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Abstract: We investigate a new cross-diffusive prey-predator system which considers prey refuge and
fear effect, where predator cannibalism is also considered. The prey and predator that partially depends
on the prey are followed by Holling type-II terms. We first establish sufficient conditions for persistence
of the system, the global stability of constant steady states are also investigated. Then, we investigate
the Hopf bifurcation of ordinary differential system, and Turing instability driven by self-diffusion and
cross-diffusion. We have found that the d12 can suppress the formation of Turing instability, while the
d21 promotes the appearance of the pattern formation. In addition, we also discuss the existence and
nonexistence of nonconstant positive steady state by Leray-Schauder degree theory. Finally, we provide
the following discretization reaction-diffusion equations and present some numerical simulations to
illustrate analytical results, which show that the establishment of prey refuge can effectively protect
the growth of prey.
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1. Introduction

In recent years, many scholars have established the prey-predator models to investigate the dynamic
relations, multi-species systems [1–4] have been studied. All these works are conducive to the analysis
of the system, and to achieve the purpose of stabilizing the ecosystem through the modeling research
between ecosystems. The problem of ecological species still deserves researchers’ attentions. On the
other hand, different functional response items play an important role in portraying different situations.
For example, Holling type-II function response is used in different systems [5, 6] for scholars to
investigate different systems. In nature, in order to escape from feeding behavior to avoid species
extinction and be better to fit the actual environment, we always consider an effective strategy which
is to establish a protection zone in the system. Many scholars are attracted by this interesting topic,
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and some researchers have established and investigated the predator-prey systems incorporating a prey
refuge [7,8]. Thus, adding the prey refuge is significant. We consider a term 1

1+a(1−m)u which can reflect
the prey refuge in this article. Applying the idea of prey refuge is a very convincing hypothesis for the
prey-predator system and it also adds a new feature in the predator-prey models with prey dependence.

In a recent paper [9], the author investigated a deterministic prey-predator system only with refuge,
and proposed the following system, dx

dt = αx
(
1 − x

k

)
−

β(1−m)xy
1+a(1−m)x ,

dy
dt = −γy +

cβ(1−m)xy
1+a(1−m)x .

(1.1)

However, we should notice that after the establishment of prey refuges, there may be competition
among prey due to food shortage and other reasons, so we need to consider the factor of intraspecies
competition. On the other hand, when the predator kills the prey, the anti-predator defence behavior
may be altered on account of the fear of predators. There is now a popular saying: the prey will change
its own behavior and physiological characteristics due to the fear of the predator as soon as the predator
appears in front of the prey. In addition, this fear effect affects the normal birth rate of the prey. To
a certain extent, it exceeds the impact of direct predation and even in some cases it becomes more
influential than the direct predation. Hence it is important to investigate the fear effect. Many scholars
have researched the fear effect in different stochastic models or ordinary differential equation(ODE)
systems [10–12]. Authors in [13] believed that increasing the cost of fear effect or decreasing the
strength of refuge can lead to the increase of predators. We multiply the factor 1

1+kv , which aims to
better study the fear effect on the population, where k is the fear factor. In [14], the authors proposed a
model with prey refuge and fear effect du

dt = ru
1+kv − bu2 −

β(1−m)uv
1+a(1−m)u ,

dv
dt =

cβ(1−m)uv
1+a(1−m)u − dv.

(1.2)

Moreover, another factor that can not be ignored is predator cannibalism. The predator cannibalism
has a strong impact on the dynamics systems [15,16], it may affect the original stability of the system.
Yet these behaviors are always omitted in the study of prey-predator systems. In [17], N.A. Schellhorn
and D.A. Andow found a phenomenon that the effect of cannibalism was equal to or stronger than that
of interspecific predation for both species. Authors in [18] explored a deterministic system as follows du

dt = ru(1 − u
K ) − auv

h+u+ηv ,
dv
dt =

e1auv−aη(1−e2)v2

h+u+ηv − dv.
(1.3)

Hence, to account for the above factors, we modify the system (1.3) and propose the following ordinary
differential equation (ODE) system: du

dt = ru
1+kv − bu2 −

β(1−m)uv
1+a(1−m)u , t > 0,

dv
dt =

cβ(1−m)uv−ηv2

1+a(1−m)u − dv, t > 0,
(1.4)

where r denotes the birth rate, β describes the capture rate. b represents the ability of competition
between the prey population. c is the efficiency of food conversion. d is the loss rate of predator.
1 + a(1 − m)u represents the amount of preys which is available to the predators, and m ∈ [0, 1). η is
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the cannibalism rate between predators. k is the fear factor. All of the coefficients in this article are
positive.

From the system (1.4), we know that:
(1) when k = 0, η = 0, then system (1.4) is similar to the system (1.1),
(2) when η = 0, which means there is no predator cannibalism in our system, then the system (1.4)
becomes system (1.2),
(3) when k = 0, which means we do not consider the fear effect in our system, and the function response
terms from β(1−m)uv

1+a(1−m)u to auv
h+u+ηv , then the system (1.4) becomes the system (1.3).

To sum up, we’ve improved on previous models. With the development of mathematical theory
researches [19–24]. In order to describe the relationship of attraction and repulsion among species,
a number of predator-prey systems with cross-diffusion was established [25, 26]. Many articles have
shown that these diffusion coefficients may lead to a Turing instability [27–29]. Hence, we consider
the effects of diffusion coefficients and give the following reaction-diffusion system,

∂u
∂t = du∆u + d12∆uv + ru

1+kv − bu2 −
β(1−m)uv

1+a(1−m)u , x ∈ Ω, t > 0,
∂v
∂t = dv∆v + d21∆vu +

cβ(1−m)uv−ηv2

1+a(1−m)u − dv, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(1.5)

Ω is a connected open region with a smooth boundary ∂Ω. ν is the outward unit normal vector. du and
dv are self-diffusion coefficients. d12 and d21 are cross-diffusion coefficients. The other parameters have
the same meaning as above. In [30–32], researchers investigated Hopf bifurcations of their systems to
explain the complex spatiotemporal dynamics. Thus, we need to analyse the dynamics of system (1.5).
We establish sufficient conditions where Hopf bifurcation occurs, as well as the stability. Authors
in [33] have well combined theoretical results with experiments, we will also give some corresponding
numerical simulation results.

We mainly analyze from the following aspects:
(i) the existence and persistence of the nonnegative solutions,
(ii) the local stability of system (1.5) at steady states,
(iii) Hopf bifurcation induced by the predator cannibalism in the deterministic system (1.4) and the
reaction-diffusion system (1.5),
(iv) Turing instability of system (1.5).

The paper is structured as follows. The dynamics of the system, including existence of the solutions
and the persistence of the system (1.5) are studied, and the proofs are given in Section 2. Sufficient
conditions for the stability and Hopf bifurcation of the deterministic system are given in Section 3.
Then, in Section 4, we give some conclusions for the reaction diffusion system: stability analysis,
Turing instability. In Section 5, we discuss some well-posedness of the nonconstant steady state.
Finally, numerical simulations and conclusion are given.

2. Persistence of the system (1.5)

Utilizing the maximum principle and comparison principle for parabolic equations, we have:

Theorem 2.1. For system (1.5), it admits a unique global solution (u(x, t), v(x, t)) for all x ∈ Ω, t > 0.
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Proof. Let (ū(x, t), v̄(x, t))=(ū(t), v̄(t)), where (ū(t), v̄(t)) satisfies
dū
dt = rū − bū2,
dv̄
dt =

cβ(1−m)ūv̄
1+a(1−m)ū − dv̄,

ū(0) = ū0 = max
x∈Ω

u0(x) > 0, v̄(0) = v̄0 = max
x∈Ω

v0(x) > 0.
(2.1)

It is not difficult to find that (ū(t), v̄(t)) is global existence according to the ordinary differential
equations’ existence and uniqueness theorem. Then we have

∂u
∂t − du∆u − d12∆uv ≤ ru − bu2,
∂u
∂ν

= 0,
u(x, 0) = u0(x) ≤ u0.

(2.2)

There exists T0 > 0 such that u(x, t) ≤ ū(t) according to comparison theorem, similarly, for v(x, t), we
have 

∂v
∂t − dv∆v − d21∆vu ≤ cβ(1−m)ūv̄

1+a(1−m)ū − dv̄,
∂v
∂ν

= 0,
v(x, 0) = v0(x) ≤ v0.

By using the comparison theorem, there exists T0 ∈ (0,∞) such that u(x, t) ≤ ū(t), similarly, v(x, t) gets
the same conclusion. The solution (u(x, t), v(x, t)) satisfies,

0 ≤ u(x, t) ≤ ū(t), 0 ≤ v(x, t) ≤ v̄(t)

for all x ∈ Ω, t ≥ 0. �

Theorem 2.2. The non-negative solution (u(x, t), v(x, t)) in system (1.5) is bounded [34],

lim sup
t→+∞

max u(x, t) ≤
r
b
, lim sup

t→+∞

max v(x, t) ≤
(cβ − ad)(1 − m)r − bd

ηb
, (2.3)

if 0 < m < 1 − bd
(cβ−ad)r and cβ − ad > 0 hold.

Proof. According to the comparison theorem of parabolic equation problems, it is clear that the first
equation in system (1.5) satisfies ∂u

∂t −du∆u−d12∆uv ≤ ru−bu2. Thus for a T > 0, t > T, u(x, t) ≤ b
r +ε,

where ε is an arbitrary positive constant, then,

∂v
∂t
− dv∆v − d21∆uv ≤

[(cβ − ad)(1 − m)( r
b + ε) − ηv]v − dv

1 + a(1 − m)( r
b + ε)

(2.4)

=
[(cβ − ad)(1 − m)( r

b + ε) − d − ηv]v
1 + a(1 − m)( r

b + ε)
.

Define z1(t) be a solution with respect to the equation

z
′

1(t) =

[
(cβ − ad)(1 − m)( r

b + ε) − d − ηv
]

v

1 + a(1 − m)( r
b + ε)

, t ≥ T.
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If

1 −
bd

(cβ − ad)r
< m < 1, lim

t→+∞
z1(t) = 0. (2.5)

If

m < 1 −
bd

(cβ − ad)r
, lim

t→+∞
z1(t) =

(cβ − ad)(1 − m)r − bd
ηb

. (2.6)

For any arbitrariness of ε > 0, one has

lim sup
t→+∞

max u(x, t) ≤
r
b

= u, lim sup
t→+∞

max v(x, t) ≤
(cβ − ad)(1 − m)r − bd

ηb
= v.

This finishes the proof. �

Proposition 2.1. Theorem 2.2 shows that, Γ :
[
0, r

b

]
×

[
0, (cβ−ad)(1−m)r−bd

ηb

]
is the global attractor for the

solutions of system (1.5), and any non-negative solution (u(x, t), v(x, t)) of system (1.5) is attracted to
Γ for a sufficiently large t.

Assumption 2.1. (i) 0 < m < 1 − bd−1
(cβ−ad)r ,

(ii) ηbr > β(1 − m)
[
(cβ − ad)(1 − m)r − bd

] [
1 + k(cβ − ad)(1 − m)r − bd

]
,

(iii) d < (cβ − ad)(1 − m)
(

r
b+kbv̄ −

β(1−m)
b v̄

)
.

Theorem 2.3. Under Assumption 2.1, the system (1.5) is persistent, and one has,

lim inf
t→+∞

min u(x, t) ≥ A, lim inf
t→+∞

min v(x, t) ≥ −
d
η

+
cβ(1 − m)A

1 + a(1 − m)A
, (2.7)

where, A =
rη

ηb+k(cβ−ad)(1−m)r−bdk −
rβ(1−m)2(cβ−ad)−βbd(1−m)

ηb2 > 0.

Proof. For the first equation in system (1.5), u(x, t) satisfies
∂z2
∂t − du∆z2 − d12∆z2v = z2

[
r

1+kv − bz2 − β(1 − m)v
]
,

∂z2
∂ν

= 0,
z2(x, 0) ≥ 0.

(2.8)

One has u(x, t) ≥ z2(x, t) = A − ε, where u(x, t) is the upper solution.
An application of comparison of parabolic equation, the first equation of (1.5) holds. Obviously,

u(x, t) ≥ A for all x ∈ Ω, when there exists a T1 > 0 and t ≥ T1. Then we obtain
∂v
∂t − dv∆v − d21∆uv ≥ v

[
−d +

cβ(1−m)(A+ε)
1+a(1−m)(A+ε) − ηv

]
, t > T1,

∂v
∂ν

= 0, t > T1,

v(x,T1) ≥ 0.
(2.9)

Note, z3(t) satisfies

z
′

3(t) = −d +
cβ(1 − m)(A + ε)

1 + a(1 − m)(A + ε)
− ηz3,

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6040–6071.



6045

then lim
t→+∞

z3(t) = −d
η

+
cβ(1−m)A

(1+a(1−m)A)η > 0. Which means

lim
t→+∞

v(x, t) ≥ lim
t→+∞

z3(t) = −
d
η

+
cβ(1 − m)A

1 + a(1 − m)A
.

Combining Theorems 2.2 and 2.3, we obtain that system (1.5) is persistent.
Then the proof is completed. �

3. The system (1.5) without diffusion: stability and Hopf bifurcation analysis

We discuss related properties of various constant equilibrium points. There are three types constant
equilibrium points: extinction point E0(0, 0), semi-trivia equilibrium point E1( r

b , 0), and the positive
equilibrium point E2(u∗, v∗).

Definition 3.1. U is an open region in Rn, for any given ε > 0, and the equilibrium x∗ ∈ U, there exists
a δ > 0 and t0 > 0 such that ‖x(t) − x∗‖ < ε for t ≥ t0. We can say the equilibrium point x∗ is stable.
We can find a T > 0 such that when t > T, limt→∞ ‖x(t) − x∗‖ = 0, then the equilibrium point x∗ is
attractive. The equilibrium point x∗ is said to be asymptotically stable if it is stable and attractive.

3.1. Stability of E0 and E1

We first consider E0(0, 0) and E1( r
b , 0).

(i) E0(0, 0) exists and is always unstable;
(ii) E1( r

b , 0) is always exists, and E1 is locally asymptotically stable when cβ − ad ≤ 0 or cβ − ad > 0
and 1 − bd

(cβ−ad)r < m < 1. When cβ − ad > 0 and 0 ≤ m < 1 − bd
(cβ−ad)r , E1 is unstable.

From (2.5) we know, when 1 − bd
(cβ−ad)r < m < 1,

lim sup
t→+∞

max u(x, t) ≤
r
b
, lim

t→+∞
max v(x, t) = 0.

Notice that there exists a T2 > 0, for any ε > 0, such that v(x, t) ≤ ε for all x ∈ Ω and t ≥ T2. Then we
have, 

∂u
∂t − du∆u ≥ u

[
r

(1+kε) − bu − β(1−m)ε
1+a(1−m)u

]
, t > T2,

∂u
∂ν

= 0, t > T2,

u(x,T2) ≥ 0.
(3.1)

Let z
′

4(t) = z4

[
r

(1+kε) − bz4 −
β(1−m)ε

1+a(1−m)z4

]
, then lim

t→+∞
z4(t) = r

b since ε is sufficiently small.
Applying the comparison theorem, we get the conclusion that lim inf

t→+∞
min u(x, t) ≥ r

b . Combining
with (2.3), E1 is global asymptotically stable. Now, we discuss E2(u∗, v∗) of the system (1.5). Firstly,
in order to study the following parts we make some notations,(

φt

ψt

)
= L

(
φ

ψ

)
:= D

(
∆φ

∆ψ

)
+ Ju,v

(
φ

ψ

)
,

where

D =

(
du d12u

d21v dv

)
,
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Ju,v =

(
a11 a12

a21 a22

)
,

and
a11 =

r
1 + kv

− 2bu −
β(1 − m)v

[a(1 − m)u + 1]2 ,

a12 = −
kru

(1 + kv)2 −
β(1 − m)u

a(1 − m)u + 1
,

a21 =
cβ(1 − m)v + aη(1 − m)v2

[a(1 − m)u + 1]2 ,

a22 = −d +
−2ηv + cβ(1 − m)u

1 + a(1 − m)u
.

3.2. Analysis of E2(u∗, v∗)

E2 satisfies the follow algebraic equations

ru∗
1 + kv∗

− bu2
∗ −

β(1 − m)u∗v∗
1 + a(1 − m)u∗

= 0, (3.2)

−dv∗ +
cβ(1 − m)u∗v∗ − ηv2

∗

1 + a(1 − m)u∗
= 0. (3.3)

According to equation (3.3), one has

v∗ =
(cβ − ad)(1 − m)u∗

η
−

d
η
. (3.4)

Putting (3.4) into (3.2), yields

Au3
∗ + Bu2

∗ + Cu∗ + D = 0, (3.5)

where
A = −abkη(cβ − ad)(1 − m)2 < 0,
B =

[
abkdη − abη2 − bkη2 − bkη(cβ − ad)

]
(1 − m) − βk(cβ − ad))2(1 − m)3,

C = rη2a(1 − m) − bη2 + bdkη − βη(1 − m)2(cβ − ad) + 2βkd(1 − m)2(cβ − ad),
D = rη2 + βd(η − kd)(1 − m).
From the Descarte’s rule of sign, A < 0 always exists and the Equation (3.5) has one unique positive
solution u∗, if any case holds

Case 1 : B < 0,C > 0,D > 0, (3.6)
Case 2 : B < 0,C < 0,D > 0,
Case 3 : B > 0,C > 0,D > 0.
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The Equation (3.5) has two positive solutions or no positive solution if

Case 1 : B > 0,C > 0,D < 0, (3.7)
Case 2 : B < 0,C > 0,D < 0,
Case 3 : B > 0,C < 0,D < 0.

The Equation (3.5) has three positive solutions or one positive solution if

B > 0,C < 0,D > 0. (3.8)

Theorem 3.1. (I): Any condition in (3.6) holds, there exists one positive constant steady state for
system (1.5).
(II): Any condition in (3.7) holds, there exists two positive constant steady states or no positive steady
state for system (1.5).
(III): If the condition (3.8) holds, there exists three positive constant steady states or one positive steady
state for system (1.5).

3.3. The stability at E2(u∗, v∗)

We only consider the condition that B < 0,C > 0,D > 0. First, we investigate the stability of ODE
system.
The Jacobian matrix at E2(u∗, v∗) can be expressed as

Jw =

(
ã11 ã12

ã21 ã22

)
,

where

ã11 =
−a2bη(1 − m)2u3

∗ +
[
aβ(1 − m)3(cβ − ad) − 2abη(1 − m)

]
u2
∗ −

[
bη + aβd(1 − m)2

]
u∗

[1 + a(1 − m)u∗]2η
= p0,

ã12 = −
kru∗

(1 + kv∗)2 −
β(1 − m)u∗

1 + a(1 − m)u∗
,

ã21 =
cβ(1 − m)v∗ + aη(1 − m)v2

∗

[1 + a(1 − m)u∗]2 ,

ã22 = −
ηv∗

1 + a(1 − m)u∗
= −p.

For convenience, we have utilized the following notations

Tr(J) = ã11 + ã22 = p0 − p, Det(J) = ã11ã22 − ã12ã21.

The characteristic polynomial can be expressed as

P(λ) = λ2 − (̃a11 + ã22)λ + ã11ã22 − ã12ã21.

Define
b1 = a3

a1
−

a2
2

3a2
1
, b2 = a4

a1
+

2a3
2

27a3
1
−

a2a3
3a2

1
, a1 = −a2bη(1 − m)2,

a2 = a(1 −m)
[
(cβ − ad)(β + m − 1) − 2bη

]
, a3 = aβ − (b(1 −m)2 − η(1 −m)(cβ − 2ad) − bη), a4 = dη.
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Lemma 3.1. E2 is stable for the ODE system (1.4) if ũ3 + b1ũ + b2 = 0 and Det(J) > 0 hold, where

0 < ũ =

−1 +
√

3i
2

2
3

√
−

b1

2
+

√
(
b1

2
)2 + (

b2

2
)3 +

−1 +
√

3i
2

 3

√
−

b1

2
−

√
(
b1

2
)2 + (

b2

2
)3

<
r
b
.

Proof. ã11 + ã22 = ã1u3
∗+ ã2u2

∗+ ã3u∗+ ã4, using Cardanor’s formula, we have ã11 + ã22 = u3
∗+b1u∗+b2.

If ũ3 + b1ũ + b2 = 0, then ã11 + ã22 < 0 when ũ < u∗ < r
b .

Moreover, when Det(J) = ã11ã22−ã12ã21 > 0, the characteristic polynomial has two strictly negative
real parts.

�

For the sake of convenience, we introduce the following notations. q1 = −a2bη(1 − m)2, q2 =

aβ(1 − m)3(cβ − ad) − 2abη(1 − m), q3 = −bη − adβ(1 − m)2. For the proof, we give the following
assumptions.

Assumption 3.1. q2
2 − 4q1q3 ≤ 0 or 2bη ≥ β(1 − m)2(cβ − ad).

Assumption 3.2. Under the condition q2
2 − 4q1q3 > 0, 2bη < β(1 − m)2(cβ − ad), and A < u∗ < x1,

x2 < u∗ < u,

where x1 =
−q2−
√

q2
2−4q1q3

2q1
, x2 =

−q2+
√

q2
2−4q1q3

2q1
, and A has the same meaning as before.

3.4. Hopf bifurcation of ordinary differential system at E2(u∗, v∗)

We discuss the Hopf bifurcation points at the E2(u∗, v∗), we make a translation which is to translate
E2 to the origin by translating û = u − u∗, v̂ = v − v∗. Let û and v̂ by u, v, respectively.

du
dt

=
r(u + u∗)

1 + k(v + v∗)
− b(u + u∗)2 −

β(1 − m)(u + u∗)(v + v∗)
1 + a(1 − m)(u + u∗)

,

dv
dt

=
cβ(1 − m)(u + u∗)(v + v∗) − η(v + v∗)2

1 + a(1 − m)(u + u∗)
− d(v + v∗).

(3.9)

Applying Taylar series expansion theorem about the (u∗, v∗) = (0, 0), and the system (3.9) is rewritten
as 

du
dt
dv
dt

 = J
(

u
v

)
+

(
f (u, v, p)
g(u, v, p)

)
, (3.10)

J has the same meaning as Jω and

f (u, v, p) = a1u2 + a2uv + a3v2 + a4u2v + a5uv2 + a6u3 + a7v3,

g(u, v, p) = b1u2 + b2uv + b3v2 + b4u2v + b5uv2 + b6u3 + b7v3,
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where a1 = −b +
aβ(1 − m)2v∗

[a(1 − m)u∗ + 1]3 , a2 = −
kr

(1 + kv∗)2 −
β(1 − m)

[a(1 − m)u∗ + 1]2 ,

a3 =
k2ru∗

(1 + kv∗)3 , a4 =
aβ(1 − m)2

[a(1 − m)u∗ + 1]3 , a5 =
k2r

(1 + kv∗)3 , a6 = −
aβ(1 − m)3v∗

[a(1 − m)u∗ + 1]4 ,

a7 = −
k3ru∗

(1 + kv∗)4 , b1 = −
acβ(1 − m)2v∗ + a2η(1 − m)2v2

∗

[a(1 − m)u∗ + 1]3 , b2 =
cβ(1 − m) + 2aη(1 − m)v∗

[a(1 − m)u∗ + 1]2 ,

b3 = −
η

a(1 − m)u∗ + 1
, b4 = −

acβ(1 − m)2 + 2a2η(1 − m)2v∗
[a(1 − m)u∗ + 1]3 , b5 =

aη(1 − m)
[a(1 − m)u∗ + 1]2 ,

b6 =
a3cβ(1 − m)3v∗ + a2η(1 − m)3v2

∗

[a(1 − m)u∗ + 1]4 , b7 = 0.

The characteristic equation of J is

κ2 − (a11 + a22)κ + (a11a22 − a12a21), (3.11)

the roots of (3.11) are κ1 = r(p) + iw(p), κ2 = r(p) − iw(p), where r(p) =
p0 − p

2
=

a11 + a22

2
,

w(p) =

√
Det(J) −

(
1
2
Tr(J)

)2

. When p = p0, both of the two roots are a pair of imaginary. As we

all known, when p > p0, E2(u∗, v∗) is asymptotically stable. When p < p0, E2(u∗, v∗) is unstable.
Therefore, p = p0 is a bifurcation point. When | p − p0 | is small enough, and κ = i

√
Det(J). Putting

κ = x + iy into (3.11), where x expresses the real part, and y expresses the imaginary part. We have{
x2 − y2 − xTr(J) + Det(J) = 0,
2xy − yTr(J) = 0,

(3.12)

and when p = p0, we can obtain

dx
dp
|p=p0= −

1
2
< 0. (3.13)

Next, we set a matrix

D̃ =

(
M̃ 1
Ñ 0

)
,

clearly,

D̃−1JD̃ = D̃−1
(

a11 a12

a21 a22

)
D̃ = J(p),

where Ñ = −
a21

w(p)
, M̃ =

a22 − a11

2w(p)
.

By the transformation, (
u
v

)
= D̃

(
x
y

)
,

then, the Equation (3.10) yields,
dx
dt
dy
dt

 = J(p)
(

x
y

)
+

(
F1(u, v, p)
G1(u, v, p)

)
, (3.14)
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where

J(p) =

(
r(p) −ω(p)
ω(p) r(p)

)
,

and
F1(x, y, p) =

1
Ñ

g(M̃x + y, Ñx, p),

G1(x, y, p) = f (M̃x + y, Ñx, p) −
M̃
Ñ

F1(x, y, p).

Using the polar coordinate form, (3.14) becomes{
ṙ = r(p0)r + a(p0)r3 + . . . ,

θ̇ = ω(p0) + c(p0)r2 + . . . .
(3.15)

Then, when p = p0, according to the Taylor expansion that ṙ = r
′

(p0)(p0 − p)r + a(p0)r3 + o
(
(p0 − p)2r, (p0 − p)r3, r5

)
,

θ̇ = ω(p0) + ω
′

(p0)(p0 − p) + c(p0)r2 + o
(
(p0 − p)2, (p0 − p)r2, r4

)
.

We analyse the sign of the coefficient a(p0),

a(p0) =
1

16

[
Fxxx + Fxyy + Gxxy + Gyyy

]
+

1
16ω(p0)

[
Fxy(Fxx + Fyy) −Gxy(Gxx + Gyy) − FxxGxx + FyyGyy

]
|(0,0,p0)

with

Fxxx = 6
(
b4M̃2 + b5M̃Ñ + b6

M̃3

Ñ

)
, Fxyy = 2

(
3b6M̃

Ñ
+ b4

)
,

Fxy =

(
2b1M̃

Ñ
+ b2

)
, Fyy = 2

b1

Ñ
, Fxx = 2

b1M̃2

Ñ
+ b2M̃ + b3Ñ,

Gxxy = 2
(
2a4M̃Ñ + a5Ñ2 + 3a6M̃2 − 2b4M̃2 − b5M̃Ñ − b6

3M̃2

Ñ

)
,

Gyyy = 6
(
a6 −

M̃
Ñ

b6

)
, Gxy = 2a1M̃ + a2Ñ − 2b1

M̃2

Ñ
− b2M̃,

Gyy = 2
(
a1 −

b1M̃
Ñ

)
, Gxx = 2

(
a1M̃2 + a2M̃Ñ + a3Ñ2 − b1

M̃3

Ñ
− b2M̃2 − b3M̃Ñ

)
.

Therefore, we get

Λ = −
a(p0)
r′(p0)

.

From Poincare-Andronov Hopf bifurcation theorem [38], r
′

(p0) |p=p0= −
1
2
< 0, and we have the

following conclusions:
(i): If a(p0) < 0, the bifurcating periodic solution is stable and the direction of the Hopf bifurcation is

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6040–6071.



6051

subcritical;
(ii): If a(p0) > 0, the bifurcating periodic solution is unstable and the direction of the Hopf bifurcation
is supercritical.
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Figure 1. Time-series plots (a, c, e) and phase diagram (b, d, f). Let η = 0.076 in (a) and
(b), E2 is unstable and a stable limit cycle appears. Let η = 0.20 in (c) and (d), E2 is locally
asymptotically. Let η = 0.775 in (e) and (f), the predator tends to extinct.

4. The system (1.5) with diffusion: stability analysis

Linearizing system (1.5) at (u∗, v∗) which yields

Wt = H(w) = Dw∆w + G(w),

where

Dw =

(
du + d12v∗ d12u∗

d21v∗ dv + d21u∗

)
,

G(w) =

(
ru

1 + kv
− bu2 −

β(1 − m)uv
1 + a(1 − m)u

,
cβ(1 − m)uv − ηv2

1 + a(1 − m)u
− dv

)T

.

Define Ai = −µiDw + J. and the characteristic equation of Ai at E2 is

λ2 − Tr(Ai)λ + Det(Ai) = 0, (4.1)

and λ is the eigenvalue of the matrix Ai.

4.1. The system (1.5) without cross-diffusion: stability analysis

Theorem 4.1. For E2(u∗, v∗), if Assumptions 3.1 and 3.2 hold, the system (1.5) is locally asymptotically
stable at E2 without cross-diffusion.

Proof. When we do not consider the cross-diffusion, the Tr(Ai) and Det(Ai) in the Equation (4.1) are

Tr(Ai) = −µi(du + dv) + (p0 − p),
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and

Det(Ai) = dudvµ
2
i − (duã22 + a11d̃v)µi + (̃a11ã22 − ã12ã21),

respectively. When all eigenvalues have negative real parts, we have the conclusion that E2(u∗, v∗) is
locally asymptotically stable. In other words, when Tr(Ai) < 0, and Det(Ai) > 0, E2(u∗, v∗) is locally
asymptotically stable. Then we analyze the numerator of ã11, let

O = −a2bη(1 − m)2u3
∗ +

[
aβ(1 − m)3(cβ − ad) − 2abη(1 − m)

]
u2
∗ −

[
bη + adβ(1 − m)2

]
u∗ = 0,

(I): if q2
2 − 4q1q3 ≤ 0 or 2bη ≥ β(1 − m)2(cβ − ad), then ã11 < 0 always holds,

(II): if q2
2 − 4q1q3 > 0,

when 2bη < β(1−m)2(cβ−ad),we get one negative solution x1 =
−q2 −

√
q2

2 − 4q1q3

2q1
, and one positive

solution x2 =
−q2 +

√
q2

2 − 4q1q3

2q1
. Combining with the image, if A < u∗ < x1 or x2 < u∗ < u, then we

obtain ã11 < 0. Combining with (4.7) and (4.8), it is not difficult to see, Tr(Ai) < 0 and Det(Ai) > 0
hold, the system (1.5) is locally asymptotically stable. �

Theorem 4.2. Under the condition x1 < u∗ < x2, if

R0 > 1, cβ > 2ad, (4.2)

and (
dv

du

)
1
<

dv

du
<

(
dv

du

)
2
, (4.3)

E2(u∗, v∗) is locally asymptotically stable, where R0 =
2bη + η(cβ − ad)(1 − m)
β(cβ − ad)(1 − m)2 .

Proof. It follows from Equation (4.7) that

Tr(Ai) = −µi(du + dv) + (̃a11 + ã22)

= −µi(du + dv) + (p0 − p)

=
−a2bη(1 − m)2u3

∗ −
[
2abη(1 − m) + aη(cβ − ad)(1 − m)2 − aβ(cβ − ad)(1 − m)3

]
u2
∗

η[1 + a(1 − m)u∗]2

−

[
bη + abβ(1 − m)2 + η(cβ − 2ad)(1 − m)

]
u∗ + dη

η[1 + a(1 − m)u∗]2 + µi(du + dv).

If (4.2) holds, Tr(Ai) < 0. Now, we analyze the sign of Det(Ai),

Det(Ai) = dudvµ
2
i − (duã22 + dvã11)µi + (̃a11ã22 − ã12ã21).

Then we get (µi)critic =
duã22 + dvã11

2dudv
, Det(Ai) takes the minimum value at this point,

min Det(Ai) = (̃a11ã22 − ã12ã21) −
(duã22 + dvã11)2

4dudv
.
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Note,

∆̃ = (̃a11dv + ã22du)2 − 4dudv(̃a11ã22 − ã12ã21) (4.4)
= ã2

11d2
v + 2(2̃a12ã21 − ã11ã22)dudv + ã2

22d2
u.

Let ∆̃ = 0, we have

ã2
11

(
dv

du

)2

+ 2(2̃a12ã21 − ã11ã22)
(

dv

du

)
+ ã2

22 = 0. (4.5)

Then, we have,

4(2̃a12ã21 − ã11ã22)2 − 4̃a2
11ã2

22 = 16̃a12ã21(̃a12ã21 − ã11ã22) > 0.

Therefore, ∆̃ = 0 has two positive real roots(
dv

du

)
1

=
−(2̃a12ã21 − ã11ã22) − 2

√
ã12ã21(̃a12ã21 − ã11ã22)

ã2
11

,

(
dv

du

)
2

=
−(2̃a12ã21 − ã11ã22) + 2

√
ã12ã21(̃a12ã21 − ã11ã22)

ã2
11

.

We get the following conclusions:

(i): if
dv

du
≤ −

ã22

ã11
, it is clear that Det(Ai) > 0 for all i ∈ N0,

(ii): if
dv

du
> −

ã22

ã11
,

(
dv

du

)
1
<

dv

du
<

(
dv

du

)
2
, which means ∆̃ < 0, and Det(Ai) > 0 for all i ∈ N0.

The proof is completed. �

Theorem 4.3. E2(u∗, v∗) is global asymptotically stable when R1 > 0, R2 > 0,

where R1 = b −
β(1 − m)v∗

u∗
−

r
2
, R2 =

(β + aβ(1 − m)u∗) (η + aη(1 − m)u∗)
(cβ + aηv∗)[1 + a(1 − m)u∗][1 + a(1 − m) r

b ]
−

r
2
.

Proof. We first give the Liapunov function:

V(t) =

∫
Ω

[∫ u

u∗

τ − u∗
τ

dτ + ι

∫ v

v∗

ζ − v∗
ζ

dζ
]

dx.

dV
dt

=

∫
Ω

(
u − u∗

u
∂u
∂t

+ ι
v − v∗

v
∂v
∂t

)
dx

=

∫
Ω

(u − u∗)
(

r
1 + kv

− bu −
β(1 − m)v

1 + a(1 − m)u
−

r
1 + kv∗

+ bu∗ +
β(1 − m)v∗

1 + a(1 − m)u∗

)
dx

+ι

∫
Ω

(v − v∗)
(
cβ(1 − m)u − ηv
1 + a(1 − m)u

−
cβ(1 − m)u∗ − ηv∗

1 + a(1 − m)u∗

)
dx

−duu∗

∫
Ω

|∇u|2

u2 dx − ιdvv∗

∫
Ω

|∇v|2

v2 dx
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≤ −

[
b −

β(1 − m)v∗
u∗

−
r
2

] ∫
Ω

(u − u∗)2dx − duu∗

∫
Ω

|∇u|2

u2 dx − ιdvv∗

∫
Ω

|∇v|2

v2 dx

−

[
ι(η + aη(1 − m)u∗)

[1 + a(1 − m)u∗][1 + a(1 − m)u]
−

r
2

] ∫
Ω

(v − v∗)2dx

+

∫
Ω

(ιcβ + ιaηv∗ − β − aβu∗ + amβu∗)(1 − m)
[1 + a(1 − m)u∗][1 + a(1 − m)u]

(v − v∗)(u − u∗)dx,

let ι =
β + aβ(1 − m)u∗

cβ + aηv∗
> 0, then

dV
dt
≤ −R1

∫
Ω

(u − u∗)2dx − R2

∫
Ω

(v − v∗)2dx − duu∗

∫
Ω

|∇u|2

u2 dx

−
β + aβ(1 − m)u∗

cβ + aηv∗
dvv∗

∫
Ω

|∇v|2

v2 dx.

According the maximum principle in [36], let M be a positive constant, such that

‖u(·, t)‖∞, ‖v(·, t)‖∞ ≤ M, (4.6)

where (u(x, t), v(x, t)) is the solution of (1.4). Moreover, following the Theorem in [35] that

‖u(·, t)‖M2+α(Ω̄), ‖v(·, t)‖M2+α(Ω̄) ≤ M.

On the basis of (4.6), that

dV
dt
≤ −M

∫
Ω

(
(u − u∗)2 + (v − v∗)2+ | ∇u |2 + | ∇v |2

)
dx

≤ 0.

We obtain

lim
t→+∞

∫
Ω

(u − u∗)2dx = 0,

lim
t→+∞

∫
Ω

(v − v∗)2dx = 0,

which means E2(u∗, v∗) is global asymptotically stable. �

4.2. Turing instability

With the conclusions we have already drawn in Section 3.3, the ordinary differential equation system
is stable if ã11 + ã22 < 0. As we all known, diffusion can make a stable system be unstable, we call this

kind of instability as Turing instability [37]. We assume ã11dv + ã22du > 0, if
(

dv

du

)
2
<

dv

du
, which means

∆̃(du, du) > 0. Then there exists positive real part in the following equation

dudvµ
2
i − (duã22 + dvã11)µi + (̃a11ã22 − ã12ã21) = 0
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where

µ1(du, dv) =
duã22 + dvã11 −

√
(duã22 + dvã11)2 − 4dudvDet(J)

2dudv
,

µ2(du, dv) =
duã22 + dvã11 +

√
(duã22 + dvã11)2 − 4dudvDet(J)

2dudv
,

under the condition (4.2), Tr(Ai) < 0 is always true. For a fixed dv > 0,

lim
du→0

µ1(du, dv) =
ã11ã22 − ã12ã21

dvã11
, lim

du→0
µ2(du, dv) = ∞,

lim
dv→+∞

µ1(du, dv) = 0, lim
dv→+∞

µ2(du, dv) =
ã11

du
.

It implies the same conclusion when du > 0 is fixed. Then, Turing instability occurs.

4.3. The system (1.5) with cross-diffusion: stability analysis

In this subsection, we take the cross-diffusion coefficients into our system, we can analyze the
stability and give the following equations

Tr(Ai) = −µi(du + dv + d12v∗ + d21u∗) + (p0 − p), (4.7)

Det(Ai) = (dudv + d12dvv∗ + dud21u∗)µ2
i − (̃a22(du + d12v∗) (4.8)

+ã11(dv + d21u∗) − ã12d21u∗ − ã21d12v∗)µi + (̃a11ã22 − ã12ã21),

Under the condition p0 − p < 0, it is easy to check that Tr(Ai) < 0. Now, let us consider the sign of
Det(Ai).
It is clear that dudv + d12dvv∗ + dud21u∗ > 0 always holds, and assume that ã11ã22 − ã12ã21 > 0. When
d21 = 0, and d12 , 0, then the coefficient of primary term in Equation (4.8) becomes

a22(du + d12v∗) + a11dv − a21d12v∗ < 0,

always holds, which means d12 can not change the stability of the system.
When d21 , 0 and d12 = 0, then the coefficient of primary term in Equation (4.8) becomes

a22du + a11(dv + d21u∗) − a12d21v∗,

there exists a d∗21, when d21 > d∗21, then the system (1.5) becomes unstable. We obtain that d21 can arise
a region of the system, in which Turing instability may appear. The cross-diffusion coefficient d12 is
almost the complete opposite to the role of the d21. In the Figure 2, it is clear that as d21 increases,
the system (1.5) becomes unstable. By comparing two columns in Figure 2, we also obtain that the
ability of cannibalism can affect the stability of system (1.5). The smaller the cannibalism rate, the
more likely instability is to occur. modes, and that’s almost the complete opposite to the role of the
cross-diffusion d21.

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6040–6071.



6056

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

d
21

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

D
et

=0.3
=0.7

Figure 2. We set the parameters du = 0.1, dv = 0.1, the red line represents η = 0.3, and the
blue line represents η = 0.7.

5. Nonconstant positive steady states

We derive the properties of nonconstant positive steady state of system (1.5). A priori estimate and
a standard approach based on the Leray-Schauder degree theory are used to obtain the corresponding
conclusions.

5.1. A priori estimate

Theorem 5.1. (Upper Bounds) Assume M̃ is a fixed positive number, and
d12

du
,

d21

dv
< M̃, when 0 < m <

1 −
bd

(cβ − ad)r
, (u(x), v(x)) is a positive solution, one has

max
Ω

u(x) ≤
r
b

(
1 + M̃

br − a(1 − m)r2

bβ(1 − m)

)
= C1, max

Ω

v(x) ≤ C1(1 +
2rM̃

b
), (5.1)

then the reaction-diffusion system has upper bounds.

Proof. Define Υ1 = duu + d12uv, Υ2 = dvv + d21uv, then we have

maxu ≤
1
du
maxΥ1, maxv ≤

1
dv
maxΥ2.

Define x1 ∈ Ω, then applying Harnack Inequality in [40] to the equation (2.2), that
−∆Υ1 ≤

ru − bu2 −
β(1−m)uv

1+a(1−m)u

du + d12v
Υ1,

∂u
∂ν

= 0.

One gets u(x1) ≤
r
b
, v(x1) ≤

br − a(1 − m)r2

bβ(1 − m)
. Then we have

max
Ω

u(x) ≤
1
du

max
Ω

Υ1 =
1
du

(duu(x1) + duvu(x1)v(x1))
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≤
r
b

+
duv

du
·

r1

b
·

br − a(1 − m)r2

bβ(1 − m)

≤
r
b

(
1 + M̃

br − a(1 − m)r2

bβ(1 − m)

)
� C1.

It follows from (2.3), that 
−∆Υ2 =

[cβ(1−m)u−ηv]v
1+a(1−m)u − dv

dvv + d21uv
Υ2,

∂v
∂ν

= 0.

Then u(x2) ≤
ηv(x2)

cβ(1 − m)
, v(x2) ≤

(cβ − ad)(1 − m)r − bd
ηb

.

max
Ω

v(x) ≤
1
dv

max
Ω

Υ2 =
1
dv

(dvv(x2) + d21u(x2)v(x2))

≤ C1(1 +
2rM̃

b
)

� C2.

�

Theorem 5.2. (Lower Bounds) Let D̂ > 0, and
d12

du
,

d21

dv
≤ D̂, then we can identify a constant C∗ > 0,

which satisfies C∗ ≤ (u(x), v(x)) ≤ max
(
(cβ − ad)(1 − m)r − bd

ηb
,

r
b

)
.

Proof. Let um = min u(x), according to Maximum principle in [39], we have

C1 =
1

du + d12v

(
ru

1 + kv
− bu2 −

β(1 − m)uv
1 + a(1 − m)u

)
, (5.2)

C2 =
1

dv + d21u

(
−dv +

cβ(1 − m)uv − ηv2

1 + a(1 − m)u

)
,

then, ‖C1‖∞ ≤ C∗, ‖C2‖∞ ≤ C∗, other parameters are in system (1.5).
Applying the Maximum principle [39], we have the following conclusion

max
Ω

u(x) ≤ L̃ min
Ω

u(x), max
Ω

v(x) ≤ L̃ min
Ω

v(x), (5.3)

where L̃ is a positive constant. On the contrary, we suppose that there is a sequence of positive solution
{ui(x), vi(x)}∞i=1 satisfies

max
Ω

ui(x)→ 0 or max
Ω

vi(x)→ 0, as i→ ∞, (5.4)
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and (ui, vi) satisfies
−∆(dui + d12vi) =

rui

1 + kvi
− bu2

i −
β(1 − m)uivi

1 + a(1 − m)ui
, x ∈ Ω,

−∆(dvi + d21ui) =
cβ(1 − m)uivi − ηv2

i

1 + a(1 − m)ui
− dvi, x ∈ Ω.

(5.5)

By the regularity theorem for the elliptic equations, we can find some {ui(x), vi(x)}∞i=1 and two
nonnegative functions ũ, ṽ ∈ C2(Ω), which can make (ui(x), vi(x)) → (ũ, ṽ) in [C2(Ω)]2 as i → ∞.
By (5.4), we have ũ ≡ 0 or ṽ ≡ 0. Integrating (5.5), we obtain

∫
Ω

ui

[
r

1 + kvi
− bui −

β(1 − m)vi

1 + a(1 − m)ui

]
dx = 0, x ∈ Ω,∫

Ω

vi

[
cβ(1 − m)ui − ηvi

1 + a(1 − m)ui
− d

]
dx = 0, x ∈ Ω.

(5.6)

If ṽ , 0, and ũ ≡ 0, then

−d +
cβ(1 − m)ui − ηvi

1 + a(1 − m)ui
< 0,

when i→ ∞, ui → 0 and vi > 0. It is a contradiction to the second equation of (5.6).

If ũ , 0, ṽ ≡ 0, we have
∫

Ω

ũ(r − bũ)dx = 0. It follows from 0 < ũ ≤
r
b
.

Therefore,
cβ(1 − m)ui − ηvi

1 + a(1 − m)ui
− d ≤

cβ(1 − m) r
b

1 + a(1 − m) r
b

− d < 0,
cβ(1 − m)r

b + ar(1 − m)
− d < 0 which is in contrast

to the conclusion that
cβ(1 − m)r

b + ar(1 − m)
− d > 0 in (2.6). Then there exist lower bounds in the reaction-

diffusion system. �

5.2. Non-existence of non-constant positive steady states

We first give the steady-state problem with
−du∆u − d12∆uv =

ru
1 + kv

− bu2 −
β(1 − m)uv

1 + a(1 − m)u
, x ∈ Ω,

−dv∆v − d21∆uv =
cβ(1 − m)uv − ηv2

1 + a(1 − m)u
− dv, x ∈ Ω,

∂u
∂ν

=
∂v
∂ν

= 0, ∂x ∈ ∂Ω.

(5.7)

Theorem 5.3. Denote d∗ > 0, and d∗ = max
{

M1

µ1
,

M2

µ1

}
, µ1 is the smallest positive eigenvalue of the

operator −∆, such that if min{d1, d2} ≥ d∗, the system (5.7) has no positive non-constant steady-state.
And let

M1 = max
(
−bū + r + β(1 − m)v̄ +

βū
2a

+
rū
2v̄
,

cβ(1 − m)
[
(cβ − ad)(1 − m)r − db

]
2bη

)
,

M2 = max
(
βū
2a

+
rū
2v̄
,

cβ(1 − m)
[
(cβ − ad)(1 − m)r − db

]
2bη

+ cβ(1 − m)ū − d
)
.

Mathematical Biosciences and Engineering Volume 19, Issue 6, 6040–6071.



6059

Proof. Define (u(x), v(x)) be any positive solution of system (5.7), denote ū =
1
|Ω|

∫
Ω

u(x)dx. Let

multiply the first equation of system (5.7) by u − ū, we arrive at

du

∫
Ω

|∇(u − ū)|2dx =

∫
Ω

(u − ū)
[

ru
1 + kv

− bu2 −
β(1 − m)uv

1 + a(1 − m)u

]
dx (5.8)

=

∫
Ω

(u − ū)
[ ru
1 + kv

− bu2 −
rū

1 + kv̄
+ bū2

]
dx

−

∫
Ω

(u − ū)
[
β(1 − m)uv

1 + a(1 − m)u
−

β(1 − m)ūv̄
1 + a(1 − m)ū

]
dx

≤ −

(
bū − r − β(1 − m)v̄ −

βū
2a
−

rū
2v̄

) ∫
Ω

(u − ū)2dx

+

(
βū
2a

+
rū
2v̄

) ∫
Ω

(v − v̄)2dx.

By similar arguments as (5.8), one yields

dv

∫
Ω

|∇(v − v̄)|2dx =

∫
Ω

(v − v̄)
[
−dv +

cβ(1 − m)uv − ηv2

1 + a(1 − m)u

]
dx

≤

[
cβ(1 − m)ū − d +

cβ(1 − m)[(cβ − ad)(1 − m)r − db]
2bη

] ∫
Ω

(v − v̄)2dx

+
cβ(1 − m)[(cβ − ad)(1 − m)r − db]

2bη

∫
Ω

(u − ū)2dx.

By the Poincare inequality, we obtain

du

∫
Ω

|∇(u − ū)|2dx + dv

∫
Ω

|∇(v − v̄)|2dx

≤
1
µ1

(
M1

∫
Ω

|∇(u − ū)|2dx + M2

∫
Ω

|∇(v − v̄)|2dx
)
.

That means if min{du, dv} > max
{

M1

µ1
,

M2

µ1

}
, we obtain u = ū and v = v̄, (u, v) is a constant solution

has been proved. �

5.3. Non-constant positive steady states

We always require Assumption 3.1 or Assumption 3.2 holds. And the definition of ω in this section
is different from the previous section, d21 and d12 are enough small. Next, let us explore the existence
of nonconstant positive solution of the system (5.7).

Define X =
{
(u, v)T ∈ [C1(Ω̄)] : ∂νu = ∂νv = 0 on ∂Ω

}
, and E2 = (u∗, v∗) is the positive solution of

the system (5.7). Θ =
{
(u, v) ∈ X|(c−1 ≤ u(x), v(x) ≤ c, for all x ∈ Ω̄

}
. Where c is a positive constant

and c is guaranteed to exist by upper bound and lower bound. System (5.7) is given by −∆ω = Θ̃−1G(ω), ω ∈ Ω,
∂ω

∂ν
= 0, ω ∈ ∂Ω,

(5.9)
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where

Θ̃ =

(
du + d12v d12u

d21v dv + d21u

)
,

G(ω) =


ru

1 + kv
− bu2 −

β(1 − m)uv
1 + a(1 − m)u

−dv +
cβ(1 − m)uv − ηv2

1 + a(1 − m)u


with

ω =

(
u
v

)
∈ X.

Denote (I − ∆)−1 be the inverse of (I − ∆). The system (5.7) can be rewritten as

F(du, dv, ω) = ω − (I − ∆)−1{Θ̃−1G(ω) + ω} = 0 on X, (5.10)

and ω is the positive solution of system (5.9), when it satisfies the equation (5.10).
Theorem 5.2 suggests that F(du, dv, ω) has a unique positive solution (u∗, v∗). Then

Fω(ω) = I − (I − ∆)−1{Θ̃−1G(u∗, v∗) + I} = 0.

In fact, it is clear that the eigenvalue λ(1 + µi) satisfies the following matrix

Mi = µiI − A,

where A = Θ̃−1Gω(u, v). Then,

S (µ) = Det(Mi) = Y1µ
2
i + Y2µi + Y3,

where

Y1 = dudv + dud21u∗ + dvd12v∗,

Y2 = a22(du + d12v∗) + a11(dv + d21u∗) − a12d21v∗ − a21d12v∗,

Y3 = a11a22 − a12a21 > 0.

If
Y2

2 > 4Y1Y3,

then S (µ) = 0 has two positive roots

µ−(du, dv) =
−Y2 −

√
Y2

2 − 4Y1Y3

2Y1
,

µ+(du, dv) =
−Y2 +

√
Y2

2 − 4Y1Y3

2Y1
.
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Set S p = {µ0, µ1, µ2 . . .} and B = B(du, dv) = {u ≥ 0, µ−(du, dv) < µ < µ+(du, dv)}.
Let m(µ j) be the multiplicity of m(µ j), we find that

lim
dv→+∞

µ−(du, dv) = 0, lim
dv→+∞

µ+(du, dv) =
ã11

du + d12v∗
> 0. (5.11)

Clearly, {
S (µ) < 0, i f µ ∈ (µ−(du, dv), µ+(du, dv)),
S (µ) > 0, i f µ ∈ (−∞, µ−(du, dv)) ∪ (µ+(du, dv),+∞).

Lemma 5.1. If S (µi) , 0 for all i ≥ 0 and µi ∈ S p, then index(F(·), ω∗) = (−1)σ, where

σ =


∑

i≥0,S (µi)<0

m(µi), i f B ∩ S p , ∅,

0, i f B ∩ S p = ∅.

On the basis of the following Lemma, in order to obtain the index of F((·), ω∗), we only need to
determine the range of µi for which S (du, dv, µi) , 0.

Theorem 5.4. d12, d21 are fixed and d21 < d∗21. Under the condition of du > 0 and a11 + a22 > 0, µ− and
µ+ are the two positive solutions, if there exist i, j ∈ N such that

0 ≤ µi < µ− ≤ µ j < µ+ < µ j+1

and
j∑

k=i+1

m(µk) is odd, we can find a d̂v > 0, such that for all dv ≥ d̂v, the system (1.4) has at least one

nonconstant positive solution.

Proof. By virtue of the Theorem 5.3, the system (5.10) has constant positive solution when du, dv > d∗.

From (5.11) and
ã11

du + d12v∗
∈ (µq, µq+1), we get that when dv is large enough, then

0 < µ−(du, dv) < µ1, µ+(du, dv) ∈ (µq, µq+1).

And there exists a sufficient large d0 such that S (µ) > 0. We choose d̃u > d∗ such that
ã11

d̃u + d12v∗
< µ1

and d̃v > d∗, such that
0 < µ−(du, dv) < µ+(du, dv) < µ1.

Assume the conclusion is not true, there is no non-constant positive solution for some d̃ ≥ d̂v in the
system (5.7) . Fixing dv = d̃, for t ∈ [0, 1], we define

D =

 [tdu + (1 − t)d∗] u + td12uv,
td21uv +

[
tdv + (1 − t)d̃v

]
v

 .
Ψ(ω, 1) = Fω(du, dv, u∗, v∗) = I − (I − ∆)−1{D−1G(u∗, v∗) + I} = 0,

= Fω = I − (I − ∆)−1{D̃−1G(u∗, v∗) + I} = 0,
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where t ∈ [0, 1], and when t = 0,

D̃ =

(
d∗u 0
0 d̃vv

)
,

when t = 1,

D̃ =

(
duu d12uv

d21uv dvv

)
.

The solution ω in the system (5.9) is equivalent to finding the fixes point of Ψ(ω, 1) with t = 1. We
obtain that

B(du, dv) ∩ S p = {µ0, µ1, µ2 . . . , µq}, B(d∗, d̃v) ∩ S p = ∅.

Let define (u∗, v∗) ∈ Θ for any solution of system (5.10) on Ω.

deg(Ψ(·, 0),Θ, 0) = index(Ψ(·, 0), u∗, v∗) = (−1)
∑ j

k=i+1 m(µk) = (−1)0 = 1,

deg(Ψ(·, 1),Θ, 0) = index(Ψ(·, 1), u∗, v∗) = (−1)
∑ j

k=i+1 m(µk) = −1.

According Leray-Schauder degree, one has

deg(Ψ(·, 0),Θ, 0) = deg(Ψ(·, 1),Θ, 0), (5.12)

which is a contradiction. �

6. Numerical simulations and conclusions

First, we give the following discretization equations:

ui+1
j − ui

j

∆t
= du

ui+1
j+1 − 2ui+1

j + ui+1
j−1

(∆x)2 + d12

ui+1
j −ui

j

∆x1
−

vi+1
j −vi

j

∆x2

∆x
+

rui+1
j

1 + kvi
j

− b(ui+1
j )2 −

β(1 − m)ui+1
j vi

j

1 + a(1 − m)ui+1
j

,

vi+1
j − vi

j

∆t
= dv

vi+1
j+1 − 2vi+1

j + vi+1
j−1

(∆x)2 + d21

vi+1
j −vi

j

∆x1
−

ui+1
j −ui

j

∆x2

∆x
+

cβ(1 − m)ui+1
j vi

j − η(vi
j)

2

1 + a(1 − m)ui+1
j

− dvi+1
j ,

the time increment ∆t > 0, and space increment ∆x > 0. The Discrete initial value u0
j = ϕ1(x j) = 0,

v0
j = ϕ2(x j) = 0, and the bounded conditions are ui

−1 = ui
0, ui

M = ui
M+1, vi

−1 = vi
0, vi

M = vi
M+1, ∆t = 0.1,

and ∆x = 0.5. And the relevant images are given. First of all, we set some parameters which satisfy
the Descarte’s rule of sign, and the Equation (3.2) has one unique solution u = u∗, v = v∗.

Table 1. Parameter values.

Parameter value source Parameter value source
r 0.55 [14] b 0.5 [14]
k 0.25 [22] β 0.5 [14]
d 0.15 [41] c 0.65 Assumed
m 0.25 [22] η 0.2 Assumed
a 0.8 Assumed
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We choose du = 0.1, dv = 0.1; The initial value (u0, v0) =(
1.625 + 0.2sin

(
1
2
πx

)
; 0.45 + 0.2sin

(
1
2
πx

))
.

In Figure 3a and b, we choose m = 0.5, the solution of system (1.5) tends to the E2, while m = 0.95
in Figure 3c and d, the solution tends to the E1. At the same time, we can obtain that the variation
of m does not make spatial inhomogeneous solution appear. We change the value of η. η = 0.075 in
Fig.4a and b, the system exhibits temporal periodic patterns. η = 0.2 in Figure 4c and d, the system
becomes stable. η = 0.8 in Figure 4e and f, the system keep stable, and the density of predator v(x, t) is
decreasing. Combining Figure 4 and Figure 1, we are not difficult to find that the cannibalism rate can
influence the stability of systems (1.4) and (1.5). To sum up, too small cannibalism rate can destabilize
the system, but too large cannibalism rate can make the predator go extinct. Cannibalism has certain
positive effects on the stability of the system which is different from our previous cognition. Increasing
k = 0.2 further to k = 0.9, we can see in Figure 5 that the stability do not change, but the density of
the population is decreasing, we know large fear effect can cause the prey and predator decrease but
not be extinct. we keep k = 0.1, η = 0.2, and increase m = 0.2 to m = 0.9 in Figure 6, and we observe
that the density of the prey is increasing, while the predator is decreasing. When the m is large enough,
the predator may go extinct. From Figure 7a to Figure 7d, we can obtain that the diffusion ratio of

predator to prey plays important roles, Turing instability occurs when
dv

du
at a large value, it can break

stability of the coexisting state. In Figure 8a, for prey, as m increases, the number of prey presents
an increasing trend which means the prey refuge can protect the prey, the greater the number of prey
refuge, the stronger protection the prey will accept. In Figure 8b, for predator, the number of predators
present a state that the number of predator is decreasing. We can see obviously from the image that the
adding a prey refuge will affect the normal predation behavior of the predator, and reduce the number
of predators. It is possible that too much prey refuge could upset the ecological balance and affect the
species. In Figure 9a and Figure 9b, prey refuge is beneficial to the prey, and the number of predators
is reduced by the protection. In Figure 10, when η is small, the system may be unstable, and if we
increase the value of m, it can promote the stability of the system. In Figure 11, we give the bifurcation
diagrams for prey and predator for spatial system, it is not difficult to find that the diffusion can extend
the time of unstable.

Figure 3. The plots of prey and predator with m = 0.5; 0 < m < 0.9834, a1+a22 = −2.0878 <
0. (c) and (d) are the plots of prey and predator with m = 0.95; 0.931 < m < 1. Then we
have equilibrium point E1= (1.1, 0), the predator is extinct, and E1 is locally asymptotically
stable.
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Figure 4. Plots of prey and predator. η = 0.075 in (a) and (b), η = 0.2 in (c) and (d), η = 0.8
in (e) and (f).

Figure 5. Plots of prey and predator. k = 0.2 in (a) and (b), k = 0.5 in (c) and (d), k = 0.8 in
(e) and (f).
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Figure 6. Plots of prey and predator. m = 0.2 in (a) and (b), m = 0.5 in (c) and (d), m = 0.8
in (e) and (f).

Figure 7. We set the parameters du = 1, dv = 0.1, and p0 − p ≈ 0, the system exhibits
stable temporal periodic patterns when prey u(x, t) and the predator v(x, t) are homogeneous
in space and oscillatory in time.
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Figure 8. We choose du = 0.01; dv = 1.2, and η = 0.44; And other parameters are the same
as before.
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Figure 9. The density variation of prey and predator with difference values of m, respectively.

Figure 10. Plots of prey and predator for η = 0.075. m = 0.2, in (a) and (b), m = 0.8 in (c)
and (d).
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Figure 11. Bifurcation diagrams for prey (a) and predator (b) for η. (c) is the comparison of
the prey and predator.
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Figure 12. We investigated the effects of cannibalism behavior among predators. By the
same way, we fix the other parameters, we take different values from 0.01 to 0.5, and plot
the pictures which can present the changes of population density. From the image, we
can observe that cannibalism behavior can increase the number of prey. The predator is
increasing first and then decreasing, we can see the number of predator gets a top at 0.1 to
0.15. After that, the number of predators will continue to decline. From a practical point
of view, putting in the right amount of predators can increase the number of predators and
preys, thus increasing yields.

7. Conclusions

This is a diffusive predator-predator system considering predator cannibalism and taking the effects
of predator refuge and fear effect as practical matters. To begin with, we modify the previous systems
and establish a new reaction-diffusion system. We give a theoretical analysis for the existence of the
positive solutions and stability of constant steady states from Theorem 2.1 to Theorem 2.3. We obtain
the sufficient criteria for stability of each steady state. Considering the influence of diffusion factors, we
study the Turing instability caused by diffusion, which also produces spatial inhomogeneous patterns

when the diffusion coefficients satisfy the condition
(

dv

du

)
1
<

dv

du
<

(
dv

du

)
2
.

We discuss the Hopf bifurcation of ODE system, we investigate the Hopf point p0, and get the
solution that when p0 = p, the Tr(Ai) = 0, then Hopf bifurcation could occur. We also verify the
results by numerical simulation. In addition, Leray-Schauder degree theory is applied to discuss the
constant steady states.

The results in this paper show that:
(1) If the system is based on the assumption of spatially homogeneous and we do not consider the

fear effect, predator cannibalism, we can obtain the same conclusion with the system (1.1). When we
only consider the prey refuge and fear effect, the fear of predator can affect the density of prey and
predator, which is different from the conclusion in [14], the decrease of the predator in our system
may be due to the predator cannibalism. In non-spatial systems, small predator cannibalism can cause
Hopf-bifurcation while a large value of predator cannibalism can make the system be stable. However,
the density of prey and predator may decrease.

(2) Both diffusion and cannibalism can disturbance the stability of the spatiotemporal system. From
the numerical results that small cannibalism can induce the periodic solution, and large cannibalism
can cause the decrease of predator population and prey population; large diffusion rate can make stable
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system be unstable, and cause the occurrence of Turing instability.
From the images obtained from the numerical simulation, we can conclude that in real life, the

purpose of protecting the prey can be achieved by appropriately establishing a prey refuge. For
the stability of the ecosystem, we should not build prey refuges indefinitely which may lead to the
extinction of predators. Putting a proper amount of predators and increasing the competition between
predators are beneficial to the growth of prey and predators. However, if the amount exceeds a certain
amount, it will cause the reduction of predators and increase of prey, which may eventually lead to the
extinction of predators.

In traditional papers, some scholars considered prey-predator systems without diffusion-reaction,
and others considered the systems without predator cannibalism or prey refuge. We improve the
previous systems and take more factors into account, we can obtain from the conclusion that diffusion
factors, prey refuge and cannibalism do have a huge impact on a prey-predator system. In the
models [42, 43], the authors have considered the effect of delay for their system, which made the
system more realistic. In [44], the authors explored the stochastic partial differential prey-predator
system, and in [45], Hopf bifurcation has been studied. In the future research, we hope to consider a
time delay in the diffusion. We will investigate more interesting and actual systems.
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