Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks

  • Received: 01 July 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 92C15; Secondary: 80A30.

  • We describe a necessary condition for zero-eigenvalue Turing instability, i.e., Turing instability arising from a real eigenvalue changing sign from negative to positive, for general chemical reaction networks modeled with mass-action kinetics. The reaction mechanisms are represented by the species-reaction graph (SR graph), which is a bipartite graph with different nodes representing species and reactions. If the SR graph satisfies certain conditions, similar to the conditions for ruling out multiple equilibria in spatially homogeneous differential equations systems, then the corresponding mass-action reaction-diffusion system cannot exhibit zero-eigenvalue Turing instability for any parameter values.On the other hand, if the graph-theoretic condition for ruling out zero-eigenvalue Turing instability is not satisfied, then the corresponding model may display zero-eigenvalue Turing instability for some parameter values. The technique is illustrated with a model of a bifunctional enzyme.

    Citation: Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1207-1226. doi: 10.3934/mbe.2013.10.1207

    Related Papers:

    [1] Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334
    [2] Mingzhu Qu, Chunrui Zhang, Xingjian Wang . Analysis of dynamic properties on forest restoration-population pressure model. Mathematical Biosciences and Engineering, 2020, 17(4): 3567-3581. doi: 10.3934/mbe.2020201
    [3] Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116
    [4] Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282
    [5] Paula Mercurio, Di Liu . Identifying transition states of chemical kinetic systems using network embedding techniques. Mathematical Biosciences and Engineering, 2021, 18(1): 868-887. doi: 10.3934/mbe.2021046
    [6] Fiona R. Macfarlane, Mark A. J. Chaplain, Tommaso Lorenzi . A hybrid discrete-continuum approach to model Turing pattern formation. Mathematical Biosciences and Engineering, 2020, 17(6): 7442-7479. doi: 10.3934/mbe.2020381
    [7] Meiling Zhu, Huijun Xu . Dynamics of a delayed reaction-diffusion predator-prey model with the effect of the toxins. Mathematical Biosciences and Engineering, 2023, 20(4): 6894-6911. doi: 10.3934/mbe.2023297
    [8] Nicola Vassena . Good and bad children in metabolic networks. Mathematical Biosciences and Engineering, 2020, 17(6): 7621-7644. doi: 10.3934/mbe.2020388
    [9] Xin-You Meng, Tao Zhang . The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model. Mathematical Biosciences and Engineering, 2020, 17(4): 4034-4047. doi: 10.3934/mbe.2020223
    [10] Gheorghe Craciun, Stefan Muller, Casian Pantea, Polly Y. Yu . A generalization of Birchs theorem and vertex-balanced steady states for generalized mass-action systems. Mathematical Biosciences and Engineering, 2019, 16(6): 8243-8267. doi: 10.3934/mbe.2019417
  • We describe a necessary condition for zero-eigenvalue Turing instability, i.e., Turing instability arising from a real eigenvalue changing sign from negative to positive, for general chemical reaction networks modeled with mass-action kinetics. The reaction mechanisms are represented by the species-reaction graph (SR graph), which is a bipartite graph with different nodes representing species and reactions. If the SR graph satisfies certain conditions, similar to the conditions for ruling out multiple equilibria in spatially homogeneous differential equations systems, then the corresponding mass-action reaction-diffusion system cannot exhibit zero-eigenvalue Turing instability for any parameter values.On the other hand, if the graph-theoretic condition for ruling out zero-eigenvalue Turing instability is not satisfied, then the corresponding model may display zero-eigenvalue Turing instability for some parameter values. The technique is illustrated with a model of a bifunctional enzyme.


    [1] Comm. in Math. Sciences, 7 (2009), 867-900.
    [2] Adv. in Appl. Math., 44 (2010), 168-184.
    [3] Partial differential equations and dynamical systems, 85-133, Res. Notes in Math., 101, Pitman, Boston, MA, 1984.
    [4] Ph.D thesis, Ohio State University, 2002.
    [5] SIAM J. Appl. Math., 65 (2005), 1526-1546.
    [6] SIAM J. Appl. Math., 66 (2006), 1321-1338.
    [7] PNAS, 103 (2006), 8697-8702.
    [8] J. Math. Chem., 46 (2009), 322-339.
    [9] Arch. Rational Mech. Anal., 49 (1972) 187-194.
    [10] Written Version of Lectures Given at the Mathematical Research Center, University of Wisconsin, Madison, WI, 1979. Available at http://www.chbmeng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks.
    [11] Arch. Rational Mech. Anal., 132 (1995), 311-370.
    [12] Interscience, New York, 1960.
    [13] FEBS Lett., 217 (1987), 212-215.
    [14] FEBS Lett., 532 (2002), 295-299.
    [15] Arch. Rational Mech. Anal., 47 (1972), 81-116.
    [16] Academic Press, Orlando, 1985.
    [17] Proc. IEEE, 96 (2008), 1281-1291.
    [18] J. Math. Biol., 55 (2007), 61-86.
    [19] J. Chem. Phys., 125 (2006), 204102.
    [20] 2nd ed., Springer-Verlag, New York, 1993.
    [21] J. Math. Biol., 41 (2000), 493-512.
    [22] Lin. Alg. Appl., 398 (2005), 69-74.
    [23] Math. Biosci., 240 (2012), 92-113.
    [24] J. R. Soc. Interface, 2 (2005), 419-430.
    [25] Bull. Math. Biol., 57 (1995), 247-276.
    [26] Phil. Trans. R Soc. London B, 237 (1952), 37-72.
    [27] (Russian), Nauka, Moscow, 1987, 57-102.
    [28] J. Math. Anal. Appl., 254 (2001), 138-153.
    [29] arXiv:1202.3621, (2012).
  • This article has been cited by:

    1. Polly Y. Yu, Gheorghe Craciun, Mathematical Analysis of Chemical Reaction Systems, 2018, 58, 00212148, 733, 10.1002/ijch.201800003
    2. Marc R. Roussel, Talmon Soares, Graph-based, dynamics-preserving reduction of (bio)chemical systems, 2024, 89, 0303-6812, 10.1007/s00285-024-02138-0
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3079) PDF downloads(618) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog