Citation: Mina Youssef, Caterina Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227
[1] | Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado . Optimal information dissemination strategy to promote preventivebehaviors in multilayer epidemic networks. Mathematical Biosciences and Engineering, 2015, 12(3): 609-623. doi: 10.3934/mbe.2015.12.609 |
[2] | Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, Faryad Darabi Sahneh . Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Mathematical Biosciences and Engineering, 2018, 15(5): 1165-1180. doi: 10.3934/mbe.2018053 |
[3] | Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035 |
[4] | Mattia Zanella, Chiara Bardelli, Mara Azzi, Silvia Deandrea, Pietro Perotti, Santino Silva, Ennio Cadum, Silvia Figini, Giuseppe Toscani . Social contacts, epidemic spreading and health system. Mathematical modeling and applications to COVID-19 infection. Mathematical Biosciences and Engineering, 2021, 18(4): 3384-3403. doi: 10.3934/mbe.2021169 |
[5] | Ping Yan, Gerardo Chowell . Modeling sub-exponential epidemic growth dynamics through unobserved individual heterogeneity: a frailty model approach. Mathematical Biosciences and Engineering, 2024, 21(10): 7278-7296. doi: 10.3934/mbe.2024321 |
[6] | Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259 |
[7] | F. S. Vannucchi, S. Boccaletti . Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences and Engineering, 2004, 1(1): 49-55. doi: 10.3934/mbe.2004.1.49 |
[8] | Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis . Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475 |
[9] | Toshikazu Kuniya, Taisuke Nakata, Daisuke Fujii . Optimal vaccine allocation strategy: Theory and application to the early stage of COVID-19 in Japan. Mathematical Biosciences and Engineering, 2024, 21(6): 6359-6371. doi: 10.3934/mbe.2024277 |
[10] | Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147 |
[1] | BMC Infectious Diseases, 10 (2010), 190. |
[2] | Emerging Health Threats Journal, 2 (2009), e11. |
[3] | Science, 286 (1999), 509-512. |
[4] | in "Proceedings of SuperComputing 08 International Conference for High Performance Computing," Networking Storage and Analysis. Austin, Texas, November 15-21, (2008). |
[5] | AI Magazine, 31 (2009), 75-87. |
[6] | Optimal Control Applications and Methods, 21 (2000), 269-285. |
[7] | The Society for the Study of Evolution: International Journal of Organic Evolution, 59 (2005). |
[8] | Mathematical Biosciences, 231 (2011), 126-134. |
[9] | Int. J. Bifurcation and Chaos, 17 (2007), 2491-2500. |
[10] | Cambridge, Studies in Mathematical Biology, 1999. |
[11] | Scientific Reports 2, Article number 632, 2012 |
[12] | in "Social Computing, Behavioral-Cultural Modeling And Prediction," (Ed. S. Yang), Berlin Heidelberg, Springer, 7227 (2012), 172-179. |
[13] | Nature, 429 (2004), 180-184. |
[14] | Proceedings of the National Academy of Sciences, 108 (2011), 6306-6311. |
[15] | Proceedings of the National Academy of Sciences, 104 (2007), 4984-4989. |
[16] | Mathematical Biosciences, 232 (2011), 110-115. |
[17] | Proceedings of the National Academy of Sciences, 103 (2006), 5935-5940. |
[18] | Journal of the Royal Society Interface, 5 (2010), e11569. |
[19] | Phys. Rev. Lett., 96 (2006), 208701. |
[20] | BMC Medical Informatics and Decision Making, 12 (2012), 132. |
[21] | IEEE Intelligent Control and Automation WCICA, (2006). |
[22] | Proceedings of IEEE INFOCOM 2011, Shanghai, China, (2011). |
[23] | Journal of the Royal Society Interface, 5 (2008), 791-799. |
[24] | Phys. Rev. E, 83 (2011), 026102,. |
[25] | PLoS ONE, 6 (2011), e22461. |
[26] | Phys. Rev. E, 82 (2010), 036116, |
[27] | PLoS ONE, 6 (2011), e24577. |
[28] | Journal of Theoretical Biology, 262 (2010), 757-763. |
[29] | IEEE/ACM Transaction on Networking, 17 (2009), 1-14. |
[30] | Eur. Phys. J. B, 26 (2002), 521-529. |
[31] | SIAM Review, 45 (2003), 167-256. |
[32] | Interscience, 4 (1962). |
[33] | ECML-PKDD 2010, Barcelona, Spain 2010. |
[34] | 8 (2011), 141-170. |
[35] | PLOS Computational Biology, 6 (2010), e1000793. |
[36] | Mathematical Biosciences, 230 (2011), 67-78. |
[37] | Interface Journal of the Royal Society, 6 (2009), 1135-1144. |
[38] | PLoS ONE, 5 (2010), e11569. |
[39] | BMC Med, 9 (2011). |
[40] | Euro Surveillance, 14 (2009) . |
[41] | Proceedings of the Royal Society B, 274 (2011), 2925-2934. |
[42] | JTB: Journal of Theoretical Biology, Elsevier, 283 (2011), 136-144. |
1. | Yujing Liu, Li Ding, Xuming An, Ping Hu, Fuying Du, Epidemic spreading on midscopic multi-layer network with optimal control mechanism, 2020, 537, 03784371, 122775, 10.1016/j.physa.2019.122775 | |
2. | Fangzhou Liu, Martin Buss, Optimal Control for Heterogeneous Node-Based Information Epidemics Over Social Networks, 2020, 7, 2325-5870, 1115, 10.1109/TCNS.2019.2963488 | |
3. | Kundan Kandhway, Joy Kuri, Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks, 2017, 47, 2168-2216, 1099, 10.1109/TSMC.2016.2531690 | |
4. | Ping Hu, Li Ding, Tarik Hadzibeganovic, Individual-based optimal weight adaptation for heterogeneous epidemic spreading networks, 2018, 63, 10075704, 339, 10.1016/j.cnsns.2018.04.003 | |
5. | James D. Pleuss, Jessica L. Heier Stamm, Jason D. Ellis, Using Simulated Annealing to Improve the Information Dissemination Network Structure of a Foreign Animal Disease Outbreak Response, 2018, 15, 1547-7355, 10.1515/jhsem-2017-0008 | |
6. | Damian Clancy, 2015, 9781118445112, 1, 10.1002/9781118445112.stat05267.pub2 | |
7. | Ágnes Bodó, Péter Simon, Stochastic simulation control of epidemic propagation on networks, 2018, 14173875, 1, 10.14232/ejqtde.2018.1.41 | |
8. | Kundan Kandhway, Joy Kuri, Campaigning in Heterogeneous Social Networks: Optimal Control of SI Information Epidemics, 2016, 24, 1063-6692, 383, 10.1109/TNET.2014.2361801 | |
9. | Mina Youssef, Caterina Scoglio, Optimal Network-Based Intervention in the Presence of Undetectable Viruses, 2014, 18, 1089-7798, 1347, 10.1109/LCOMM.2014.2325026 | |
10. | Fanni Sélley, Ádám Besenyei, Istvan Z. Kiss, Péter L. Simon, Dynamic Control of Modern, Network-Based Epidemic Models, 2015, 14, 1536-0040, 168, 10.1137/130947039 | |
11. | Kundan Kandhway, Joy Kuri, Optimal Resource Allocation Over Time and Degree Classes for Maximizing Information Dissemination in Social Networks, 2016, 24, 1063-6692, 3204, 10.1109/TNET.2015.2512541 | |
12. | István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 1, 978-3-319-50804-7, 1, 10.1007/978-3-319-50806-1_1 | |
13. | F.D. Sahneh, F.N. Chowdhury, G. Brase, C.M. Scoglio, J.M. Hyman, F. Milner, J. Saldaña, Individual-based Information Dissemination in Multilayer Epidemic Modeling, 2014, 9, 0973-5348, 136, 10.1051/mmnp/20149209 | |
14. | István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 8, 978-3-319-50804-7, 273, 10.1007/978-3-319-50806-1_8 | |
15. | Matthew J. Young, Matthew J. Silk, Alex J. Pritchard, Nina H. Fefferman, Diversity in valuing social contact and risk tolerance leading to the emergence of homophily in populations facing infectious threats, 2022, 105, 2470-0045, 10.1103/PhysRevE.105.044315 | |
16. | Kalyani Devendra Jagtap, Kundan Kandhway, Mitigating biological epidemic on heterogeneous social networks, 2022, 6, 26667207, 100078, 10.1016/j.rico.2021.100078 | |
17. | Lai-Sang Young, Zach Danial, Max O. Souza, Three pre-vaccine responses to Covid-like epidemics, 2021, 16, 1932-6203, e0251349, 10.1371/journal.pone.0251349 | |
18. | Lorenzo Zino, Ming Cao, Analysis, Prediction, and Control of Epidemics: A Survey from Scalar to Dynamic Network Models, 2021, 21, 1531-636X, 4, 10.1109/MCAS.2021.3118100 | |
19. | Carl Corcoran, John Michael Clark, Adaptive network modeling of social distancing interventions, 2022, 546, 00225193, 111151, 10.1016/j.jtbi.2022.111151 | |
20. | Esteban A. Hernandez-Vargas, Alejandro H. Gonzalez, Carolyn L. Beck, Xiaoqi Bi, Francesca Cala Campana, Giulia Giordano, 2022, Modelling and Control of Epidemics Across Scales, 978-1-6654-6761-2, 4963, 10.1109/CDC51059.2022.9992380 | |
21. | Davide Zorzenon, Fabio Molinari, Jorg Raisch, 2021, Low Complexity Method for Simulation of Epidemics Based on Dijkstra's Algorithm, 978-1-6654-4197-1, 3018, 10.23919/ACC50511.2021.9483311 | |
22. | Teodoro Alamo, Daniel G. Reina, Pablo Millán Gata, Victor M. Preciado, Giulia Giordano, Data-driven methods for present and future pandemics: Monitoring, modelling and managing, 2021, 52, 13675788, 448, 10.1016/j.arcontrol.2021.05.003 | |
23. | Mohammad Mubarak, James Berneburg, Cameron Nowzari, 2022, Individual Non-Pharmaceutical Intervention Strategies for Stochastic Networked Epidemics, 978-1-6654-6761-2, 5627, 10.1109/CDC51059.2022.9992518 | |
24. | Rico Berner, Thilo Gross, Christian Kuehn, Jürgen Kurths, Serhiy Yanchuk, Adaptive dynamical networks, 2023, 1031, 03701573, 1, 10.1016/j.physrep.2023.08.001 | |
25. | Arash Amini, Yigit E. Bayiz, Ufuk Topcu, 2024, Control of Misinformation with Safety and Engagement Guarantees, 979-8-3503-8265-5, 151, 10.23919/ACC60939.2024.10644493 | |
26. | Maxwell H. Wang, Jukka-Pekka Onnela, Accounting for contact network uncertainty in epidemic inferences with Approximate Bayesian Computation, 2025, 10, 2364-8228, 10.1007/s41109-025-00694-y |