Research article

Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism

  • Received: 26 January 2022 Revised: 24 March 2022 Accepted: 01 April 2022 Published: 12 April 2022
  • We investigate a new cross-diffusive prey-predator system which considers prey refuge and fear effect, where predator cannibalism is also considered. The prey and predator that partially depends on the prey are followed by Holling type-Ⅱ terms. We first establish sufficient conditions for persistence of the system, the global stability of constant steady states are also investigated. Then, we investigate the Hopf bifurcation of ordinary differential system, and Turing instability driven by self-diffusion and cross-diffusion. We have found that the $ d_{12} $ can suppress the formation of Turing instability, while the $ d_{21} $ promotes the appearance of the pattern formation. In addition, we also discuss the existence and nonexistence of nonconstant positive steady state by Leray-Schauder degree theory. Finally, we provide the following discretization reaction-diffusion equations and present some numerical simulations to illustrate analytical results, which show that the establishment of prey refuge can effectively protect the growth of prey.

    Citation: Tingting Ma, Xinzhu Meng. Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282

    Related Papers:

  • We investigate a new cross-diffusive prey-predator system which considers prey refuge and fear effect, where predator cannibalism is also considered. The prey and predator that partially depends on the prey are followed by Holling type-Ⅱ terms. We first establish sufficient conditions for persistence of the system, the global stability of constant steady states are also investigated. Then, we investigate the Hopf bifurcation of ordinary differential system, and Turing instability driven by self-diffusion and cross-diffusion. We have found that the $ d_{12} $ can suppress the formation of Turing instability, while the $ d_{21} $ promotes the appearance of the pattern formation. In addition, we also discuss the existence and nonexistence of nonconstant positive steady state by Leray-Schauder degree theory. Finally, we provide the following discretization reaction-diffusion equations and present some numerical simulations to illustrate analytical results, which show that the establishment of prey refuge can effectively protect the growth of prey.



    加载中


    [1] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [2] D. Q. Jiang, C. Y. Ji, Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 381 (2011), 441–453. https://doi.org/10.1016/j.jmaa.2011.02.037 doi: 10.1016/j.jmaa.2011.02.037
    [3] T. Feng, X. Z. Meng, T. H. Zhang, Z. P. Qiu, Analysis of the predator-prey interactions: A stochastic model incorporating disease invasion, Qual. Theor. Dyn. Syst., 19 (2020), 55. https://doi.org/10.1007/s12346-020-00391-4 doi: 10.1007/s12346-020-00391-4
    [4] S. Q. Zhang, S. L. Yuan, T. H. Zhang, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecol. Complex., 45 (2021), 100889. https://doi.org/10.1016/j.ecocom.2020.100889 doi: 10.1016/j.ecocom.2020.100889
    [5] J. M. Jeschke, M. Kopp, R. Tollrian, Predator functional responses: discriminating between handling and digesting prey, Ecol. Monogr., 72 (2002), 95–112. https://doi.org/10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO; 2 doi: 10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2
    [6] P. J. Pal, P. K. Mandal, Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-Deangelis functional response and strong allee effect, Math. Comput. Simul., 97 (2014), 123–146. https://doi.org/10.1016/j.matcom.2013.08.007 doi: 10.1016/j.matcom.2013.08.007
    [7] D. Mukherjee, Study of refuge use on a predator-prey system with a competitor for the prey, Int. J. Biomath., 10 (2017), 1750023. https://doi.org/10.1142/S1793524517500231 doi: 10.1142/S1793524517500231
    [8] S. Sarwardi, M. Haque, E. Venturino, A Leslie-Gower Holling-type Ⅱ ecoepidemic model, J. Appl. Math. Comput., 35 (2017), 263–280. https://doi.org/10.1007/s12190-009-0355-1 doi: 10.1007/s12190-009-0355-1
    [9] T. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
    [10] S. Creel, D. Christianson, Relationships between direct predation and risk effects, Trends Ecol. Evolut., 23 (2008), 194–201. https://doi.org/10.1016/j.tree.2007.12.004 doi: 10.1016/j.tree.2007.12.004
    [11] K. Sarkar, S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Complex., 42 (2020), 100826. https://doi.org/10.1016/j.ecocom.2020.100826 doi: 10.1016/j.ecocom.2020.100826
    [12] Y. H. Du, J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differ. Equations, 229 (2006), 63–91. https://doi.org/10.1016/j.jde.2006.01.013 doi: 10.1016/j.jde.2006.01.013
    [13] H. K. Qi, X. Z. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. https://doi.org/10.1016/j.aml.2020.106846 doi: 10.1016/j.aml.2020.106846
    [14] H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
    [15] S. Chakraborty, J. Chattopadhyay, Effect of cannibalism on a predator-prey system with nutritional value: A model based study, Dyn. Syst., 26 (2011), 13–22. https://doi.org/10.1080/14689367.2010.491076 doi: 10.1080/14689367.2010.491076
    [16] S. Fasani, S. Rinaldi, Remarks on cannibalism and pattern formation in spatially extended prey-predator systems, Nonlinear Dyn., 67 (2012), 2543–2548. https://doi.org/10.1007/s11071-011-0166-4 doi: 10.1007/s11071-011-0166-4
    [17] N. A. Schellhorn, D. A. Andow, Cannibalism and interspecific predator: Role of oviposiion behavior, Ecol. Appl., 9 (1999), 418–428. https://doi.org/10.1890/1051-0761(1999)009[0418:CAIPRO]2.0.CO; 2 doi: 10.1890/1051-0761(1999)009[0418:CAIPRO]2.0.CO;2
    [18] Y. Zhang, X. Rong, J. Zhang, A diffusive predator-prey system with prey refuge and predator cannibalism, Math. Biosic. Eng., 16 (2019), 1445–1470. https://doi.org/10.3934/mbe.2019070 doi: 10.3934/mbe.2019070
    [19] W. Wang, X. N. Wang, K. Guo, W. B. Ma, Global analysis of a diffusive viral model with cell-to-cell infection and incubation period, Math. Method. Appl. Sci., 43 (2020), 5963–5978. https://doi.org/10.1002/mma.6339 doi: 10.1002/mma.6339
    [20] M. Holzer, N. Popovic, Wavetrain solutions of a reaction-diffusion-advection model of mussel-algae interaction, Siam J. Appl. Dyn., 16 (2017), 431–478. https://doi.org/10.1137/15M1040463 doi: 10.1137/15M1040463
    [21] Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differ. Equations, 300 (2021), 597–624. https://doi.org/10.1016/j.jde.2021.08.010 doi: 10.1016/j.jde.2021.08.010
    [22] S. H. Wu, Y. L. Song, Spatiotemporal dynamics of a diffusive predator-prey model with nonlocal effect and delay, Commun. Nonlinear Sci., 89 (2020), 105310. https://doi.org/10.1016/j.cnsns.2020.105310 doi: 10.1016/j.cnsns.2020.105310
    [23] L. N. Guin, P. K. Mandal, Effect of prey refuge on spatiotemporal dynamics of reaction-diffusion system, Comput. Math. Appl., 68 (2014), 13251340. https://doi.org/10.1016/j.camwa.2014.08.025 doi: 10.1016/j.camwa.2014.08.025
    [24] Y. L. Cai, W. M. Wang, Spatiotemporal dynamics of a reaction-diffusion epidemic model with nonlinear incidence rate, J. Stat. Mech. Theor. Exp., 2011 (2011), P02025. https://doi.org/10.1088/1742-5468/2011/02/P02025 doi: 10.1088/1742-5468/2011/02/P02025
    [25] J. D. Ferreira, S. H. Silva, V. S. HariRao, Stability analysis of predator-prey models involving cross-diffusion, Phys. D, 400 (2019), 132–141. https://doi.org/10.1016/j.physd.2019.06.007 doi: 10.1016/j.physd.2019.06.007
    [26] L. N. Guin, Existence of spatial patterns in a predator-prey model with self- and cross-diffusion, Appl. Math. Comput., 226 (2014), 320–335. https://doi.org/10.1016/j.amc.2013.10.005 doi: 10.1016/j.amc.2013.10.005
    [27] D. X. Song, C. Li, Y. L. Song, Stability and cross-diffusion-driven instability in a diffusive predator-prey system with hunting cooperation functional response, Nonlinear Anal-Real., 54 (2020), 103106. https://doi.org/10.1016/j.nonrwa.2020.103106 doi: 10.1016/j.nonrwa.2020.103106
    [28] Q. Ouyang, H. L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns, Nature, 352 (1991), 610–612. https://doi.org/10.1038/352610a0 doi: 10.1038/352610a0
    [29] W. M. Wang, X. Y. Gao, Y. L. Cai, H. B. Shi, S. M. Fu, Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin I., 355 (2018), 7226–7245. https://doi.org/10.1016/j.jfranklin.2018.07.014 doi: 10.1016/j.jfranklin.2018.07.014
    [30] Y. L. Cai, Z. J. Gui, X. Zhang, Bifurcations and pattern formation in a predator-prey model, Int. J. Bifurcation Chaos, 28 (2018), 1850140. https://doi.org/10.1142/S0218127418501407 doi: 10.1142/S0218127418501407
    [31] W. Abid, R. Yafia, M. A. Aziz-Alaoui, H. Bouhafa, A. Abichou, Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-Deangelis functional type, Evol. Equ. Control Theory., 4 (2015), 115–129. https://doi.org/10.3934/eect.2015.4.115 doi: 10.3934/eect.2015.4.115
    [32] G. F. Fussmann, S. P. Ellner, K. W. Shertzer, N. G. Hairston Jr, Crossing the hopf bifurcation in a live predator-prey system, Science, 290 (2000), 1358–1360. https://doi.org/10.1126/science.290.5495.1358 doi: 10.1126/science.290.5495.1358
    [33] Y. H. Song, W. He, X. Y. He, Vibration control of a high-rise building structure: Theory and Experiment, IEEE-CAA J. Automatic, 8 (2021), 866–875. https://doi.org/10.1109/JAS.2021.1003937 doi: 10.1109/JAS.2021.1003937
    [34] R. T. Rockafellar, R. J. B. Wets, Variational Analysis, Spring, 2009.
    [35] K. J. Brown, P. C. Dunne, R. A. Gardner, Asemilinear parabolic system arising in the theory of superconductivity, J. Differ. Equations, 35 (1981), 1–16.
    [36] M. Wang, Nonlinear Partial Differential Equations of Parabolic Type, Science Press, Beijing, 1993.
    [37] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B., 237 (1952), 37–72. https://doi.org/10.1098/rstb.1952.0012 doi: 10.1098/rstb.1952.0012
    [38] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of hopf bifurcation, Cambridge University Press, 1981.
    [39] Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131.
    [40] C. S. Lin, W. M. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Equations, 72 (1988), 1–27. https://doi.org/10.1016/0022-0396(88)90147-7 doi: 10.1016/0022-0396(88)90147-7
    [41] S. Chakraborty, J. Chattopadhyay, Effect of cannibalism on a predator-prey system with nutritional value: a model based study, Dyn. Syst., 26 (2011), 13–22. https://doi.org/10.1080/14689367.2010.491076 doi: 10.1080/14689367.2010.491076
    [42] B. Dubey, A. Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavior, Math. Comput. Simulat., 188 (2021), 164–192. https://doi.org/10.1016/j.matcom.2021.03.037 doi: 10.1016/j.matcom.2021.03.037
    [43] X. M. Zhang, Z. H. Liu, Hopf bifurcation analysis in a predator-prey model with predator-age structure and predator-prey reaction time delay, Appl. Math. Model., 91 (2021), 530–548. https://doi.org/10.1016/j.apm.2020.08.054 doi: 10.1016/j.apm.2020.08.054
    [44] N. N. Nguyen, G. Yin, Stochastic partial differential equation models for spatially dependent predator-prey equations, Dyn. Syst. Ser. B, 25 (2020), 117–139. https://doi.org/10.3934/dcdsb.2019175 doi: 10.3934/dcdsb.2019175
    [45] Y. H. Du, Y. Lou, S-Shaped Global Bifurcation Curve and Hopf Bifurcation of Positive Solutions to a Predator-Prey Model, J. Differ. Equations, 144 (1998), 390–440. https://doi.org/10.1006/jdeq.1997.3394 doi: 10.1006/jdeq.1997.3394
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1665) PDF downloads(139) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog