Citation: Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1207-1226. doi: 10.3934/mbe.2013.10.1207
[1] | Xiaomei Bao, Canrong Tian . Turing patterns in a networked vegetation model. Mathematical Biosciences and Engineering, 2024, 21(11): 7601-7620. doi: 10.3934/mbe.2024334 |
[2] | Mingzhu Qu, Chunrui Zhang, Xingjian Wang . Analysis of dynamic properties on forest restoration-population pressure model. Mathematical Biosciences and Engineering, 2020, 17(4): 3567-3581. doi: 10.3934/mbe.2020201 |
[3] | Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116 |
[4] | Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282 |
[5] | Paula Mercurio, Di Liu . Identifying transition states of chemical kinetic systems using network embedding techniques. Mathematical Biosciences and Engineering, 2021, 18(1): 868-887. doi: 10.3934/mbe.2021046 |
[6] | Fiona R. Macfarlane, Mark A. J. Chaplain, Tommaso Lorenzi . A hybrid discrete-continuum approach to model Turing pattern formation. Mathematical Biosciences and Engineering, 2020, 17(6): 7442-7479. doi: 10.3934/mbe.2020381 |
[7] | Meiling Zhu, Huijun Xu . Dynamics of a delayed reaction-diffusion predator-prey model with the effect of the toxins. Mathematical Biosciences and Engineering, 2023, 20(4): 6894-6911. doi: 10.3934/mbe.2023297 |
[8] | Nicola Vassena . Good and bad children in metabolic networks. Mathematical Biosciences and Engineering, 2020, 17(6): 7621-7644. doi: 10.3934/mbe.2020388 |
[9] | Xin-You Meng, Tao Zhang . The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model. Mathematical Biosciences and Engineering, 2020, 17(4): 4034-4047. doi: 10.3934/mbe.2020223 |
[10] | Gheorghe Craciun, Stefan Muller, Casian Pantea, Polly Y. Yu . A generalization of Birchs theorem and vertex-balanced steady states for generalized mass-action systems. Mathematical Biosciences and Engineering, 2019, 16(6): 8243-8267. doi: 10.3934/mbe.2019417 |
[1] | Comm. in Math. Sciences, 7 (2009), 867-900. |
[2] | Adv. in Appl. Math., 44 (2010), 168-184. |
[3] | Partial differential equations and dynamical systems, 85-133, Res. Notes in Math., 101, Pitman, Boston, MA, 1984. |
[4] | Ph.D thesis, Ohio State University, 2002. |
[5] | SIAM J. Appl. Math., 65 (2005), 1526-1546. |
[6] | SIAM J. Appl. Math., 66 (2006), 1321-1338. |
[7] | PNAS, 103 (2006), 8697-8702. |
[8] | J. Math. Chem., 46 (2009), 322-339. |
[9] | Arch. Rational Mech. Anal., 49 (1972) 187-194. |
[10] | Written Version of Lectures Given at the Mathematical Research Center, University of Wisconsin, Madison, WI, 1979. Available at http://www.chbmeng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks. |
[11] | Arch. Rational Mech. Anal., 132 (1995), 311-370. |
[12] | Interscience, New York, 1960. |
[13] | FEBS Lett., 217 (1987), 212-215. |
[14] | FEBS Lett., 532 (2002), 295-299. |
[15] | Arch. Rational Mech. Anal., 47 (1972), 81-116. |
[16] | Academic Press, Orlando, 1985. |
[17] | Proc. IEEE, 96 (2008), 1281-1291. |
[18] | J. Math. Biol., 55 (2007), 61-86. |
[19] | J. Chem. Phys., 125 (2006), 204102. |
[20] | 2nd ed., Springer-Verlag, New York, 1993. |
[21] | J. Math. Biol., 41 (2000), 493-512. |
[22] | Lin. Alg. Appl., 398 (2005), 69-74. |
[23] | Math. Biosci., 240 (2012), 92-113. |
[24] | J. R. Soc. Interface, 2 (2005), 419-430. |
[25] | Bull. Math. Biol., 57 (1995), 247-276. |
[26] | Phil. Trans. R Soc. London B, 237 (1952), 37-72. |
[27] | (Russian), Nauka, Moscow, 1987, 57-102. |
[28] | J. Math. Anal. Appl., 254 (2001), 138-153. |
[29] | arXiv:1202.3621, (2012). |
1. | Polly Y. Yu, Gheorghe Craciun, Mathematical Analysis of Chemical Reaction Systems, 2018, 58, 00212148, 733, 10.1002/ijch.201800003 | |
2. | Marc R. Roussel, Talmon Soares, Graph-based, dynamics-preserving reduction of (bio)chemical systems, 2024, 89, 0303-6812, 10.1007/s00285-024-02138-0 |