Mitigation of epidemics in contact networks through optimal contact adaptation

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.

    Citation: Mina Youssef, Caterina Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227

    Related Papers:

    [1] Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado . Optimal information dissemination strategy to promote preventivebehaviors in multilayer epidemic networks. Mathematical Biosciences and Engineering, 2015, 12(3): 609-623. doi: 10.3934/mbe.2015.12.609
    [2] Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, Faryad Darabi Sahneh . Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Mathematical Biosciences and Engineering, 2018, 15(5): 1165-1180. doi: 10.3934/mbe.2018053
    [3] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [4] Mattia Zanella, Chiara Bardelli, Mara Azzi, Silvia Deandrea, Pietro Perotti, Santino Silva, Ennio Cadum, Silvia Figini, Giuseppe Toscani . Social contacts, epidemic spreading and health system. Mathematical modeling and applications to COVID-19 infection. Mathematical Biosciences and Engineering, 2021, 18(4): 3384-3403. doi: 10.3934/mbe.2021169
    [5] Ping Yan, Gerardo Chowell . Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach. Mathematical Biosciences and Engineering, 2024, 21(10): 7278-7296. doi: 10.3934/mbe.2024321
    [6] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
    [7] F. S. Vannucchi, S. Boccaletti . Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences and Engineering, 2004, 1(1): 49-55. doi: 10.3934/mbe.2004.1.49
    [8] Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis . Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475
    [9] Toshikazu Kuniya, Taisuke Nakata, Daisuke Fujii . Optimal vaccine allocation strategy: Theory and application to the early stage of COVID-19 in Japan. Mathematical Biosciences and Engineering, 2024, 21(6): 6359-6371. doi: 10.3934/mbe.2024277
    [10] Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147
  • This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.


    [1] BMC Infectious Diseases, 10 (2010), 190.
    [2] Emerging Health Threats Journal, 2 (2009), e11.
    [3] Science, 286 (1999), 509-512.
    [4] in "Proceedings of SuperComputing 08 International Conference for High Performance Computing," Networking Storage and Analysis. Austin, Texas, November 15-21, (2008).
    [5] AI Magazine, 31 (2009), 75-87.
    [6] Optimal Control Applications and Methods, 21 (2000), 269-285.
    [7] The Society for the Study of Evolution: International Journal of Organic Evolution, 59 (2005).
    [8] Mathematical Biosciences, 231 (2011), 126-134.
    [9] Int. J. Bifurcation and Chaos, 17 (2007), 2491-2500.
    [10] Cambridge, Studies in Mathematical Biology, 1999.
    [11] Scientific Reports 2, Article number 632, 2012
    [12] in "Social Computing, Behavioral-Cultural Modeling And Prediction," (Ed. S. Yang), Berlin Heidelberg, Springer, 7227 (2012), 172-179.
    [13] Nature, 429 (2004), 180-184.
    [14] Proceedings of the National Academy of Sciences, 108 (2011), 6306-6311.
    [15] Proceedings of the National Academy of Sciences, 104 (2007), 4984-4989.
    [16] Mathematical Biosciences, 232 (2011), 110-115.
    [17] Proceedings of the National Academy of Sciences, 103 (2006), 5935-5940.
    [18] Journal of the Royal Society Interface, 5 (2010), e11569.
    [19] Phys. Rev. Lett., 96 (2006), 208701.
    [20] BMC Medical Informatics and Decision Making, 12 (2012), 132.
    [21] IEEE Intelligent Control and Automation WCICA, (2006).
    [22] Proceedings of IEEE INFOCOM 2011, Shanghai, China, (2011).
    [23] Journal of the Royal Society Interface, 5 (2008), 791-799.
    [24] Phys. Rev. E, 83 (2011), 026102,.
    [25] PLoS ONE, 6 (2011), e22461.
    [26] Phys. Rev. E, 82 (2010), 036116,
    [27] PLoS ONE, 6 (2011), e24577.
    [28] Journal of Theoretical Biology, 262 (2010), 757-763.
    [29] IEEE/ACM Transaction on Networking, 17 (2009), 1-14.
    [30] Eur. Phys. J. B, 26 (2002), 521-529.
    [31] SIAM Review, 45 (2003), 167-256.
    [32] Interscience, 4 (1962).
    [33] ECML-PKDD 2010, Barcelona, Spain 2010.
    [34] 8 (2011), 141-170.
    [35] PLOS Computational Biology, 6 (2010), e1000793.
    [36] Mathematical Biosciences, 230 (2011), 67-78.
    [37] Interface Journal of the Royal Society, 6 (2009), 1135-1144.
    [38] PLoS ONE, 5 (2010), e11569.
    [39] BMC Med, 9 (2011).
    [40] Euro Surveillance, 14 (2009) .
    [41] Proceedings of the Royal Society B, 274 (2011), 2925-2934.
    [42] JTB: Journal of Theoretical Biology, Elsevier, 283 (2011), 136-144.
  • This article has been cited by:

    1. Yujing Liu, Li Ding, Xuming An, Ping Hu, Fuying Du, Epidemic spreading on midscopic multi-layer network with optimal control mechanism, 2020, 537, 03784371, 122775, 10.1016/j.physa.2019.122775
    2. Fangzhou Liu, Martin Buss, Optimal Control for Heterogeneous Node-Based Information Epidemics Over Social Networks, 2020, 7, 2325-5870, 1115, 10.1109/TCNS.2019.2963488
    3. Kundan Kandhway, Joy Kuri, Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks, 2017, 47, 2168-2216, 1099, 10.1109/TSMC.2016.2531690
    4. Ping Hu, Li Ding, Tarik Hadzibeganovic, Individual-based optimal weight adaptation for heterogeneous epidemic spreading networks, 2018, 63, 10075704, 339, 10.1016/j.cnsns.2018.04.003
    5. James D. Pleuss, Jessica L. Heier Stamm, Jason D. Ellis, Using Simulated Annealing to Improve the Information Dissemination Network Structure of a Foreign Animal Disease Outbreak Response, 2018, 15, 1547-7355, 10.1515/jhsem-2017-0008
    6. Damian Clancy, 2015, 9781118445112, 1, 10.1002/9781118445112.stat05267.pub2
    7. Ágnes Bodó, Péter Simon, Stochastic simulation control of epidemic propagation on networks, 2018, 14173875, 1, 10.14232/ejqtde.2018.1.41
    8. Kundan Kandhway, Joy Kuri, Campaigning in Heterogeneous Social Networks: Optimal Control of SI Information Epidemics, 2016, 24, 1063-6692, 383, 10.1109/TNET.2014.2361801
    9. Mina Youssef, Caterina Scoglio, Optimal Network-Based Intervention in the Presence of Undetectable Viruses, 2014, 18, 1089-7798, 1347, 10.1109/LCOMM.2014.2325026
    10. Fanni Sélley, Ádám Besenyei, Istvan Z. Kiss, Péter L. Simon, Dynamic Control of Modern, Network-Based Epidemic Models, 2015, 14, 1536-0040, 168, 10.1137/130947039
    11. Kundan Kandhway, Joy Kuri, Optimal Resource Allocation Over Time and Degree Classes for Maximizing Information Dissemination in Social Networks, 2016, 24, 1063-6692, 3204, 10.1109/TNET.2015.2512541
    12. István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 1, 978-3-319-50804-7, 1, 10.1007/978-3-319-50806-1_1
    13. F.D. Sahneh, F.N. Chowdhury, G. Brase, C.M. Scoglio, J.M. Hyman, F. Milner, J. Saldaña, Individual-based Information Dissemination in Multilayer Epidemic Modeling, 2014, 9, 0973-5348, 136, 10.1051/mmnp/20149209
    14. István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 8, 978-3-319-50804-7, 273, 10.1007/978-3-319-50806-1_8
    15. Matthew J. Young, Matthew J. Silk, Alex J. Pritchard, Nina H. Fefferman, Diversity in valuing social contact and risk tolerance leading to the emergence of homophily in populations facing infectious threats, 2022, 105, 2470-0045, 10.1103/PhysRevE.105.044315
    16. Kalyani Devendra Jagtap, Kundan Kandhway, Mitigating biological epidemic on heterogeneous social networks, 2022, 6, 26667207, 100078, 10.1016/j.rico.2021.100078
    17. Lai-Sang Young, Zach Danial, Max O. Souza, Three pre-vaccine responses to Covid-like epidemics, 2021, 16, 1932-6203, e0251349, 10.1371/journal.pone.0251349
    18. Lorenzo Zino, Ming Cao, Analysis, Prediction, and Control of Epidemics: A Survey from Scalar to Dynamic Network Models, 2021, 21, 1531-636X, 4, 10.1109/MCAS.2021.3118100
    19. Carl Corcoran, John Michael Clark, Adaptive network modeling of social distancing interventions, 2022, 546, 00225193, 111151, 10.1016/j.jtbi.2022.111151
    20. Esteban A. Hernandez-Vargas, Alejandro H. Gonzalez, Carolyn L. Beck, Xiaoqi Bi, Francesca Cala Campana, Giulia Giordano, 2022, Modelling and Control of Epidemics Across Scales, 978-1-6654-6761-2, 4963, 10.1109/CDC51059.2022.9992380
    21. Davide Zorzenon, Fabio Molinari, Jorg Raisch, 2021, Low Complexity Method for Simulation of Epidemics Based on Dijkstra's Algorithm, 978-1-6654-4197-1, 3018, 10.23919/ACC50511.2021.9483311
    22. Teodoro Alamo, Daniel G. Reina, Pablo Millán Gata, Victor M. Preciado, Giulia Giordano, Data-driven methods for present and future pandemics: Monitoring, modelling and managing, 2021, 52, 13675788, 448, 10.1016/j.arcontrol.2021.05.003
    23. Mohammad Mubarak, James Berneburg, Cameron Nowzari, 2022, Individual Non-Pharmaceutical Intervention Strategies for Stochastic Networked Epidemics, 978-1-6654-6761-2, 5627, 10.1109/CDC51059.2022.9992518
    24. Rico Berner, Thilo Gross, Christian Kuehn, Jürgen Kurths, Serhiy Yanchuk, Adaptive dynamical networks, 2023, 1031, 03701573, 1, 10.1016/j.physrep.2023.08.001
    25. Arash Amini, Yigit E. Bayiz, Ufuk Topcu, 2024, Control of Misinformation with Safety and Engagement Guarantees, 979-8-3503-8265-5, 151, 10.23919/ACC60939.2024.10644493
    26. Maxwell H. Wang, Jukka-Pekka Onnela, Accounting for contact network uncertainty in epidemic inferences with Approximate Bayesian Computation, 2025, 10, 2364-8228, 10.1007/s41109-025-00694-y
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2973) PDF downloads(527) Cited by(26)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog