. ui,p,T represent the velocity, pressure, and temperature of the flow, respectively. gi is a known function. Δ is the Laplace operator, γ>0 is a constant, and b is the Forchheimer coefficient. For simplicity, we assume that

    gigi1.

    In (1.1)–(1.3), Ω is defined as

    Ω={(x1,x2,x3)|(x1,x2)D, x30},

    where D is a bounded simply-connected region on (x1,x2)-plane.

    In this paper, the comma is used to indicate partial differentiation and the usual summation convection is employed, with repeated Latin subscripts summed from 1 to 3, e.g., ui,jui,j=3i,j=1(uixj)2. We also use the summation convention summed from 1 to 2, e.g., uα,βuα,β=2α,β=1(uαxβ)2.

    The Eqs (1.1)–(1.3) also satisfy the following initial-boundary conditions

    ui(x1,x2,x3,t)=0, T(x1,x2,x3,t)=0, on D×{x3>0}×{t>0}, (1.4)
    ui(x1,x2,0,t)=fi(x1,x2,t), on D×{t>0}, (1.5)
    T(x1,x2,0,t)=H(x1,x2,t), on D×{t>0}, (1.6)
    T(x1,x2,x3,0)=0, (x1,x2,x3)Ω, (1.7)
    |u|,|T|=O(1), |u3|,|T|,|p|=o(x13), as x3. (1.8)

    where fi and H are differentiable functions.

    In this paper, we will study the structural stability of Eqs (1.1)–(1.8) on Ω by using the spatial decay results obtained in [3]. Since the concept of structural stability was proposed by Hirsch and Smale [10], the structural stability of various types of partial differential equations defined in a bounded domain has received sufficient attention(see [11,12,13,14,15,16,17,18,19]). Some perturbations are inevitable in the process of model establishment and simplification, so it is necessary to study that whether such small perturbations of the equations themselves will cause great changes in the solutions. This gives rise to the phenomenon of structural stability.

    If the bounded domain is replaced by a semi-infinite pipe, the structural stability of the partial differential equations is very interesting and has begun to attract attention. Li and Lin [20] considered the continuous dependence on the Forchheimer coefficient of Forchheimer equations in a semi-infinite pipe. Different from the studies of[11,12,13,14,15,16,17,18,19], we should consider not only the time variable but also the space variable. Therefore, the methods in the literature cannot be directly applied to the semi-infinite region. Compared with [3], we not only reconfirmed the spatial decay result of [3], but also proved the structural stability of the solution to b and γ.

    We also introduce the notations:

    Ωz={(x1,x2,x3)|(x1,x2)D,x3z0},
    Dz={(x1,x2,x3)|(x1,x2)D,x3=z0},

    where z is a running variable along the x3 axis.

    First, to obtain the main result, we shall make frequent use of the following three inequalities.

    Lemma 2.1.(see[21]) If ϕ is a Dirichlet integrable function on Ω and Ωϕdx=0, then there exists a Dirichlet integrable function w=(w1,w2,w3) such that

    wi,i=ϕ, in Ω, wi=0, on Ω,

    and a positive constant k1 depends only on the geometry of Ω such that

    Ωwi,jwi,jdxk1Ω(wi,i)2dx.

    Lemma 2.2.(see [3,4]) If ϕ|D=0, then

    λDϕ2dADϕ,αϕ,αdA,

    where λ is the smallest positive eigenvalue of

    Δ2ϑ+λϑ=0, in D, ϑ=0, on D.

    Here Δ2 is a two-dimensional Laplace operator.

    Now, we give a lemma which has been proved by Horgan and Wheeler [4] and has been used by Payne and Song [6].

    Lemma 2.3.(see [3,4]) If ϕ is a Dirichlet integrable function and ϕ|D=0,ϕ (as x3),

    Ωz|ϕ|4dxk2(Ωzϕ,jϕ,jdx)2,

    where k2>0.

    Lemma 2.4. If ϕC10(Ω), then

    Ωz|ϕ|6dxΛ(Ωzϕ,iϕ,idx)3,

    where [22,23] have proved that the optimal value of Λ is determined to be Λ=127(34)4.

    Using the maximum principle for the temperature T, we can have the following lemma which has been used in Song [5].

    Lemma 2.5. Assume that HL(Ω), then

    supΩ×{t>0}|T|TM,

    where TM=supΩ×{t>0}H.

    Second, we list some useful results which have been derived by Payne and Song [3].

    Payne and Song have established a function

    P(z,t)=t0Ωz(ξz)T,iT,idxdη+a1t0Ωz|u|3dxdη+a2t0Ωz(1+γT)|u|2dxdη, (2.1)

    where a1 and a2 are positive constants. From Eqs (3.27) and (3.36) of [3], we know that

    P(z,t)P(0,t)ezk3, P(0,t)k4(t), (2.2)

    where k3 is a positive constant and k4(t) is a function related to the boundary values.

    Combining Eqs (2.1) and (2.2), we have the following lemma.

    Lemma 2.6. Assume that HL(Ω) and DfdA=0, then

    a1t0Ωz|u|3dxdη+a2t0Ωz(1+γT)|u|2dxdηk4(t)ezk3.

    In order to derive the main result, we need bounds for ||u||2L2(Ω) and ||u||3L2(Ω).

    Lemma 2.7. Assume that fiH1(Ω),H,˜HL(Ω), Df3dA=0 and fα,αγf3=0 then

    bΩ|u|3dx+Ω|u|2dxk5(t),

    where k6(t) is a positive function.

    Proof. To deal with boundary terms, we set S=(S1,S2,S3), where

    Si=fieγ1x3, γ1>0. (2.3)

    Using Eq (1.1), we have

     Ω[b|u|ui+(1+γT)ui+p,igiT](uiSi)dx=0.

    Using the divergence theorem, we have

    bΩ|u|3dx+Ω(1+γT)|u|2dx=bΩ|u|uiSidx+Ω(1+γT)uiSidxΩgiTuidx+ΩgiTSidx. (2.4)

    Using the Hölder inequality and Young's inequality, we have

    bΩ|u|uiSidxb(Ω|u|3dx)23(Ω|S|3dx)1323bε1Ω|u|3dx+13bε21Ω|S|3dx, (2.5)
    Ω(1+γT)uiSidx14Ω(1+γT)|u|2dx+(1+γTM)Ω|S|2dx, (2.6)
    ΩgiTuidxTM(Ω(1+γT)|u|2dxΩgigidx)1214Ω(1+γT)|u|2dx+TMγΩgigidx, (2.7)
    ΩgiTSidxTMΩ|giSi|dx. (2.8)

    Inserting Eqs (2.5)–(2.8) into Eq (2.4) and choosing that ε1=34, we obtain

    bΩ|u|3dx+Ω(1+γT)|u|2dx23bε21Ω|S|3dx+2(1+γTM)Ω|S|2dx+2TMγΩgigidx+2TMΩ|giSi|dx. (2.9)

    After choosing

    k5(t)=23bε21Ω|S|3dx+2(1+γTM)Ω|S|2dx+2TMγΩgigidx+2TMΩ|giSi|dx, (2.10)

    we can complete the proof of Lemma 2.7.

    In this section, we derive an important lemma which leads to our main result.

    Assume that (ui,T,p) is a solution of Eqs (1.1)–(1.8) when b=b. If we let

    Di=uiui, Σ=TT, π=pp, ˜b=bb,

    then (Di,Σ,π) satisfies

    [b1|u|uib2|u|ui]+(1+γT)Di+γΣui=π,i+giΣ, in Ω×{t>0}, (3.1)
    Di,i=0, in Ω×{t>0}, (3.2)
    tΣ+uiΣ,i+DiT,i=ΔΣ, in Ω×{t>0}, (3.3)
    Di=0,Σ=0, on D×{x3>0}×{t>0}, (3.4)
    Di=0,Σ=0, on D×{t>0}, (3.5)
    Σ(x1,x2,x3,0)=0, in Ω (3.6)
    |u|,|Σ|=O(1),|D3|,|Σ|,|π|=o(x13), as x3. (3.7)

    We can have the following lemma.

    Lemma 3.1. Assume that (Di,Σ,π) is a solution to Eqs (3.1)–(3.6) with Df3dA=0,HL(Ω) and the boundary data (e.g., H) satisfies Eq (3.21), then

    Φ(z,t)n6[zΦ(z,t)]+n7(t)˜b2ezk3,

    where n6 is the maximum of n6(t) and n6(t),n7(t) will be defined in Eq (3.39).

    Proof. We define an auxiliary function

    Φ1(z,t)=t0ΩzeωηπD3dxdη, (3.8)

    where ω>0.

    Using the divergence theorem and Eq (3.1), we have

    Φ1(z,t)=t0Ωzeωη(ξz)π,iDidxdη=t0Ωzeωη(ξz)Di[b1|u|uib2|u|ui]dxdη+t0Ωzeωη(ξz)(1+γT)DiDidxdη+γt0Ωzeωη(ξz)DiΣuidxdηt0Ωzeωη(ξz)DigiΣdxdη. (3.9)

    Since

    Di[b1|u|uib2|u|ui]=˜b2Di[|u|ui+|u|ui]+b1+b22Di[|u|ui|u|ui]=˜b2[|u|ui+|u|ui]Di+b1+b24[|u|+|u|]DiDi+b1+b24[|u||u|]2[|u|+|u|],

    from Eq (3.9) we have

    Φ1(z,t)=b1+b24t0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+t0Ωzeωη(ξz)(1+γT)DiDidxdη+˜b2t0Ωzeωη(ξz)[|u|ui+|u|ui]Didxdη+b1+b24t0Ωzeωη(ξz)[|u||u|]2[|u|+|u|]dxdη+γt0Ωzeωη(ξz)DiΣuidxdηt0Ωzeωη(ξz)DigiΣdxdη. (3.10)

    Using the Hölder inequality, Young's inequality and Lemma 2.6, we obtain

    ˜b2t0Ωzeωη[|u|ui+|u|ui]Didxdη˜b2(t0Ωzeωη|u|DiDidxdη)12(t0Ωzeωη|u|3dxdη)12+˜b2(t0Ωzeωη|u|DiDidxdη)12(t0Ωzeωη|u|3dxdη)12b1+b216t0Ωzeωη[|u|+|u|]DiDidxdη4˜b2b1+b2t0Ωzeωη[|u|3+|u|3]dxdηb1+b216t0Ωzeωη[|u|+|u|]DiDidxdη8˜b2a1(b1+b2)k4(t)ezk3. (3.11)

    Using the Hölder inequality, Young's inequality and Lemmas 2.3 and 2.7, we obtain

    γt0ΩzeωηDiΣuidxdηγt0eωη(Ωz|u|DiDidx)12(Ωz|u|2dx)14(ΩzΣ4dx)14dηγ4k5(t)k2t0eωη(Ωz|u|DiDidx)12(ΩzΣ,iΣ,idx)12dηb1+b216t0Ωzeωη|u|DiDidxdη4γ2k5(t)k2b1+b2t0ΩzeωηΣ,iΣ,idxdη, (3.12)
    t0ΩzeωηDigiΣdxdη12t0Ωzeωη(1+γT)DiDidxdη12γt0ΩzeωηΣ2dxdη. (3.13)

    Calculating the differential of Eq (3.10) and then inserting Eqs (3.11)–(3.13) into Eq (3.10), we have

    zΦ1(z,t)b1+b28t0Ωzeωη[|u|+|u|]DiDidxdη+12t0Ωzeωη(1+γT)DiDidxdη4γ2k5(t)k2b1+b2t0ΩzeωηΣ,iΣ,idxdη12γt0ΩzeωηΣ2dxdη8˜b2a1(b1+b2)k4(t)ezk3, (3.14)

    where we have dropped the fourth term of Eq (3.10).

    Similarly, we have

    Φ2(z,t)=t0ΩzeωηΣΣ,3dxdη+12t0Ωzeωηu3Σ2dxdη+t0ΩzeωηD3TΣdxdηΦ21(z,t)+Φ22(z,t)+Φ23(z,t). (3.15)

    Using the divergence theorem and Eq (3.2), we have

    Φ2(z,t)=12eωtΩz(ξz)Σ2dx+t0Ωzeωη(ξz)[12ωΣ2+Σ,iΣ,i]dxdηt0Ωzeωη(ξz)DiΣ,iTdxdη. (3.16)

    Using the Hölder inequality and Lemma 2.5, we have

    t0ΩzeωηDiΣ,iTdxdη12t0ΩzeωηΣ,iΣ,idxdη12T2Mt0ΩzeωηDiDidxdη. (3.17)

    Calculating the differential of Eq (3.16) and then inserting Eq (3.17) into Eq (3.16), we have

    zΦ2(z,t)=12eωtΩzΣ2dx+t0Ωzeωη[12ωΣ2+12Σ,iΣ,i]dxdη12γT2Mt0Ωzeωη(1+γT)DiDidxdη. (3.18)

    Now, we define

    zΦ(z,t)=2γT2M[zΦ1(z,t)]+[zΦ2(z,t)]. (3.19)

    Combining Eqs (3.14) and (3.18), we have

    zΦ(z,t)b1+b24γT2Mt0Ωzeωη[|u|+|u|]DiDidxdη+12γT2Mt0Ωzeωη(1+γT)DiDidxdη+12eωtΩzΣ2dx+t0Ωzeωη[12ωΣ2+12Σ,iΣ,i]dxdη8γk5(t)k2b1+b2t0ΩzeωηΣ,iΣ,idxdη1γ2T2Mt0ΩzeωηΣ2dxdη16˜b2a1γ(b1+b2)T2Mk4(t)ezk3. (3.20)

    Choosing ω>4γ2T2M and the boundary data (e.g., H) satisfies

    8γk5(t)k2b1+b2<14, (3.21)

    from Eq (3.20) we obtain

    zΦ(z,t)b1+b24γT2Mt0Ωzeωη[|u|+|u|]DiDidxdη+12γT2Mt0Ωzeωη(1+γT)DiDidxdη+12eωtΩzΣ2dx+t0Ωzeωη[14ωΣ2+14Σ,iΣ,i]dxdη16˜b2a1γ(b1+b2)T2Mk4(t)ezk3. (3.22)

    Integrating Eq (3.22) from z to , we obtain

    Φ(z,t)b1+b24γT2Mt0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+12γT2Mt0Ωzeωη(ξz)(1+γT)DiDidxdη+12eωtΩz(ξz)Σ2dx+t0Ωzeωη(ξz)[14ωΣ2+14Σ,iΣ,i]dxdη16˜b2a1γ(b1+b2)k3T2Mk4(t)ezk3. (3.23)

    We note that

    DzD3dA=DD3dA+z0DξD3x3dAdξ=z0DξDα,αdAdξ=0.

    According to Lemma 2.1, there exists a vector function w=(w1,w2,w3) such that

    wi,i=D3, in Ω;wi=0, on Ω.

    Therefore, using Eq (3.1) we obtain

    2γT2MΦ1(z,t)=2γT2Mt0Ωzeωηπwi,idxdη=2γT2Mt0Ωzeωηπ,iwidxdη=2γT2Mt0Ωzeωη{[b1|u|uib2|u|ui]+(1+γT)Di+γΣuigiΣ}widxdη. (3.24)

    Since

    [b1|u|uib2|u|ui]wi=˜b2[|u|ui+|u|ui]wi+b1+b22[|u|+|u|]Diwi+b1+b22[|u||u|](ui+ui)wi=˜b2[|u|ui+|u|ui]wi+b1+b22[|u|+|u|]Diwi+b1+b22(ujuj)(uj+uj)|u|+|u|(ui+ui)wi˜b2[|u|ui+|u|ui]wi+b1+b22[|u|+|u|]Diwi+b1+b22[|u|+|u|]|D||w|,

    we have

    t0Ωzeωη[b1|u|uib2|u|ui]widxdη˜b2t0Ωzeωη[|u|ui+|u|ui]widxdη+b1+b22t0Ωzeωη[|u|+|u|]Diwidxdη+b1+b22t0Ωzeωη[|u|+|u|]|D||w|dxdη. (3.25)

    Using the Hölder inequality, Lemmas 2.2, 2.3, 2.1, 2.7 and 2.6, and Young's inequality, we obtain

    ˜b2t0Ωzeωη[|u|ui+|u|ui]widxdη˜b2t0eωη[Ωz[|u|3+|u|3]dx]23[Ωz(wiwi)32dx]13dη˜b2t0eωη[Ωz[|u|3+|u|3]dx]23[Ωzwiwidx]16[Ωz(wiwi)2dx]16dη˜b6k226λt0eωη[Ωz[|u|3+|u|3]dx]23[Ωzwi,αwi,αdx]16[Ωzwi,jwi,jdx]13dη˜b6k226λt0eωη[Ωz[|u|3+|u|3]dx]23[Ωzwi,jwi,jdx]12dη˜b6k2k126λt0eωη[Ω[|u|3+|u|3]dx]16[Ωz[|u|3+|u|3]dx]12[ΩzD23dx]12dη˜b232k5(t)k2k143bλt0Ωzeωη[|u|3+|u|3]dxdη+12t0ΩzeωηD23dxdη˜b232k5(t)k2k1k4(t)2a3bλezk3+12t0Ωzeωη(1+γT)D23dxdη. (3.26)

    Using the Hölder inequality, Lemmas 2.3, 2.1 and 2.7, and Young's inequality, we obtain

    b1+b22t0Ωzeωη[|u|+|u|]Diwidxdηb1+b22t0eωη[Ωz|u|DiDidx]12[Ωz|u|2dx]14[Ωz(wiwi)2dx]14dη+b1+b22t0eωη[Ωz|u|DiDidx]12[Ωz|u|2dx]14[Ωz(wiwi)2dx]14dηb1+b224k2k5(t)t0eωη[Ωz|u|DiDidx]12[Ωzwi,jwi,jdx]12dη+b1+b224k2k5(t)t0eωη[Ωz|u|DiDidx]12[Ωzwi,jwi,jdx]12dηb1+b244k1k2k5(t)t0Ωzeωη[|u|+|u|]DiDidxdη+b1+b224k1k2k5(t)t0Ωzeωη(1+γT)D23dxdη. (3.27)

    Using the Hölder inequality, Lemmas 2.4, 2.1 and 2.7, and Young's inequality, we obtain

    b1+b22t0Ωzeωη[|u|+|u|]|D||w|dxdηb1+b22t0eωη[Ωz|DiDidx]12[Ωz|u|3dx]13[Ωz(wiwi)3dx]16dη+b1+b22t0eωη[Ωz|DiDidx]12[Ωz|u|3dx]13[Ωz(wiwi)3dx]16dη(b1+b2)3k5(t)b6Λt0eωη[ΩzDiDidx]12[Ωzwi,jwi,jdx]12dηb1+b223k1k5(t)b6Λt0Ωzeωη(1+γT)DiDidxdη. (3.28)

    Inserting Eqs (3.26)–(3.28) into Eq (3.25), we have

    t0Ωzeωη[b1|u|uib2|u|ui]widxdη˜b232k5(t)k2k1k4(t)2a3bλezk3+b1+b244k2k5(t)ε3t0Ωzeωη[|u|+|u|]DiDidxdη+[b1+b223k1k5(t)b6Λ+b1+b224k2k5(t)+12]t0Ωzeωη(1+γT)DiDidxdη. (3.29)

    Using the Hölder inequality, Young's inequality and Lemmas 2.5, 2.2, 2.1, 2.7 and 2.3, we have

    t0Ωzeωη(1+γT)Diwidxdη(1+γTM)[t0Ωzeωη(1+γT)DiDidxdηt0Ωzeωηwiwidxdη]12(1+γTM)λ[t0Ωzeωη(1+γT)DiDidxdηt0Ωzeωηwi,αwi,αdxdη]12
    (1+γTM)k1λ[t0Ωzeωη(1+γT)DiDidxdηt0ΩzeωηD23dxdη]12(1+γTM)k1λt0Ωzeωη(1+γT)DiDidxdη, (3.30)
    γt0ΩzeωηwiΣuidxdηγt0eωη(Ωz(u3)2dx)12(ΩzΣ4dx)14(Ωz(wiwi)2dx)14dηγk5(t)k2t0eωη(ΩzΣ,iΣ,idx)12(Ωzwi,jwi,jdx)12dηγk5(t)k2k1t0eωη(ΩzΣ,iΣ,idx)12(ΩzD23dx)12dηγk5(t)k2k1TM[14t0ΩzeωηeωηΣ,iΣ,idxdη+1γT2Mt0Ωzeωη(1+γT)D23dxdη], (3.31)
    t0ΩzeωηwiΣgidxdηk1γTMω[1γT2Mt0Ωzeωη(1+γT)D23dxdη+14ωt0ΩzeωηΣ2dxdη]. (3.32)

    Inserting Eqs (3.29)–(3.32) into Eq (3.24), we obtain

    2γT2MΦ1(z,t)n1(t)˜b2ezk3+n2(t)(b1+b2)T2M4γt0Ωzeωη[|u|+|u|]DiDidxdη+n3(t)T2M2γt0Ωzeωη(1+γT)DiDidxdη+n4(t)14t0ΩzeωηeωηΣ,iΣ,idxdη+n5(t)14ωt0ΩzeωηΣ2dxdη. (3.33)

    where

    n1(t)=2γT2M32k5(t)k2k1k4(t)2a3bλ,n2(t)=24k2k5(t),n3(t)=2[b1+b223k1k5(t)b6Λ+b1+b224k2k5(t)+12]+2(1+γTM)k1λ+2γk5(t)k2k1TMγ+1γT2Mk1γTMω,n4(t)=2γk5(t)k2k1TMγ,n5(t)=1γT2Mk1γTMω.

    Now, we begin to derive a bound of Φ2(z,t) which has been defined in Eq (3.15). Using the Hölder inequality, Young's inequality, Lemmas 2.7 and 2.3, we have

    Φ21(z,t)1ω[14t0ΩzeωηΣ2,3dxdη+14ωt0ΩzeωηΣ2dxdη], (3.34)
    Φ22(z,t)12t0eωη(Ωzu23dx)12(ΩzΣ4dx)12dη2k5(t)k214t0ΩzeωηΣ,iΣ,idxdη, (3.35)
    Φ23(z,t)2γω[12γT2Mt0Ωzeωη(1+γT)D23dxdη+14ωt0ΩzeωηΣ2dxdη]. (3.36)

    Inserting Eqs (3.34)–(3.36) into Eq (3.15), we obtain

    Φ2(z,t)[1ω+2k5(t)k2]14t0ΩzeωηΣ,iΣ,idxdη+[1ω+2γω]14ωt0ΩzeωηΣ2dxdη+2γω12γT2Mt0Ωzeωη(1+γT)D23dxdη. (3.37)

    Combining Eqs (3.19), (3.22), (3.33) and (3.37), we obtain

    Φ(z,t)n6(t)[zΦ(z,t)]+n7(t)˜b2ezk3, (3.38)

    where

    n6(t)=max{n2(t),n3(t)+2γω,n5(t)+1ω+2γω,n4(t)+1ω+2k5(t)k2},n7(t)=16a1γ(b1+b2)T2Mk4(t)n6(t)+n1(t). (3.39)

    In this section, we will analysis Lemma 3.1 to derive the following theorem.

    Theorem 4.1. Let (ui,T,p) and (ui,T,p) be solutions of the Eqs (1.1)–(1.8) in Ω, corresponding to b1 and b2, respectively. If Df3dA=0, Equation (3.21) holds and fα,αγ1f3=0,HL(Ω×{t>0}), then

    (ui,T)(ui,T), as b1b2.

    Specifically, either the inequality

    b1+b24γT2Mt0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+12γT2Mt0Ωzeωη(ξz)(1+γT)DiDidxdη+12eωtΩz(ξz)Σ2dx+t0Ωzeωη(ξz)[14ωΣ2+14Σ,iΣ,i]dxdη16˜b2a1γ(b1+b2)k3T2Mk4(t)ezk3+˜b2n7(t)e1n6z+˜b2n7(t)n6ze1n6z

    holds, or the inequality

    b1+b24γT2Mt0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+12γT2Mt0Ωzeωη(ξz)(1+γT)DiDidxdη+12eωtΩz(ξz)Σ2dx+t0Ωzeωη(ξz)[14ωΣ2+14Σ,iΣ,i]dxdη16˜b2a1γ(b1+b2)k3T2Mk4(t)ezk3+˜b2n7(t)e1n6z+˜b2n7(t)n6(1n61k3)b3(t)[e1k3ze1n6z]

    holds.

    Proof. Using Lemma 3.1, we have

    z{Φ(z,t)e1n6z}˜b2n7(t)n6e(1n61k3)z, z0. (4.1)

    Now, we consider (4.1) for two cases.

    Ⅰ. If n6=k3, we integrate Eq (4.1) from 0 to z to obtain

    Φ(z,t)Φ(0,t)e1n6z+˜b2n7(t)n6ze1n6z. (4.2)

    Ⅱ. If n6k3, we integrate Eq (4.1) from 0 to z to obtain

    Φ(z,t)Φ(0,t)e1n6z+˜b2n7(t)n6(1n61k3)b3(t)[e1k3ze1n6z]. (4.3)

    From Eqs (4.2) and (4.3), to obtain the main result, we can conclude that we have to derive a bound for Φ(0,t). We choose z=0 in Lemma 3.1 to obtain

    Φ(0,t)n6[Φz(0,t)]+˜b2n7(t). (4.4)

    Clearly, if we want to derive a bound for Φ(0,t), we only need derive a bound for Φz(0,t). To do this, choosing z=0 in Eq (3.19) and combining Eqs (3.8) and (3.15), we have

    Φz(0,t)=2γT2Mt0DeωηπD3dAdηt0DeωηΣΣ,3dAdη+12t0Deωηu3Σ2dAdη+t0DeωηD3TΣdAdη. (4.5)

    In light of the boundary conditions (3.4)–(3.6), from Eq (4.5) we can know that

    Φz(0,t)=0. (4.6)

    Inserting Eq (4.6) into Eq (4.4), we obtain

    Φ(0,t)˜b2n7(t). (4.7)

    Therefore, from Eqs (4.2), (4.3) and (4.7) we have

    Φ(z,t)˜b2n7(t)e1n6z+˜b2n7(t)n6ze1n6z, if n6=k3, (4.8)
    Φ(z,t)˜b2n7(t)e1n6z+˜b2n7(t)n6(1n61k3)b3(t)[e1k3ze1n6z], if  n6k3. (4.9)

    Combining Eqs (3.24), (4.8) and (4.9) we can complete the proof of Theorem 4.1.

    Remark 4.1 Theorem 1 shows that the small perturbation of Forchheimer coefficient will not cause great changes to the solution of Eqs (1.1)–(1.8). Meanwhile, Theorem 1 also shows that the solutions of Eqs (2.12)–(2.21) decay exponentially as the space variable z.

    This section shows how to use the prior estimates in Section 2 and the method in Section 3 to derive the continuous dependence of the solution on γ. Assume that (ui,T,p) is a solution of Eqs (1.1)–(1.8) with γ=γ.

    If we also let

    Di=uiui, Σ=TT, π=pp, ˜γ=γγ,

    then (Di,Σ,π) satisfies

    b[|u|ui|u|ui]+˜γTui+γ2Σui+(1+γT)Di+γΣui=π,i+giΣ, in Ω×{t>0}, (5.1)
    Di,i=0, in Ω×{t>0}, (5.2)
    tΣ+uiΣ,i+DiT,i=ΔΣ, in Ω×{t>0}, (5.3)
    Di=0,Σ=0, on D×{x3>0}×{t>0}, (5.4)
    Di=0,Σ=0, on D×{t>0}, (5.5)
    Σ(x1,x2,x3,0)=0, in Ω (5.6)
    |u|,|Σ|=O(1),|Di|,|Σ|,|π|=o(x13), as x3. (5.7)

    We also define Φ1(z,t) as that in Eq (3.8). Similar to Eq (3.10), we have

    Φ1(z,t)=b2t0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+t0Ωzeωη(ξz)(1+γ2T)DiDidxdη+b2t0Ωzeωη(ξz)[|u||u|]2[|u|+|u|]dxdη+γ2t0Ωzeωη(ξz)DiΣuidxdηt0Ωzeωη(ξz)DigiΣdxdη+˜γt0Ωzeωη(ξz)TuiDidxdη. (5.8)

    Using the Hölder inequality, Young's inequality and Lemmas 2.5 and 2.6, we obtain

    ˜γt0ΩzeωηTuiDidxdη12T2M˜γ2t0Ωzeωηuiuidxdη12t0Ωzeωη(1+γ2T)DiDidxdηk4(t)2a2T2M˜γ2ezk312t0Ωzeωη(1+γ2T)DiDidxdη, (5.9)

    Combining Eqs (3.12), (3.13), (5.8) and (5.9), we obtain

    zΦ1(z,t)b2t0Ωzeωη[|u|+|u|]DiDidxdη+12t0Ωzeωη(1+γ2T)DiDidxdη4γ22k5(t)k2bt0ΩzeωηΣ,iΣ,idxdη12γt0ΩzeωηΣ2dxdηk4(t)2a2T2M˜γ2ezk3. (5.10)

    Inserting Eqs (3.18) and (5.10) into Eq (3.19), choosing ω>4T2Mγ2 and the boundary data satisfies

    8(γ)2k5(t)k2b14, (5.11)

    we have

    zΦ(z,t)bγT2Mt0Ωzeωη[|u|+|u|]DiDidxdη+1(γ)2T2Mt0Ωzeωη(1+γ2T)DiDidxdη+12eωtΩzΣ2dx+t0Ωzeωη[14ωΣ2+14Σ,iΣ,i]dxdηk4(t)2a2γT4M˜γ2ezk3. (5.12)

    Integrating Eq (5.12) from z to , we obtain

    Φ(z,t)bγT2Mt0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+1(γ)2T2Mt0Ωzeωη(1+γ2T)DiDidxdη+12eωtΩz(ξz)Σ2dx+t0Ωzeωη(ξz)[14ωΣ2+14Σ,iΣ,i]dxdηk4(t)2a2γk3T4M˜γ2ezk3. (5.13)

    Similar to the calculation in Eqs (3.33) and (3.37), we can get

    Φ(z,t)n6(t)[zΦ(z,t)]+n7(t)˜b2ezk3, (5.14)

    for n6(t),n7(t)>0.

    After similar analysis as in the previous section, we can get the following theorem from Eq (5.14).

    Theorem 5.1. Let (ui,T,p) and (ui,T,p) be solutions of the Eqs (1.1)–(1.8) in Ω, corresponding to b1 and b2, respectively. If Df3dA=0, Equation (5.11) holds and fα,αγ1f3=0,HL(Ω×{t>0}), then

    (ui,T)(ui,T), as b1b2.

    Specifically, either the inequality

    bγT2Mt0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+1(γ)2T2Mt0Ωzeωη(ξz)(1+γT)DiDidxdη+12eωtΩz(ξz)Σ2dx+t0Ωzeωη(ξz)[14ωΣ2+14Σ,iΣ,i]dxdηk4(t)2a2γk3T4M˜γ2ezk3+˜γ2n7(t)e1n6z+˜γ2n7(t)n6ze1n6z

    holds, or the inequality

    bγT2Mt0Ωzeωη(ξz)[|u|+|u|]DiDidxdη+1(γ)2T2Mt0Ωzeωη(ξz)(1+γT)DiDidxdη+12eωtΩz(ξz)Σ2dx+t0Ωzeωη(ξz)[14ωΣ2+14Σ,iΣ,i]dxdηk4(t)2a2γk3T4M˜γ2ezk3+˜γ2n7(t)e1n6z+˜γ2n7(t)n6(1n61k3)b3(t)[e1k3ze1n6z]

    holds.

    In this paper, using a priori estimates of the solutions, we show how to control the nonlinear term, and obtain the structural stability of the solution of the Forchheimer equation in a semi-infinite cylinder. Meanwhile, the spatial decay results of the solution are also obtained. The methods in this paper can bring some inspiration for the structural stability of other nonlinear partial differential equations.

    The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work is supported by the Tutor System Rroject of Guangzhou Huashang College (2021HSDS13) and the Key projects of universities in Guangdong Province (NATURAL SCIENCE) (2019KZDXM042).

    The authors declare there is no conflict of interest. Conceptualization, and validation, Z. Li.; formal analysis, Z W. Zhang; investigation, Y. Li. All authors have read and agreed to the published version of the manuscript.

    [1] [ B. E. Ainseba,M. Bendahmane,A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Analysis: Real World Applications, 9 (2008): 2086-2105.
    [2] [ N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, Journal of Differential Equations, 33 (1979): 201-225.
    [3] [ D. Alonso,F. Bartumeus,J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83 (2002): 28-34.
    [4] [ H. Amann, Dynamic theory of quasilinear parabolic equations Ⅱ: Reaction-diffusion systems, Differential Integral Equations, 3 (1990): 13-75.
    [5] [ H. Amann, Dynamic theory of quasilinear parabolic systems Ⅲ: Global existence, Mathematische Zeitschrift, 202 (1989): 219-250.
    [6] [ H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, 133 (1993): 9-126.
    [7] [ J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, Journal of Animal Ecology, 44 (1975): 331-340.
    [8] [ V. N. Biktashev,J. Brindley,A. V. Holden,M. A. Tsyganov, Pursuit-evasion predator-prey waves in two spatial dimensions, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14 (2004): 988-994.
    [9] [ X. Cao, Y. Song and T. Zhang, Hopf bifurcation and delay-induced Turing instability in a diffusive lac operon model, International Journal of Bifurcation and Chaos, 26 (2016), 1650167, 22pp.
    [10] [ S. Creel,D. Christianson, Relationships between direct predation and risk effects, Trends in Ecology & Evolution, 23 (2008): 194-201.
    [11] [ W. Cresswell, Predation in bird populations, Journal of Ornithology, 152 (2011): 251-263.
    [12] [ D. L. DeAngelis,R. A. Goldstein,R. V. O'neill, A model for tropic interaction, Ecology, 56 (1975): 881-892.
    [13] [ T. Hillen,K. J. Painter, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009): 183-217.
    [14] [ T. Hillen,K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Advances in Applied Mathematics, 26 (2001): 280-301.
    [15] [ C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, The Canadian Entomologist, 91 (1959): 293-320.
    [16] [ C. S. Holling, Some characteristics of simple types of predation and parasitism, The Canadian Entomologist, 91 (1959): 385-398.
    [17] [ H. Jin,Z. Wang, Global stability of prey-taxis systems, Journal of Differential Equations, 262 (2017): 1257-1290.
    [18] [ J. M. Lee,T. Hillen,M. A. Lewis, Pattern formation in prey-taxis systems, Journal of Biological Dynamics, 3 (2009): 551-573.
    [19] [ S. A. Levin, The problem of pattern and scale in ecology, Ecology, 73 (1992): 1943-1967.
    [20] [ E. A. McGehee,E. Peacock-López, Turing patterns in a modified Lotka-Volterra model, Physics Letters A, 342 (2005): 90-98.
    [21] [ A. B. Medvinsky,S. V. Petrovskii,I. A. Tikhonova,H. Malchow,B. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Review, 44 (2002): 311-370.
    [22] [ J. D. Meiss, Differential Dynamical Systems, SIAM, 2007.
    [23] [ M. Mimura,J. D. Murray, On a diffusive prey-predator model which exhibits patchiness, Journal of Theoretical Biology, 75 (1978): 249-262.
    [24] [ M. Mimura, Asymptotic behavior of a parabolic system related to a planktonic prey and predator system, SIAM Journal on Applied Mathematics, 37 (1979): 499-512.
    [25] [ A. Morozov,S. Petrovskii,B. Li, Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect, Journal of Theoretical Biology, 238 (2006): 18-35.
    [26] [ J. D. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.
    [27] [ W. Ni,M. Wang, Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey, Journal of Differential Equations, 261 (2016): 4244-4274.
    [28] [ K. J. Painter,T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart, 10 (2002): 501-543.
    [29] [ S. V. Petrovskii,A. Y. Morozov,E. Venturino, Allee effect makes possible patchy invasion in a predator-prey system, Ecology Letters, 5 (2002): 345-352.
    [30] [ D. Ryan,R. Cantrell, Avoidance behavior in intraguild predation communities: A cross-diffusion model, Discrete and Continuous Dynamical Systems, 35 (2015): 1641-1663.
    [31] [ H. Shi,S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA Journal of Applied Mathematics, 80 (2015): 1534-1568.
    [32] [ H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.
    [33] [ Y. Song,X. Zou, Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point, Computers and Mathematics with Applications, 37 (2014): 1978-1997.
    [34] [ Y. Song,T. Zhang,Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Communications in Nonlinear Science and Numerical Simulation, 33 (2016): 229-258.
    [35] [ Y. Song and X. Tang, Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Studies in Applied Mathematics,(2017).
    [36] [ J. H. Steele, Spatial Pattern in Plankton Communities (Vol. 3), Springer Science & Business Media, 1978.
    [37] [ Y. Tao, Global existence of classical solutions to a predator-prey model with nolinear prey-taxis, Nonlinear Analysis: Real World Applications, 11 (2010): 2056-2064.
    [38] [ J. Wang,J. Shi,J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, Journal of Differential Equations, 251 (2011): 1276-1304.
    [39] [ J. Wang,J. Wei,J. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, Journal of Differential Equations, 260 (2016): 3495-3523.
    [40] [ X. Wang,L. Y. Zanette,X. Zou, Modelling the fear effect in predator-prey interactions, Journal of Mathematical Biology, 73 (2016): 1179-1204.
    [41] [ X. Wang,W. Wang,G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Mathematical Methods in the Applied Sciences, 38 (2015): 431-443.
    [42] [ Z. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 17 (2007), 037108, 13 pp.
    [43] [ S. Wu,J. Shi,B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, Journal of Differential Equations, 260 (2016): 5847-5874.
    [44] [ J. Xu,G. Yang,H. Xi,J. Su, Pattern dynamics of a predator-prey reaction-diffusion model with spatiotemporal delay, Nonlinear Dynamics, 81 (2015): 2155-2163.
    [45] [ F. Yi,J. Wei,J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009): 1944-1977.
    [46] [ L. Y. Zanette,A. F. White,M. C. Allen,M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011): 1398-1401.
    [47] [ T. Zhang and H. Zang, Delay-induced Turing instability in reaction-diffusion equations, Physical Review E, 90 (2014), 052908.
  • This article has been cited by:

    1. Yuanfei Li, A study on continuous dependence of layered composite materials in binary mixtures on basic data, 2024, 32, 2688-1594, 5577, 10.3934/era.2024258
    2. Yanping Wang, Yuanfei Li, Structural Stability of Pseudo-Parabolic Equations for Basic Data, 2024, 29, 2297-8747, 105, 10.3390/mca29060105
    3. Naiqiao Qing, Jincheng Shi, Yan Liu, Yunfeng Wen, Spatial decay estimates for a coupled system of wave-plate type, 2025, 33, 2688-1594, 1144, 10.3934/era.2025051
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6341) PDF downloads(1008) Cited by(61)

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog