In this paper, a reaction-diffusion SI epidemic model with media impact is considered. The boundedness of system and the existence of the state are given. The local stabilities of the endemic states are analyzed. Sufficient conditions of the occurrence of the Turing pattern are obtained by the center manifold theorem and normal form method. Some numerical simulations are given to check in the theoretical results. We find that the influence of media not only inhibits the spread of infectious diseases, but also effects the spatial steady-state of model.
Citation: Xin-You Meng, Tao Zhang. The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 4034-4047. doi: 10.3934/mbe.2020223
[1] | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666 |
[2] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[3] | Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059 |
[4] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[5] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[6] | Manal Elzain Mohamed Abdalla, Hasanen A. Hammad . Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281 |
[7] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[8] | Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075 |
[9] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[10] | Abdulwasea Alkhazzan, Wadhah Al-Sadi, Varaporn Wattanakejorn, Hasib Khan, Thanin Sitthiwirattham, Sina Etemad, Shahram Rezapour . A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p-Laplacian operator. AIMS Mathematics, 2022, 7(8): 14187-14207. doi: 10.3934/math.2022782 |
In this paper, a reaction-diffusion SI epidemic model with media impact is considered. The boundedness of system and the existence of the state are given. The local stabilities of the endemic states are analyzed. Sufficient conditions of the occurrence of the Turing pattern are obtained by the center manifold theorem and normal form method. Some numerical simulations are given to check in the theoretical results. We find that the influence of media not only inhibits the spread of infectious diseases, but also effects the spatial steady-state of model.
Widespread applications of fractional calculus significantly contributed to the popularity of the subject. Fractional order operators are nonlocal in nature and give rise to more realistice and informative mathematical modeling of many real world phenomena, in contrast to their integer-order counterparts, for instance, see [13,21,31].
Nonlinear fractional order boundary value problems appear in a variety of fields such as applied mathematics, physical sciences, engineering, control theory, etc. Several aspects of these problems, such as existence, uniqueness and stability, have been explored in recent studies [5,6,7,14,22,24,26,28,32].
Coupled nonlinear fractional differential equations find their applications in various applied and technical problems such as disease models [8,10,29], ecological models [18], synchronization of chaotic systems [11,33], nonlocal thermoelasticity [30], etc. Hybrid fractional differential equations also received significant attention in the recent years, for example, see [2,3,9,15,16,17,19,20,23].
The concept of slits-strips conditions introduced by Ahmad et al. in [1] is a new idea and has useful applications in imaging via strip-detectors [25] and acoustics [27].
In [1], the authors investigated the following strips-slit problem:
cDpx(t)=f1(t,x(t)), n−1<p≤n, t∈[0,1]x(0)=0, x′(0)=0, x′′(0)=0,.... x(n−2)(0)=0,x(ξ)=a1∫η0x(s)ds+a2∫1ξ1x(s)ds, 0<η<ξ<ξ1<1, |
where cDp denotes the Caputo fractional derivative of order p,f1 is a given continuous function and a1,a2∈R.
In 2017, Ahmad et al. [4] studied a coupled system of nonlinear fractional differential equations
cDαx(t)=f1(t,x(t),y(t)), t∈[0,1], 1<α≤2,cDβy(t)=f2(t,x(t),y(t)), t∈[0,1], 1<β≤2, |
supplemented with the coupled and uncoupled boundary conditions of the form:
x(0)=0, x(a1)=d1∫η0y(s)ds+d2∫1ξ1y(s)ds, 0<η<a1<ξ1<1,y(0)=0, y(a1)=d1∫η0x(s)ds+d2∫1ξ1x(s)ds, 0<η<a1<ξ1<1, |
and
x(0)=0, x(a1)=d1∫η0x(s)ds+d2∫1ξ1x(s)ds, 0<η<a1<ξ1<1,y(0)=0, y(a1)=d1∫η0y(s)ds+d2∫1ξ1y(s)ds, 0<η<a1<ξ1<1, |
where cDα and cDβ denote the Caputo fractional derivatives of orders α and β respectively, f1,f2:[0,1]×R×R→R are given continuous functions and d1,d2 are real constants.
In this article, motivated by aforementioned works, we introduce and study the following hybrid nonlinear fractional differential equations:
cDγ[u(t)−h1(t,u(t),v(t))]=θ1(t,u(t),v(t)), t∈[0,1], 1<γ≤2,cDδ[v(t)−h2(t,u(t),v(t))]=θ2(t,u(t),v(t)), t∈[0,1], 1<δ≤2, | (1.1) |
equipped with coupled slit-strips-type integral boundary conditions:
u(0)=0, u(η)=ω1∫ξ10v(s)ds+ω2∫1ξ2v(s)ds, 0<ξ1<η<ξ2<1,v(0)=0, v(η)=ω1∫ξ10u(s)ds+ω2∫1ξ2u(s)ds, 0<ξ1<η<ξ2<1, | (1.2) |
where cDγ, cDδ denote the Caputo fractional derivatives of orders γ and δ respectively, θi,hi:[0,1]×R×R→R are given continuous functions with hi(0,u(0),v(0))=0,i=1,2 and ω1,ω2 are real constants.
We arrange the rest of the paper as follows. In section 2, we present some definitions and obtain an auxiliary result, while section 3 contains the main results for the problems (1.1) and (1.2). Section 4 is devoted to the illustrative examples for the derived results.
Let us first recall some related definitions [21].
Definition 2.1. For a locally integrable real-valued function g1:[a,∞)⟶R, we define the Riemann-Liouville fractional integral of order σ>0 as
Iσg1(t)=1Γ(σ)∫t0g1(τ)(t−τ)1−σdτ, σ>0, |
where Γ is the Euler's gamma function.
Definition 2.2. The Caputo derivative of order σ for an n-times continuously differentiable function g1:[0,∞)→R is defined by
cDσg1(t)=1Γ(n−σ)∫t0(t−τ)n−σ−1g(n)1(τ)dτ, n−1<σ<n, n=[σ]+1 |
where [σ] is the integer part of a real number.
Lemma 2.1. For χi,Φi∈C([0,1],R) with χi(0)=0,i=1,2, the following linear system of equations:
cDγ[u(t)−χ1(t)]=Φ1(t), t∈[0,1], 1<γ≤2,cDδ[v(t)−χ2(t)]=Φ2(t), t∈[0,1], 1<δ≤2, | (2.1) |
equipped with coupled slit-strips-type integral boundary conditions (1.2), is equivalent to the integral equations:
u(t)=tη2−Δ2[η{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ1(η)}+Δ{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)}]+∫t0(t−s)γ−1Γ(γ)Φ1(s)ds+χ1(t), | (2.2) |
v(t)=tη2−Δ2[Δ{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds−∫η0(η−τ)γ−1Γ(γ)Φ1(s)ds−χ2(η)}+η{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)}]+∫t0(t−s)δ−1Γ(δ)Φ2(s)ds+χ2(t), | (2.3) |
where it is assumed that
Δ=12(ω1ξ21+ω2(1−ξ22))≠0. | (2.4) |
Proof. Solving the fractional differential equations in (2.1), we get
u(t)=c0+c1t+∫t0(t−s)γ−1Γ(γ)Φ1(s)ds+χ1(t) | (2.5) |
and
v(t)=c2+c3t+∫t0(t−s)δ−1Γ(δ)Φ2(s)ds+χ2(t), | (2.6) |
where c0,c1,c2,c3 ∈R are arbitrary constants.
Using the conditions u(0)=0 and v(0)=0 in (2.5) and (2.6), we find that c0=0 and c2=0. Thus (2.5) and (2.6) become
u(t)=c1t+∫t0(t−s)γ−1Γ(γ)Φ1(s)ds+χ1(t), | (2.7) |
v(t)=c3t+∫t0(t−s)δ−1Γ(δ)Φ2(s)ds+χ2(t), | (2.8) |
Making use of the coupled slit-strips-type integral boundary conditions given by (1.2) in (2.7) and (2.8) together with the notation (2.4), we obtain a system of equations:
ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ1(η))=c1η−Δc3, | (2.9) |
ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)=c3η−Δc1. | (2.10) |
Solving the systems (2.9)–(2.10) for c1 and c3, we find that
c1=tη2−Δ2[η{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ1(η)}+Δ{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)}] |
and
c3=tη2−Δ2[Δ{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ2(η)}+η{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ1(η)}] |
Inserting the values of c1 and c3 in (2.7) and (2.8) leads to the integral equations (2.2) and (2.3). By direct computation, one can obtain the converse of the lemma. The proof is finished.
Let W={˜w(t):˜w(t)∈C([0,1])} be a Banach space equipped with the norm ‖˜w‖=max{|˜w(t)|,t∈[0,1]}, Then the product space (W×W,‖(u,v)‖) endowed with the norm ‖(u,v)‖=‖u‖+‖v‖, (u,v)∈W×W is also a Banach space.
We need the following assumptions to derive the main results.
(A1) Let θ1,θ2:[0,1]×R2→R be continuous and bounded functions and there exists constants mi,ni such that, for all t∈[0,1] and xi,yi∈R,i=1,2,
|θ1(t,x1,x2)−θ1(t,y1,y2)|≤m1|x1−y1|+m2|x2−y2|,|θ2(t,x1,x2)−θ2(t,y1,y2)|≤n1|x1−y1|+n2|x2−y2|. |
(A2) For continuous and bounded functions hi, i = 1, 2, there exist real constants μi,βi,σi>0 such that, for all xi,yi∈R, |hi(t,x,y)|≤μi for all (t,x,y)∈[0,1]×R×R and
|h1(t,x1,x2)−h1(t,y1,y2)|≤β1|x1−y1|+β2|x2−y2|,|h2(t,x1,x2)−h2(t,y1,y2)|≤σ1|x1−y1|+σ2|x2−y2|. |
(A3) supt∈[0,1]θ1(t,0,0)=N1<∞ andsupt∈[0,1]θ2(t,0,0)=N2<∞.
(A4) For the sake of computational convenience, we set
M1=1Γ(γ+1)+1|η2−Δ2|[ηγ+1Γ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+Δ|ω2|1−ξγ+12Γ(γ+2)],M2=1|η2−Δ2|[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ξδ+12Γ(δ+2)+|Δ|ηδΓ(δ+1)],M3=1|η2−Δ2|[η|ω1|ξγ+11Γ(γ+2)+η|ω2|1−ξγ+12Γ(γ+2)+|Δ|ηγΓ(γ+1)],M4=1Γ(δ+1)+1|η2−Δ2|[ηδ+1Γ(δ+1)+|Δ||ω1|ξδ+11Γ(δ+2)+Δ|ω2|1−ξδ+12Γ(δ+2)],N3=η|η2−Δ2|[|ω1|ξ1μ2+|ω2|μ2(1−ξ2)+μ1]+|Δ|[|ω1|μ1ξ1+μ1|ω2|(1−ξ2)+μ2]+μ1,N4=1|η2−Δ2|[|Δ||ω1|μ1ξ1+|ω2|(1−ξ2)μ1+μ2]+|η|[|ω1|μ2ξ1+|ω2|(1−ξ2)μ2+μ1]+μ2,N5=1|η2−Δ2|[η|ω1|ξ1+|ω2|η(1−ξ2)+|Δ|],N6=1|η2−Δ2|[|Δ|ξ1|ω1|+|Δ||ω2|(1−ξ2)+η]+1,N7=1|η2−Δ2|[|Δ|+|η||ω1|ξ1+|η||ω2|(1−ξ2)+|ω2|+|Δ|], |
and
Mk=min{1−(M1+M3)k1−(M2+M4)λ1,1−(M1+M3)k2−(M2+M4)λ2},ki,λi≥0, i=1,2. | (3.1) |
(A5) (M1+M3)(m1+m2)+(M2+M4)(n1+n2)+(N5+N6)(σ1+σ2)+(N7+N8)(β1+β2)<1.
In view of Lemma 1, we define an operator T:W×W→W×W associated with the problems (1.1) and (1.2) as follows:
T(u,v)(t)=(T1(u,v)(t)T2(u,v)(t)), | (3.2) |
where
T1(u,v)(t)=tη2−Δ2[η{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds−∫η0(η−s)γ−1Γ(γ)θ1(s,u(s),v(s))ds−h1(η,u(η),v(η))}+Δ{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds−∫η0(η−s)δ−1Γ(δ)θ2(s,u(s),v(s))ds−h2(η,u(η),v(η))}]+∫t0(t−s)γ−1Γ(γ)θ1(s,u(s),v(s))ds+h1(t,u(t),v(t)) |
and
T2(u,v)(t)=tη2−Δ2[Δ{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds−∫η0(η−τ)γ−1Γ(γ)θ1(s,u(s),v(s))ds−h2(η,u(η),v(η))}+η{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds−∫η0(η−s)δ−1Γ(δ)θ2(s,u(s),v(s))ds−h1(η,u(η),v(η))}]+∫t0(t−s)γ−1Γ(γ)θ2(s,u(s),v(s))ds+h2(t,u(t),v(t)). |
Theorem 3.1. Assume that conditions (A1) to (A5) are satisfied. Then there exists a unique solution for the problems (1.1) and (1.2) on [0,1].
Proof. In the first step, we establish that TˉBr⊂ˉBr, where ˉBr={(u,v)∈W×W:‖(u,v)‖≤r} is a closed ball with
r≥(M1+M3)N1+(M2+M4)N2+N3μ1−[(M1+M3)(m1+m2)+(M2+M4)(n1+n2)+N3(β1+β2)], |
and the operator T:W×W→W×W is defined by (3.2). For (u,v)∈ˉBr and t∈[0,1], it follows by (A1) that
|θ1(t,u(t),v(t))|≤|θ1(t,u(t),v(t))−θ1(t,0,0)|≤m1||u||+m2||v||. |
Similarly one can find that |θ2(t,u(t),v(t))|≤n1||u||+n2||v||. Then we have
|T1(u,v)(t)|≤maxt∈[0,1][t|η2−Δ2|[η{|ω1|∫ξ10(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u(τ),v(τ))|dτ+|h2(s,u(s),v(s)|)ds+|ω2|∫1ξ2(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u(τ),v(τ))|dτ+|h2(s,u(s),v(s)|)ds+∫η0(η−s)γ−1Γ(γ)|θ1(s,u(s),v(s))|ds+|h1(η,u(η),v(η))|}+|Δ|{|ω1|∫ξ10(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u(τ),v(τ))|dτ+|h1(s,u(s),v(s)|)ds+|ω2|∫1ξ2(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u(τ),v(τ))|dτ+|h1(s,u(s),v(s)|)ds+∫η0(η−s)δ−1Γ(δ)|θ2(s,u(s),v(s))|ds+|h2(η,u(η),v(η))|}]+∫t0(t−s)γ−1Γ(γ)|θ1(s,u(s),v(s))|ds+|h1(t,u(t),v(t))|]≤1|η2−Δ2|[η{|ω1|∫ξ10(∫s0(s−τ)δ−1Γ(δ)(n1||u||+n2||v||+N2)dτ+μ2)ds+|ω2|∫1ξ2(∫s0(s−τ)δ−1Γ(δ)|(n1||u||+n2||v||+N2)dτ+μ2)ds+∫η0(η−s)γ−1Γ(γ)(m1||u||+m2||v||+N1)dτ+μ1}+|Δ|{|ω1|∫ξ10(∫s0(s−τ)γ−1Γ(γ)(m1||u||+m2||v||+N1)dτ+μ1)ds+|ω2|∫1ξ2(∫s0(s−τ)γ−1Γ(γ)(m1||u||+m2||v||+N1)dτ+μ1)ds+∫η0(η−s)δ−1Γ(δ)(n1||u||+n2||v||+N2)ds+μ2}]+∫t0(t−s)γ−1Γ(γ)(m1||u||+m2||v||+N1)ds+μ1le1|η2−Δ2|[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ξδ+12Γ(δ+2)+|Δ|ηδΓ(δ+1)](n1||u||+n2||v||+N2)+[1|η2−Δ2|(ηγ+1Γ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+|Δ||ω2|1−ξγ+12Γ(γ+2))+1Γ(γ+1)](m1||u||+m2||v||+N1)+η|η2−Δ2|(|ω1|μ2ξ1+|ω2|μ2(1−ξ2)+μ1)+|Δ|(|ω1|μ1ξ1+|ω2|μ1(1−ξ2)+μ2)+μ1≤(M2n1+M1m1+M2n2+M1m2)r+M2N2+M1N1+N3. |
Analogously, one can find that
|T2(u,v)(t)|≤(M4n1+M3m1+M4n2+M3m2)r+M4N2+M3N1+N4. |
From the foregoing estimates for T1 and T2, we obtain ||T(u,v)(t)||≤r.
Next, for (u1,v1),(u2,v2)∈W×W and t∈[0,1], we get
|T1(u2,v2)(t)−T1(u1,v1)(t)|≤1|η2−Δ2|[η{|ω1|(∫ξ10(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u2(τ),v2(τ))−θ2(τ,u1(τ),v1(τ))|)dτ+|h2(s,u2(s),v2(s))−h2(s,u1(s),v1(s))|ds)+|ω2|(∫1ξ2(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u2(τ),v2(τ))−θ2(τ,u1(τ),v1(τ))|)dτ+|h2(s,u2(s),v2(s))−h2(s,u1(s),v1(s))|ds)+∫η0(η−s)γ−1Γ(γ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u1(τ),v1(τ))|ds+|h1(η,u2(η),v2(η))−h1(η,u1(η),v1(η))|} |
+|Δ|{|ω1|(∫ξ10(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u1(τ),v1(τ))|)dτ+|h1(s,u2(s),v2(s))−h1(s,u1(s),v1(s))|ds)+|ω2|(∫1ξ2(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u1(τ),v1(τ))|)dτ+|h1(s,u2(s),v2(s))−h1(s,u1(s),v1(s))|ds)+∫η0(η−s)δ−1Γ(δ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u2(τ),v2(τ)|ds+|h2(η,u2(η),v2(η))−h2(η,u1(η),v1(η))|ds}]+∫t0(t−s)γ−1Γ(γ)(|θ1(s,u2(s),v2(s))−θ1(s,u1(s),v1(s))|)ds+|h1(t,u2(t),v2(t))−h1(t,u1(t),v1(t))|≤1|η2−Δ2|[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ηδ+1Γ(δ+2)+|Δ|ηδΓ(δ+1)]×(n1||u2−u1||+n2||v2−v1||)+(1|η2−Δ2|[ηγ+1Γ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+|Δ||ω2|1−ξγ+12Γ(γ+2)]+1Γ(γ+1))×(m1||u2−u1||+m2||v2−v1||)+1|η2−Δ2|[(η|ω1|ξ1+η|ω2|(1−ξ2)+|Δ|)(σ1||u2−u1||+σ2||v2−v1||)+(η+|Δ||ω1|ξ1+|Δ||ω2|(1−ξ2)+1)(β1||u2−u1||+β2||v2−v1||)]leM2(n1||u2−u1||+n2||v2−v1||)+M1(m1||u2−u1||+m2||v2−v1||) +N5(σ1||u2−u1||+σ2||v2−v1||)+N6(β1||u2−u1||+β2||v2−v1||)=(M2n1+M1m1+N5σ1+N6β1)||u2−u1||+(M2n2+M1m2+N5σ2)||v2−v1||) |
which implies that
‖T1(u2,v2)(t)−T1(u1,v1)(t)‖le(M2n1+M1m1+N5σ1+N6β1+M2n2+M1m2+N5σ2+N6β2)(||u2−u1||+||v2−v1||). | (3.3) |
Likewise, we have
‖T2(u2,v2)(t)−T2(u1,v1)(t)‖le(M4n1+M3m1+N6σ1+N7β1+M4n2+M3m2+N6σ2+N7β2)(||u2−u1||+||v2−v1||). | (3.4) |
From (3.3) and (3.4), we deduce that
‖T(u2,v2)(t)−T(u1,v1)(t)‖≤[(M1+M3)(m1+m2)+(M2+M4)(n1+n2)+(N7+N8)(β1+β2)+(N5+N6)(σ1+σ2)]×(||u2−u1||+||v2−v1||), |
which shows that T is a contraction by the assumption (A5) and hence it has a unique fixed point by Banach fixed point theorem. This leads to the conclusion that there exists a unique solution for the problems (1.1) and (1.2) on [0,1]. The proof is complete.
Now, we discuss the existence of solutions for the problems (1.1) and (1.2) by means of Leray-Schauder alternative ([12], p. 4).
Theorem 3.2. Assume that there exists real constants ˜k0>0, ˜λ0>0 and ˜ki,˜λi≥0, i=1,2 such that, for any ui∈R, i=1,2
|θ1(t,u1,u2)|≤˜k0+˜k1|u1|+˜k2|u2|,|θ2(t,u1,u2)|≤˜λ0+˜λ1|u1|+˜λ2|u2|. |
In addition,
(M1+M3)˜k1+(M2+M4)˜λ1<1,(M1+M3)˜k2+(M2+M4)˜λ2<1, |
where Mi, i=1,2,3,4 are given in (A4). Then the problems (1.1) and (1.2) have at least one solution on [0,1].
Proof. The proof consists of two steps. First we show that the operator T:W×W→W×W defined by (3.2) is completely continuous. Observe that continuity of the operator T follows from that of θ1 and θ2. Consider a bounded set Ω⊂W×W so that we can find positive constants l1 and l2 such that |θ1(t,u(t),v(t))|≤l1 and |θ2(t,u(t),v(t))|≤l2 for every (u,v)∈Ω. Hence, for any (u,v)∈Ω, we find that
|T1(u,v)(t)|≤1|η2−Δ2|[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ξδ+12Γ(δ+2)+|Δ|ηδΓ(δ+1)]l2+{1|η2−Δ2|[ηγΓ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+|Δ||ω2|1−ξγ+12Γ(γ+2)+1Γ(γ+1)]}l1+1|η2−Δ2|{η[|ω1|ξ1μ2+|ω2|μ2(1−ξ2)+μ1]+ημ1+|Δ|[μ1ξ1|ω1|+μ1|ω2|(1−ξ2)+μ2]}+μ1=M2l2+M1l1+N3. |
Thus we deduce that ‖T1(u,v)‖≤M2l2+M1l1+N3. In a similar fashion, it can be found that ‖T2(u,v)‖≤M4l2+M3l1+N4. Hence, it follows from the foregoing inequalities that T1 and T2 are uniformly bounded and hence the operator T is uniformly bounded. In order to show that T is equicontinuous, we take 0<r1<r2<1. Then, for any (u,v)∈Ω, we obtain
|T1(u(r2),v(r2))−T1(u(r1),v(r1))|≤l1Γ(γ)∫r10[(r2−s)γ−1−(r1−s)γ−1]ds+l1Γ(γ)∫r2r1(r2−s)γ−1ds+r2−r1|η2−Δ2|{[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ξδ+12Γ(δ+2)+|Δ|ηδΓ(δ+1)]l2+[ηγ+1Γ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+|Δ||ω2|1−ξγ+12Γ(γ+2)+1Γ(γ+2)]l1+N3}, |
|T2(u(r2),v(r2))−T2(u(r1),v(r1))|≤l2Γ(δ)∫r10[(r2−s)δ−1−(r1−s)δ−1]ds+l2Γ(δ)∫r2r1(r2−s)δ−1ds +r2−r1|η2−Δ2|{[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ξδ+12Γ(δ+2)+η˙.ηδ+1Γ(δ+1)]l2+[|Δ|ηγΓ(γ+1)+η|ω1|ξγ+11Γ(γ+2)+η|ω2|1−ξγ+12Γ(γ+2)]l1+N4}, |
which imply that the operator T(u,v) is equicontinuous. In view of the foregoing arguments, we deduce that operator T(u,v) is completely continuous.
Next, we consider a set P={(u,v)∈W×W:(u,v)=λT(u,v), 0≤λ≤1} and show that it is bounded. Let us take (u,v)∈P and t∈[0,1]. Then it follows from u(t)=λT1(u,v)(t) and v(t)=λT2(u,v)(t), together with the given assumptions that
‖u‖≤M1(˜k0+˜k1||u||+˜k2||v||)+M2(˜λ0+˜λ1||u||+˜λ2||v||)+N3,|v‖≤M3(˜k0+˜k1||u||+˜k2||v||)+M4(˜λ0+˜λ1||u||+˜λ2||v||)+N4, |
which lead to
‖u‖+‖v‖≤[(M1+M3)˜k0+(M2+M4)˜λ0+N3+N4]+[(M1+M3)˜k1+(M2+M4)˜λ1]‖u‖+[(M1+M3)˜k2+(M2+M4)˜λ2]‖v‖. |
Thus
‖(u,v)‖≤(M1+M3)˜k0+(M2+M4)˜λ0+N3+N4Mk, |
where Mk is defined by (3.1). Consequently the set P is bounded. Hence, it follows by Leray-Schauder alternative ([12], p. 4) that the operator T has at least one fixed point. Therefore, the problems (1.1) and (1.2) have at least one solution on [0,1]. This finishes the proof.
Example 4.1. Consider a coupled boundary value problem of fractional differential equations with slit-strips-type conditions given by
cD3/2(u(t)−sint|u(t)|2(2+|u(t)|))=156u(t)+27v(t)1+v(t)+57,cD5/4(v(t)−sint|v(t)|2(2+|v(t)|))=139|cosu(t)|1+|cosu(t)|+128sinv(t)+37, | (4.1) |
u(0)=0, u(12)=∫1/50v(s)ds+∫14/5v(s)ds,v(0)=0, v(12)=∫1/50u(s)ds+∫14/5u(s)ds. | (4.2) |
Here γ=32, δ=54, ω1=1, ω2=1, η=12, ξ1=15, ξ2=45. From the given data, we find that Δ=−0.11, m1=156, m2=271, n1=139, n2=128, M1≃1.44716, M2≃0.51905, M3≃0.4046, M4≃2.51887, N5≃2.94238, N6≃7.3223, N7≃5.6164, N8≃5.2206, and (M1+M3)(m1+m2)+(M2+M4)(n1+n2)+(N5+N6)(σ1+σ2)+(N7+N8)(β1+β2)≃0.8030305<1.
Clearly all the conditions of Theorem 3.1 are satisfied. In consequence, the conclusion of Theorem 3.1 applies to the problems (4.1)–(4.2).
Example 4.2. We consider the problems (4.1)–(4.2) with
θ1(t,u(t),v(t)) =12+239tanu(t)+241v(t),θ2(t,u(t),v(t)) =25+19sinu(t)+117v(t). | (4.3) |
Observe that
|θ1(t,u,v)|≤˜k0+˜k1|u|+˜k2|v|,|θ2(t,u,v)|≤˜λ0+˜λ1|u|+˜λ2|v| |
with ˜k0=12, ˜k1=239, ˜k2=241 ˜λ0=25, ˜λ1=19, ˜λ2=117. Furthermore,
(M1+M3)˜k1+(M2+M4)˜λ1≃0.432507777<1,(M1+M3)˜k2+(M2+M4)˜λ2≃0.269030756<1. |
Thus all the conditions of Theorem 3.2 hold true and hence there exists at least one solution for the problems (4.1)–(4.2) with θ1(t,u,v) and θ2(t,u,v) given by (4.3).
The authors thank the reviewers for their useful remarks on our paper.
All authors declare no conflicts of interest in this paper.
[1] |
A. L. Lloyd, V. A. A. Jansen, Spatiotemporal dynamics of epidemics: Synchrony in metapopulation models, Math. Biosci., 188 (2004), 1-16. doi: 10.1016/j.mbs.2003.09.003
![]() |
[2] |
M. Su, C. Hui, The effect of predation on the prevalence and aggregation of pathogens in prey, Biosystems, 105 (2011), 300-306. doi: 10.1016/j.biosystems.2011.05.012
![]() |
[3] | C. Bret, Modeling and inference for infectious disease dynamics: A likelihood-based approach, Stat. Sci., 33 (2018), 57-69. |
[4] |
G. Q. Sun, J. H. Xie, S. H. Huang, Z. Jin, M.-T. Li, L. Liu, Transmission dynamics of cholera: Mathematical modeling and control strategies, Commun. Nonlin. Sci. Numer. Si., 45 (2017), 235-244. doi: 10.1016/j.cnsns.2016.10.007
![]() |
[5] |
Y. Kazuo, Threshold dynamics of reaction-diffusion partial differential equations model of Ebola virus disease, Int. J. Biomath., 11 (2018), 1850108. doi: 10.1142/S1793524518501085
![]() |
[6] | J. R. Petrella, W. R. Hao, A. Rao, P. M. Doraiswamy, Computational causal modeling of the dynamic biomarker cascade in alzheimer's disease, Comput. Math. Methods Med., 2019 (2019), 6216530. |
[7] |
Q. Yang, H. F. Huo, Dynamics of an edge-based SEIR model for sexually transmitted diseases, Math. Biosci. Eng., 17 (2020), 669-699. doi: 10.3934/mbe.2020035
![]() |
[8] |
D. M. Xiao, S. G. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429. doi: 10.1016/j.mbs.2006.09.025
![]() |
[9] | M. Haque, J. Zhen, E. Venturino, An ecoepidemiological predator-prey model with standard disease incidence, Math. Method Appl. Sci., 32 (2010), 875-898. |
[10] |
L. I. Bo, S. L. Yuan, W. G. Zhang, Analysis on an epidemic model with a ratio-dependent nonlinear incidence rate, Int. J. Biomath., 4 (2011), 227-239. doi: 10.1142/S1793524511001374
![]() |
[11] | Y. L. Cai, W. M. Wang, Spatiotemporal dynamics of a reaction-diffusion epidemic model with nonlinear incidence rate, J. Stat. Mech. Theory. E, 2011(2011), P02025. |
[12] |
X. B. Zhang, S. Q. Chang, H. Huo, Dynamic behavior of a stochastic SIR epidemic model with vertical transmission, Electron. J. Differ. Equat., 2019(2019), 1-20. doi: 10.1186/s13662-018-1939-6
![]() |
[13] | D. Wodarz, D. N. Levy, N. L. Komarova, Multiple infection of cells changes the dynamics of basic viral evolutionary processes, Evolution, 3 (2019), 104-115. |
[14] |
D. X. Jia, T. H. Zhang, S. L. Yuan, Pattern dynamics of a diffusive toxin producing phytoplanktonzooplankton model with three-dimensional patch, Int. J. Bifurcat. Chaos, 29 (2019), 1930011. doi: 10.1142/S0218127419300118
![]() |
[15] |
M. Bendahmane, M. Langlais, A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease, J. Evol. Equ., 10 (2010), 883-904. doi: 10.1007/s00028-010-0074-y
![]() |
[16] | W. Z. Huang, M. A. Han, K. Y. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2017), 51-66. |
[17] |
S. N. Zhao, S. L. Yuan, H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equat., 268 (2020), 5113-5139. doi: 10.1016/j.jde.2019.11.004
![]() |
[18] | A. D'Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci., 179(2002), 57-72. |
[19] | M. DelaSen, S. Alonso-Quesada, R. Nistal, A. Ibeas, On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a sveirs epidemic model under constant and impulsive vaccination, Advances Differ. Equat., 2011 (2011), 339-370. |
[20] |
A. L. Shane, R. K. Mody, J. A. Crump, L. K. Pickering, 2017 infectious diseases society of America clinical practice guidelines for the diagnosis and management of infectious diarrhea, Clin. Infect. Dis., 65(2017), 1963-1973. doi: 10.1093/cid/cix959
![]() |
[21] |
C. Kuttler, Modeling to inform infectious disease control, Biometrics, 74 (2018), 382-383. doi: 10.1111/biom.12852
![]() |
[22] | S. K. Nandi, S. Jana, M. Mandal, K. K. Tapan, Complex dynamics and optimal treatment of an epidemic model with two infectious diseases, Biosystems, 5 (2019), 5-29. |
[23] |
C. Y. Zheng, C. Y. Xia, Q. T. Guo, M. Dehmer, Interplay between SIR-based disease spreading and awareness diffusion on multiplex networks, J. Parallel Distr. Com., 115 (2018), 20-28. doi: 10.1016/j.jpdc.2018.01.001
![]() |
[24] |
L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM. J. Appl. Math., 67 (2007), 1283-1309. doi: 10.1137/060672522
![]() |
[25] |
R. H. Cui, Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differ. Equat., 261 (2016), 3305-3343. doi: 10.1016/j.jde.2016.05.025
![]() |
[26] | G. Q. Sun, J. Zhang, L. P. Song, Z. Jin, B. L. Li, Pattern formation of a spatial predator-prey system, Appl. Math. Comput., 218 (2012), 11151-11162. |
[27] |
G. Q. Sun, L. Li, Z. K. Zhang, Spatial dynamics of a vegetation model in an arid flat environment, Nonlin. Dynam., 73 (2013), 2207-2219. doi: 10.1007/s11071-013-0935-3
![]() |
[28] | D. Kalajdzievska, M. Y. Li, Modeling the effects of carriers on transmission dynamics of infectious diseases, Math. Biosci. Eng., 8 (2017), 711-722. |
[29] | F. Berezovskaya, G. Karev, B. J. Song, C. Castillo-Chvez, A simple epidemic model with surprising dynamics, Math. Biosci. Eng., 2 (2005), 133-152. |
[30] | X. W. Yu, S. L. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete Cont. Dyn. Syst. B, 25 (2020), 2373-2390. |
[31] |
X. Y. Meng, H. F. Huo, X. B. Zhang, Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput., 60 (2019), 1-25. doi: 10.1007/s12190-018-1201-0
![]() |
[32] |
X. Y. Meng, J. Li, Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting, Math. Biosci. Eng., 17 (2020), 1973-2002. doi: 10.3934/mbe.2020105
![]() |
[33] | X. Y. Meng, Y. Q. Wu, Dynamical analysis of a fuzzy phytoplankton-zooplankton model with refuge, fishery protection and harvesting, J. Appl. Math. Comput., 63 (2020), 361-389. |
[34] |
W. M. Wang, Y. L. Cai, M. J. Wu, K. F. Wang, Z. Q. Li, Complex dynamics of a reaction-diffusion epidemic model, Nonlin. Anal. Real Word Appl., 13 (2012), 2240-2258. doi: 10.1016/j.nonrwa.2012.01.018
![]() |
[35] |
T. Wang, Dynamics of an epidemic model with spatial diffusion, Phys. A, 409 (2014), 119-129. doi: 10.1016/j.physa.2014.04.028
![]() |
[36] |
W. M. Wang, H. Y. Liu, Y. L. Cai, Z. Q. Li, Turing pattern selection in a reaction-diffusion epidemic model, Chinese Phys. B, 20 (2011), 074702. doi: 10.1016/j.physa.2014.04.028
![]() |
[37] |
M. Fras, M. Gosak, Spatiotemporal patterns provoked by environmental variability in a predatorprey model, Biosystems, 114 (2013), 172-177. doi: 10.1016/j.biosystems.2013.09.004
![]() |
[38] |
Z. P. Ma, H. F. Huo, H. Xiang, Spatiotemporal patterns induced by delay and cross fractional diffusion in a predator-prey model describing intraguild predation, Math. Methods Appl. Sci., 43 (2020), 5179-5196. doi: 10.1002/mma.6259
![]() |
[39] |
A. Onofrio, M. Banerjee, P. Manfredi, Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing-Hopf patterning of the disease, Phys. A, 545 (2020), 123773. doi: 10.1016/j.physa.2019.123773
![]() |
[40] | Y. F. Li, J. A. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlin. Sci. Numer. Simul., 14 (2008), 2353-2365. |
[41] |
M. J. Ma, S. Y. Liu, J. Li, Does media coverage influence the spread of drug addiction, Commun. Nonlinear Sci. Numer. Simul., 50(2017), 169-179. doi: 10.1016/j.cnsns.2017.03.002
![]() |
[42] | M. A. Khan, S. Islam, G. Zaman, Media coverage campaign in hepatitis b transmission model, Appl. Math. Comput., 331 (2018), 378-393. |
[43] |
R. S. Liu, J. H. Wu, H. P. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153-164. doi: 10.1080/17486700701425870
![]() |
[44] | J. A. Cui, X. Tao, H. P. Zhu, An SIS infection model incorporating media coverage, Rocky Mountauin J. Math., 38 (2008), 1323-1334. |
[45] |
Y. P. Liu, J. A. Cui, The impact of media coverage on the dynamics of infections disease, Int. J. Biomath, 1 (2008), 65-74. doi: 10.1142/S1793524508000023
![]() |
[46] |
Y. F. Li, J. A. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlin. Sci. Numer. Simul., 14 (2009), 2353-2365. doi: 10.1016/j.cnsns.2008.06.024
![]() |
[47] |
J. A. Cui, Y. H. Sun, H. P. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equ., 20 (2008), 31-53. doi: 10.1007/s10884-007-9075-0
![]() |
[48] |
Y. N. Xiao, S. Y. Tang, J. H. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 7838. doi: 10.1038/srep07838
![]() |
[49] |
Q. L. Yan, S. Y. Tang, S. Gabriele, J. H. Wu, Media coverage and hospital notifications: Correlation analysis and optimal media impact duration to manage a pandemic, J. Theor. Biol., 390 (2016), 1-13. doi: 10.1016/j.jtbi.2015.11.002
![]() |
[50] | J. M. Tchuenche, N. Dube, B. P. Claver, J. S. Robert, T. B. Chris, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11(2011), S5. |
[51] |
C. J. Sun, W. Yang, J. Arino, K. Kamran, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011), 87-95. doi: 10.1016/j.mbs.2011.01.005
![]() |
[52] |
P. V. D. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1364/JOSA.48.000784
![]() |
[53] |
X. Y. Meng, J. G. Wang, Analysis of a delayed diffusive model with Beddington-Deangelis functional response, Int. J. Biomath., 12 (2019), 1950047. doi: 10.1142/S1793524519500475
![]() |
[54] | Y. Zhao, J. Li, X. Ma, Stochastic periodic solution of a susceptible-infective epidemic model in a polluted environment under environmental fluctuation, Comput. Math. Methods Med., 2018 (2018), 1-15. |
1. | Wafa Shammakh, Hadeel Z. Alzumi, Zahra Albarqi, On multi-term proportional fractional differential equations and inclusions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03104-y | |
2. | Karthikeyan Buvaneswari, Panjaiyan Karthikeyan, Dumitru Baleanu, On a system of fractional coupled hybrid Hadamard differential equations with terminal conditions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02790-y | |
3. | Zhiwei Lv, Ishfaq Ahmad, Jiafa Xu, Akbar Zada, Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-Strips-Type Integral Boundary Conditions and Impulses, 2022, 6, 2504-3110, 618, 10.3390/fractalfract6100618 | |
4. | Said Mesloub, Eman Alhazzani, Hassan Eltayeb Gadain, A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem, 2024, 13, 2075-1680, 646, 10.3390/axioms13090646 | |
5. | Haroon Niaz Ali Khan, Akbar Zada, Ioan-Lucian Popa, Sana Ben Moussa, The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions, 2023, 7, 2504-3110, 837, 10.3390/fractalfract7120837 | |
6. | Pengyan Yu, Guoxi Ni, Chengmin Hou, Existence and uniqueness for a mixed fractional differential system with slit-strips conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01942-3 | |
7. | Karthikeyan Buvaneswari, Panjaiyan Karthikeyan, Kulandhivel Karthikeyan, Ozgur Ege, Existence and uniqueness results on coupled Caputo-Hadamard fractional differential equations in a bounded domain, 2024, 38, 0354-5180, 1489, 10.2298/FIL2404489B | |
8. |
Haroon Niaz Ali Khan, Akbar Zada, Ishfaq Khan,
Analysis of a Coupled System of ψ -Caputo Fractional Derivatives with Multipoint–Multistrip Integral Type Boundary Conditions,
2024,
23,
1575-5460,
10.1007/s12346-024-00987-0
|