The impact of an imperfect vaccine and pap cytologyscreening on the transmission of human papillomavirus and occurrenceof associated cervical dysplasia and cancer

  • Received: 01 April 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 92D30; Secondary: 37N25.

  • A mathematical model for the natural history of human papillomavirus(HPV) is designed and used to assess the impact of a hypotheticalanti-HPV vaccine and Pap cytology screening on the transmissiondynamics of HPV in a population. Rigorous qualitative analysis ofthe model reveals that it undergoes the phenomenon of backwardbifurcation. It is shown that the backward bifurcation is caused bythe imperfect nature of the HPV vaccine or the HPV-induced andcancer-induced mortality in females. For the case when thedisease-induced and cancer-induced mortality is negligible, it isshown that the disease-free equilibrium (i.e., equilibrium in theabsence of HPV and associated dysplasia) is globally-asymptoticallystable if the associated reproduction number is less than unity. Themodel has a unique endemic equilibrium when the reproductionthreshold exceeds unity. The unique endemic equilibrium isglobally-asymptotically stable for a special case, where theassociated HPV-induced and cancer-induced mortality is negligible.Numerical simulations of the model, using a reasonable set ofparameter values, support the recent recommendations by some medicalagencies and organizations in the USA to offer Pap screening on a3-year basis (rather than annually).

    Citation: Tufail Malik, Jody Reimer, Abba Gumel, Elamin H. Elbasha, Salaheddin Mahmud. The impact of an imperfect vaccine and pap cytologyscreening on the transmission of human papillomavirus and occurrenceof associated cervical dysplasia and cancer[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 1173-1205. doi: 10.3934/mbe.2013.10.1173

    Related Papers:

    [1] Swati Shinde, Madhura Kalbhor, Pankaj Wajire . DeepCyto: a hybrid framework for cervical cancer classification by using deep feature fusion of cytology images. Mathematical Biosciences and Engineering, 2022, 19(7): 6415-6434. doi: 10.3934/mbe.2022301
    [2] Kai Zhang, Xinwei Wang, Hua Liu, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Ming Ma . Mathematical analysis of a human papillomavirus transmission model with vaccination and screening. Mathematical Biosciences and Engineering, 2020, 17(5): 5449-5476. doi: 10.3934/mbe.2020294
    [3] Simphiwe M. Simelane, Justin B. Munyakazi, Phumlani G. Dlamini, Oluwaseun F. Egbelowo . Projections of human papillomavirus vaccination and its impact on cervical cancer using the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(7): 11605-11626. doi: 10.3934/mbe.2023515
    [4] Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati . Mathematical analysis of a SIPC age-structured model of cervical cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 6013-6039. doi: 10.3934/mbe.2022281
    [5] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [6] Vitalii V. Akimenko, Fajar Adi-Kusumo . Stability analysis of an age-structured model of cervical cancer cells and HPV dynamics. Mathematical Biosciences and Engineering, 2021, 18(5): 6155-6177. doi: 10.3934/mbe.2021308
    [7] Najat Ziyadi . A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences and Engineering, 2017, 14(1): 339-358. doi: 10.3934/mbe.2017022
    [8] Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045
    [9] Nengkai Wu, Dongyao Jia, Chuanwang Zhang, Ziqi Li . Cervical cell extraction network based on optimized yolo. Mathematical Biosciences and Engineering, 2023, 20(2): 2364-2381. doi: 10.3934/mbe.2023111
    [10] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
  • A mathematical model for the natural history of human papillomavirus(HPV) is designed and used to assess the impact of a hypotheticalanti-HPV vaccine and Pap cytology screening on the transmissiondynamics of HPV in a population. Rigorous qualitative analysis ofthe model reveals that it undergoes the phenomenon of backwardbifurcation. It is shown that the backward bifurcation is caused bythe imperfect nature of the HPV vaccine or the HPV-induced andcancer-induced mortality in females. For the case when thedisease-induced and cancer-induced mortality is negligible, it isshown that the disease-free equilibrium (i.e., equilibrium in theabsence of HPV and associated dysplasia) is globally-asymptoticallystable if the associated reproduction number is less than unity. Themodel has a unique endemic equilibrium when the reproductionthreshold exceeds unity. The unique endemic equilibrium isglobally-asymptotically stable for a special case, where theassociated HPV-induced and cancer-induced mortality is negligible.Numerical simulations of the model, using a reasonable set ofparameter values, support the recent recommendations by some medicalagencies and organizations in the USA to offer Pap screening on a3-year basis (rather than annually).


    [1] BMC Public Health, 8 (2008), 1-12.
    [2] Mathematics and Computers in Simulation, 82 (2011), 629-652.
    [3] J. Math. Anal. Appl., 298 (2004), 418-431.
    [4] Sex. Transm. Infect., 87 (2011), 41-43.
    [5] Comput. Math. Methods. Med., 11 (2010), 223-237.
    [6] (2009). Available from: http://www.cancer.ca.
    [7] Springer-Verlag, New York, 1981.
    [8] Math. Biosci. Engrg., 1 (2004), 361-404.
    [9] Discrete Contin. Dyn. Syst. Ser. B., 12 (2009), 279-304.
    [10] Best Practice & Research Clinical Obstetrics and Gynaecology, 19 (2005), 501-515.
    [11] J. Math. Biol., 28 (1990), 365-382.
    [12] J. Math. Biol., 36 (1998), 227-248.
    [13] Math. Biosci., 197 (2005), 88-117.
    [14] Bull. Math. Biol., 68 (2006), 577-614.
    [15] Emerg. Infect. Dis., 13 (2007), 28-41.
    [16] Bull. Math. Biol., 70 (2008), 894-909.
    [17] Bull. Math. Biol., 70 (2008), 2126-2176.
    [18] Int. J. Cancer., 127 (2010), 2893-2917.
    [19] Arch. Med. Res., 40 (2009), 478-485.
    [20] CMAJ., 164 (2001), 1017-1025.
    [21] Math. Biosci., 215 (2008), 11-25.
    [22] Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/17 ASO4-adjuvanted vaccine: Analysis of a randomised placebo-controlled trial up to 6.4 years,
    [23] Journal of the National Cancer Institute, 96 (2004), 604-615.
    [24] J. Infect. Dis., 197 (2008), 1653-1661.
    [25] BMC Public Health, 11 (2011), 1-13.
    [26] (2012). Available from: http://www.phac-aspc.gc.ca.
    [27] SIAM Rev., 42 (2000), 599-653.
    [28] Epidemiology, 13 (2002), 631-639.
    [29] IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans, (1995). Lyon, France.
    [30] J. Med. Screen, 16 (2009), 91-97.
    [31] American Journal of Medicine, 102 (1997), 3-8.
    [32] Math Biosci., 164 (2000), 183-201.
    [33] Marcel Dekker, Inc., New York and Basel, 1989.
    [34] Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
    [35] AHCPR Pub; No 99-E 010 1999.
    [36] Math. Biosci. Engrg., 6 (2009), 333-362.
    [37] N. Engl. J. Med., 348 (2003), 518-527.
    [38] International Journal of Cancer, 111 (2004), 278-285.
    [39] Am. J. Epidemiol., 151 (2000), 1158-1171.
    [40] JAMA., 290 (2003), 781-789.
    [41] Journal of Adolescent Health, 46 (2010), S12-S19.
    [42] Can. Appl. Math. Quarterly, 17 (2009), 339-386.
    [43] (2013). Available from: http://www.phac-aspc.gc.ca/publicat/ccsic-dccuac/pdf/chap_3_e.pdf.
    [44] (2010). Available from: http://www.phac-aspc.gc.ca.
    [45] Curr. Diagn. Pathol., 12 (2006), 114-126.
    [46] Am. J. Clin. Pathol., 137 (2012), 516-542.
    [47] BMJ., 332 (2006), 61-62.
    [48] Math. Biosci., 210 (2007), 436-463.
    [49] Math. Biosci. Engrg., 5 (2008), 145-174.
    [50] Cambridge University Press, 1995.
    [51] Math. Biosci., 180 (2002), 29-48.
    [52] Am. J. Epidemiol., 165 (2007), 762-775.
    [53] British Journal of Cancer, 95 (2006), 1459-1466.
    [54] J. Pathol., 189 (1999), 12-19.
  • This article has been cited by:

    1. Oluwaseun Sharomi, Tufail Malik, A model to assess the effect of vaccine compliance on Human Papillomavirus infection and cervical cancer, 2017, 47, 0307904X, 528, 10.1016/j.apm.2017.03.025
    2. Aliya A. Alsaleh, Abba B. Gumel, Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types, 2014, 76, 0092-8240, 1670, 10.1007/s11538-014-9972-4
    3. Fei Xu, Ross Cressman, Voluntary vaccination strategy and the spread of sexually transmitted diseases, 2016, 274, 00255564, 94, 10.1016/j.mbs.2016.02.004
    4. A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012
    5. A. Omame, R. A. Umana, D. Okuonghae, S. C. Inyama, Mathematical analysis of a two-sex Human Papillomavirus (HPV) model, 2018, 11, 1793-5245, 1850092, 10.1142/S1793524518500924
    6. Raúl Peralta, Cruz Vargas-De-León, Augusto Cabrera, Pedro Miramontes, Dynamics of High-Risk Nonvaccine Human Papillomavirus Types after Actual Vaccination Scheme, 2014, 2014, 1748-670X, 1, 10.1155/2014/542923
    7. Fernando Saldaña, Andrei Korobeinikov, Ignacio Barradas, Optimal Control against the Human Papillomavirus: Protection versus Eradication of the Infection, 2019, 2019, 1085-3375, 1, 10.1155/2019/4567825
    8. Andrew Omame, Daniel Okuonghae, A co‐infection model for oncogenic human papillomavirus and tuberculosis with optimal control and Cost‐Effectiveness Analysis, 2021, 0143-2087, 10.1002/oca.2717
    9. A. Omame, D. Okuonghae, S. C. Inyama, 2020, Chapter 4, 978-981-15-2285-7, 107, 10.1007/978-981-15-2286-4_4
    10. Kai Zhang, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Yong Ye, Hua Liu, Sensitivity analysis and optimal treatment control for a mathematical model of Human Papillomavirus infection, 2020, 5, 2473-6988, 2646, 10.3934/math.2020172
    11. ALIYA A. ALSALEH, ABBA B. GUMEL, DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION, 2014, 22, 0218-3390, 555, 10.1142/S0218339014500211
    12. Tufail Malik, Mudassar Imran, Raja Jayaraman, Optimal control with multiple human papillomavirus vaccines, 2016, 393, 00225193, 179, 10.1016/j.jtbi.2016.01.004
    13. Ana Gradíssimo, Robert D. Burk, Molecular tests potentially improving HPV screening and genotyping for cervical cancer prevention, 2017, 17, 1473-7159, 379, 10.1080/14737159.2017.1293525
    14. Abba B. Gumel, Jean M.-S. Lubuma, Oluwaseun Sharomi, Yibeltal Adane Terefe, Mathematics of a sex-structured model for syphilis transmission dynamics, 2018, 41, 01704214, 8488, 10.1002/mma.4734
    15. Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, A two-sex model of human papillomavirus infection: Vaccination strategies and a case study, 2022, 536, 00225193, 111006, 10.1016/j.jtbi.2022.111006
    16. Fernando Saldaña, José A Camacho-Gutiérrez, Geiser Villavicencio-Pulido, Jorge X. Velasco-Hernández, Modeling the transmission dynamics and vaccination strategies for human papillomavirus infection: An optimal control approach, 2022, 112, 0307904X, 767, 10.1016/j.apm.2022.08.017
    17. A. Omame, D. Okuonghae, U. E. Nwafor, B. U. Odionyenma, A co-infection model for HPV and syphilis with optimal control and cost-effectiveness analysis, 2021, 14, 1793-5245, 10.1142/S1793524521500509
    18. Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, The impact of vaccination on human papillomavirus infection with disassortative geographical mixing: a two-patch modeling study, 2022, 84, 0303-6812, 10.1007/s00285-022-01745-z
    19. 丽娜 王, Dynamic Analysis of a Kind of HPV Transmission Model Incorporating Media Impact and Early Screening, 2024, 13, 2324-7991, 3845, 10.12677/aam.2024.138366
    20. Arsène Jaurès Ouemba Tassé, Berge Tsanou, Cletus Kwa Kum, Jean Lubuma, A mathematical model on the impact of awareness and traditional medicine in the control of Ebola: case study of the 2014–2016 outbreaks in Sierra Leone and Liberia, 2024, 0272-4960, 10.1093/imamat/hxae025
    21. Roya Khalili Amirabadi, Omid S. Fard, Mohsen Jalaeian Farimani, Towards optimal control of HPV model using safe reinforcement learning with actor–critic neural networks, 2025, 264, 09574174, 125783, 10.1016/j.eswa.2024.125783
    22. Henok Desalegn Desta, Getachew Teshome Tilahun, Tariku Merga Tolasa, Mulugeta Geremew Geleso, Francisco R. Villatoro, Mathematical Model of Human Papillomavirus (HPV) Dynamics With Double‐Dose Vaccination and Its Impact on Cervical Cancer, 2024, 2024, 1026-0226, 10.1155/ddns/9971859
    23. Sylas Oswald, Eunice Mureithi, Berge Tsanou, Michael Chapwanya, Kijakazi Mashoto, Crispin Kahesa, MCMC-Driven mathematical modeling of the impact of HPV vaccine uptake in reducing cervical cancer, 2025, 24682276, e02633, 10.1016/j.sciaf.2025.e02633
    24. A. El-Mesady, Tareq M. Al-shami, Hegagi Mohamed Ali, Optimal control efforts to reduce the transmission of HPV in a fractional-order mathematical model, 2025, 2025, 1687-2770, 10.1186/s13661-024-01991-8
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3655) PDF downloads(609) Cited by(24)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog