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Abstract: In this paper, a reaction-diffusion SI epidemic model with media impact is considered. The
boundedness of system and the existence of the state are given. The local stabilities of the endemic
states are analyzed. Sufficient conditions of the occurrence of the Turing pattern are obtained by the
center manifold theorem and normal form method. Some numerical simulations are given to check in
the theoretical results. We find that the influence of media not only inhibits the spread of infectious
diseases, but also effects the spatial steady-state of model.
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1. Introduction

In epidemiology, mathematical model is an important method for quantitative analysis of the spread
and control of infectious diseases [1, 2, 3]. Lots of epidemiological models have been established to
understand the mechanism of disease transmission based on some diseases, such as cholera [4], Ebola
[5], alzheimer’s disease [6], sexually transmitted diseases [7]. Some models are given by considering
different factors, such as the incidence rate [8, 9, 10, 11], infectious diseases transmission [12, 13],
cross-diffusion [14, 15, 16], seasonal variation [17], vaccination [18, 19, 20], control [21, 22], multiplex
network [23], different patches [24, 25] and other factors [26, 27, 28]. Those results are useful to predict
the development trend of infectious diseases, identify the key factors of transmission, and seek the best
strategies to control the spread of infectious diseases.

By dividing the total population N into the susceptible population S and the infectious population
I, Berezovskaya et al. [29] introduced a simple epidemic model as follows

dS (t)
dt

= rN(1 −
N
K

) −
βS (t)I(t)

N
− (µ + m)S (t),

dI(t)
dt

=
βS (t)I(t)

N
− (µ + d)I(t),

(1.1)
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where the birth process incorporates the effects of density dependent by a logistic equation with the
intrinsic growth rate r and the carrying capacity K. β denotes the transmission rate (the infection rate is
constant), µ is the natural mortality rate; d denotes the disease-induced mortality rate and m is the per-
capita emigration rate of uninfected. What’s more, some diseases are taken into account the population
models from the view point of mathematical epidemiology in recent years [30, 31, 32, 33].

The spatial epidemic models showing the rich dynamics of disease transmission, have been received
more and more attention. Such as, Wang et al. [34] investigated the complex dynamics of a reaction
diffusion SI model incorporating demographic and epidemiological processes with zero-flux boundary
conditions. Their results indicate that the diffusion has a great influence on the spread of the epidemic
and extend well the finding of spatiotemporal dynamics in the epidemic model. Wang [35] investigated
the pattern dynamics of a spatial epidemic model with logistic growth. By using amplitude equation,
they found that there were different types of stationary patterns including spotted, mixed, and stripe
patterns, which mean that the individual movement in the space can lead to a high density of disease.
Many other scholars done similar work . By taking diffusion into model (1.1), Wang et al.[36] proposed
the model with the form of the partial differential equation as follows

∂S (t)
∂t

= rN(1 −
N
K

) −
βS (t)I(t)

N
− (µ + m)S (t) + d1∇

2S ,

∂I(t)
∂t

=
βS (t)I(t)

N
− (µ + d)I(t) + d2∇

2I.
(1.2)

They presented Turing pattern selection in a model (1.2) under zero-flux boundary conditions. In
addition, some authors also investigated the pattern dynamics of models, such as [37, 38, 39].

Media impact has a particularly significant effect on reducing the infection rate of infectious diseases
[40, 41, 42]. With the spread of the epidemic, this reduction of the infection rate becomes weaker and
weaker, and the susceptible population can not form new habits to avoid infection. That is, the number
of infected people has a critical value. At this critical point, the number of the susceptible population
changing their behaviors reach the maximum, which shows that the reduction of media impact reaches
the maximum. With the continuous increase of the number of patients, the susceptible population still
need to participate in some necessary social activities to contact other people. Modelling the media
impact on the spread of disease shares tremendous popularity in these years. Thus, some scholars in-
troduced epidemic model with media impact [43, 44, 45]. Liu et al.[43] described the media coverage
impact on the transmission dynamic including a describing factor βe−a1E−a2I−a3H in the transmission
coefficient, here E, I, and H are the numbers of reported exposed, infectious, and hospitalized indi-
viduals, respectively. Cui et al. [44] used c1 − c2 f (I) as the contact rate to investigate the effect of
media coverage on the spread of disease and obtained that the media coverage was important on the
spread of the infectious disease. Further, Liu and Cui [45] considered a model with media coverage as
follows 

dS (t)
dt

= r − dS − (β1 − β2
I

m + I
)S I + δR,

dI(t)
dt

= (β1 − β2
I

m + I
)S I − (d + γ + α)I,

dR(t)
dt

= γI − (d + δ)R.

(1.3)

Where β(I) = β1 − β2
I

m+I is the contact rate after media alert. β1 denotes the contact rate before media
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alert, and β2
I

m+I reflects the reduced value of the transmission rate when infectious individuals appear
and are reported. β2 is the maximum value of the transmission rate, m reflects the reactive velocity of
people and media coverage to the disease. Li and Cui [46] also considered an SIS epidemic model with
pulse vaccination and incidence rate β(I) = β1 − β2

I
m+I .

In addition, Cui et al. [47] formulated a compartment model with incidence rate µe−mI with m
reflecting the impact of media coverage on transmission dynamics, and obtained that Hopf bifurcation
exists when m is sufficiently small. Recently, Xiao et al. [48] formulated the media function depending
on switch on and off in a highly nonlinear fashion with the greatest effect during the early stage of
the outbreak. Yan et al. [49] presented a novel methodology by using cross-correlation analysis and
embedding a media function and the number of news reports into classical SEIR model, showed that
combining statistical analysis with a mathematical model was beneficial to analyze media impacts.
Moreover, other forms, such as µ1 − µ2 f (I) S I

S +I , have been proposed to describe the media-induced
incidence rate (see details in [50, 51]).

Based on the above work [45, 47], we think that the effect of media reports is different in different
period of infectious diseases. The impact of media reports on the disease is relatively large when the
number of infected people is small, but the impact of media reports on the disease is relatively weak
when the number of infected people is large. Thus, we take media impact into account the model (1.2),
which can be described by

f (I(t)) =
1

1 + βαI(t)
,

here α is the influencing factor (α > 0) reflecting the impact of media coverage the effective contact
rate. This function can also be interpreted as the influencing factor function decreasing exponentially
with the increase of the number of infected persons when the number of infected persons is less than
the critical value. However, once the number of the infected reaches or exceeds this critical value, this
function will be interpreted as the influencing factor [45].

Based on the above factors, the following model is given
∂S (t)
∂t

= rN(1 −
N
K

) −
1

1 + βαI(t)
βS (t)I(t)

N
− (µ + m)S (t) + d1∇

2S (t),

∂I(t)
∂t

=
1

1 + βαI(t)
βS (t)I(t)

N
− (µ + d)I(t) + d2∇

2I(t).
(1.4)

Model (1.4) will be analysed under the following non-zero initial condition

S (r, 0) > 0, I(r, 0) > 0, r = (x, y) ∈ Ω = [0, L] × [0, L],

and zero-flux boundary condition
∂S
∂n

=
∂I
∂n

= 0.

As far as we know, media impact taken into models with partial differential equations (PDEs) is
less than the other cases. Especially, there are few studies including both spatial diffusion and media
influence in the spatial infectious disease model. For this purpose, we will make a detailed analysis of
a spatial disease model with media impact.

The main contents of this paper are as follows. In part two, we will show the stability of each
equilibrium point. In the third section, we will obtain the conditions under which Turing instability
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occurs. In addition, we will carry out numerical simulations to verify our theoretical results. Some
conclusions and discussions are given in the end.

2. Boundaries and the existence of equilibrium state

The basic demographic reproductive number Rd is given by Rd = r
µ+m . It can be shown that if

Rd > 1, then the population grows, inverse the population does not survive.
The basic reproductive number is R0 =

β

µ+d according to the method of reference [52]. Generally
speaking, the disease will invade successfully when R0 > 1, but it will die out if R0 < 1.

Re-scaling the model (1.4) by letting S → S
K , I → I

K , t → t1
µ+d , for convenience, we still write t1

down as t, which leads to the following model without diffusion
dS (t)

dt
= ϑRd(S + I)(1 − (S + I)2) −

R0

1 + βαKI
S I

S + I
− ϑS ,

dI(t)
dt

=
R0

1 + βαKI
S I

S + I
− I.

(2.1)

Where ϑ =
µ+m
µ+d is the ratio of the average life-span of susceptible to that of infectious.

Re-scaling the model (2.1) by letting dt → (S + I)dt leads to the following model
dS (t)

dt
= ϑRd(S + I)2(1 − (S + I)2) −

R0S I
1 + βαIK

− ϑ(S + I)S ,

dI(t)
dt

=
R0S I

1 + βαIK
− (S + I)I.

(2.2)

We assume that the susceptible S and infectious population I move randomly, described as Brown
random motion. Thus, corresponding to model (2.2), we propose a simple spatial model as follows

∂S (t)
∂t

= ϑRd(S + I)2(1 − (S + I)2) −
R0S I

1 + βαIK
− ϑ(S + I)S + d1∇

2S ,

∂I(t)
∂t

=
R0S I

1 + βαIK
− (S + I)I + d2∇

2I,
(2.3)

where the nonnegative constants d1 and d2 are the diffusion coefficients of S and I, respectively. The
usual Laplace operator in two dimensional space ∇2 = ∂2

∂x2 + ∂2

∂y2 , is used to describe the Brown random
motion.

Model (2.3) is to be analysed under the following non-zero initial conditions

S (r, 0) > 0, I(r, 0) > 0, r = (x, y) ∈ Ω = [0, L] × [0, L], (2.4)

and zero-flux boundary conditions
∂S
∂n

=
∂I
∂n

= 0,

where L denotes the size of the system in the directions of x and y, n is the outward unit normal
vector of the boundary ∂Ω. The main reason for choosing such boundary conditions is that we are
interested in the self-organization of patterns. Zero-flux boundary conditions imply that there is no
flux of population through the boundary, that is, no external input is imposed from outside.
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Next, we will investigate some preliminary and relevant properties of the system (2.3). The methods
for the existence of the solutions can be found in the references [38, 53, 54].

It is obvious that system (2.3) has one zero equilibrium E0 = (S 0, I0) = (0, 0). If Rd > 1, then

system (2.3) has one boundary equilibrium E1 = (S 1, I1) = (
√

Rd−1
Rd
, 0).

From the second equation of system (2.3), we have that

S =
I(1 + βαKI)

R0 − (1 + βαKI)
. (2.5)

By submitting (2.5) into the first equation of system (2.3), we have that

ϑ(Rd − I)(Rd − ξ)4 + (Rd − ξ)3(ϑRdξI − 4ξI3 − R0 − ϑξI)−
ϑRd(R0 − ξ)2I(1 − I2) − 4(R0 − ξ)3 − 4Rdξ

4I3 = 0,
(2.6)

where ξ = 1 + βαKI.
Due to the complexity of Eq.(2.5), it is difficult to obtain the exact solutions to Eq.(2.5). Thus, we

give one assumption as follows
(H0): Eq.(2.5) has one positive root.

Thus, system (2.3) has one positive equilibrium E∗ = (S ∗, I∗), where S ∗ and I∗ satisfy the following

S ∗ =
ξI∗

R0 − ξ
,

ϑ(Rd − I∗)(Rd − ξ)4 + (Rd − ξ)3(ϑRdξI∗ − 4ξI3
∗ − R0 − ϑξI∗)−

ϑRd(R0 − ξ)2I∗(1 − I2
∗ ) − 4(R0 − ξ)3 − 4Rdξ

4I3
∗ = 0,

where ξ = 1 + βαKI∗.
In the following, we will investigate the local stability of system (2.2).

Theorem 2.1. All the non-negative solutions of model (2.2) that start in R2
+ are bounded, with ultimate

bound independent of the initial conditions.

Proof. Denoting W(t) = S (t) + I(t), we have

dW(t)
dt

= ϑRd(S + I)2(1 − (S + I)2) − (S + I)(ϑS + I).

For each η > 0, the following inequality

dW(t)
dt

+ ηW = ϑRd((S + I)2 − (S + I)4) − (S + I)(ϑS + I − η)

≤ ϑRd(W2 −W4) −W(ϑS + I − η)

is true. By taking η < min{Rd, ϑ, 1}, the right-hand side of the above inequality is bounded. That is

dW(t)
dt

≤ (ϑRdW − η − ϑRdW3)W.

There exists a T , such that for t > T ,

lim sup
t→∞

W(t) ≤ 1 −
η

ϑRd
.

It is easy to see that is independent of the initial condition. We conclude the proof. �
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3. Stability analysis and Turing bifurcation

3.1. Stability analysis of the disease-free state

The linearized system of system (2.3) at the coexistence state E∗ is as follows
∂S (t)

dt
= a311S + a312I + d1∇

2S ,

∂I(t)
dt

= a321S + a322I + d2∇
2I,

(3.1)

where

a311 = ϑRd[2S ∗(S ∗ + I∗) − 4S ∗(S ∗ + I∗)3] −
R0I∗

1 + βαKI∗
− ϑ(2S ∗ + I∗),

a312 = ϑRd[2I∗(S ∗ + I∗) − 4I∗(S ∗ + I∗)3] −
R0S ∗

(1 + βαKI∗)2 − ϑS ∗,

a321 =
R0S ∗I∗

1 + βαKI∗
− I∗(S ∗ + I∗),

a322 =
R0S ∗

(1 + βαKI∗)2 − ϑS ∗.

Let (
S
I

)
=

(
α1

α2

)
exp (λt + i

−→
kc
−→r ), (3.2)

where
−→
kc = (kx, ky), −→r = (x, y), λ is the growth rate of perturbation at time t, and kc =

√
k2

x + k2
y is the

number of the wave.
Substituting (3.2) into (3.1), we can obtain that the characteristic equation is

λ2 + g1(kc)λ + g2(kc) = 0, (3.3)

where

g1(kc) = d1k2
c + d2k2

c − a311 − a322,

g2(kc) = d1d2k4
c − a311d2k2

c − a322d1k2
c + a311a322 − a312a321.

In the case of system (2.3) without diffusion, the corresponding characteristic equation is as follow

λ2 + g1(0)λ + g2(0) = 0, (3.4)

where

g1(0) = −a311 − a322, g2(0) = a311a322 − a312a321.

According to the Routh − Hurwitz, the necessary and sufficient condition for the stability of the local
equilibrium state E∗ is that the real part of all eigenvalues is less than zero. It follows that

(H1) : g1(0) > 0,
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(H2) : g2(0) > 0.

Thus, the coexistence state E∗ is stable when R0 > 1, (H1) and (H2) are true.
The necessary condition for the occurrence of the Turing pattern is that system (2.3) is stable in

the absence of diffusion, but the coexistence state E∗ of system (2.3) with diffusion is unstable. The
condition for occurrence of the Turing branch from the coexistence state E∗ will be given detailed in
the next.

3.2. Analysis of Turing bifurcation

In 1953, Turing(1952) showed that a system including coupled reaction-diffusion equations can be
used to describe patterns in biological system. Turing

′

s theory shows that the interplay of chemical
reaction and diffusion may cause the local stability of system to be unstable for the diffusive system and
lead to the spontaneous formulation of a spatially periodic stationary structure. This kind of instability
is called Turing instability or diffusive-driven instability.

In this part, we will derive some conditions for the Turing instability for the spatially homogeneous
equilibrium solution to system (2.3).

Case 1 g1(kc) > 0.
Since all diffusion coefficients are positive, the Turing pattern takes place under such Case 1.
Case 2. g2(kc) > 0.
Let z = k2

c . We have that
g2(z) = h1z2 − h2z + h3,

where h1 = d1d2, h2 = a311d2 + a322d1, h3 = a311a322 − a321a312.
We can obtain that the minimum point of g2(z) is zmin = h2

2h1
. Since zmin represents a physical wave

number, zmin = h2
2h1

is positive. Thus, the sufficient conditions of the Turing branch taking place are the
assumptions (H1), (H2) and
(H3) : zmin = h2

2h1
> 0, g2(zmin) = g2( h2

2h1
) =

h1h3−h2
2

4h1
< 0

hold.

4. Numerical simulation

In this section, we select parameters satisfied the assumptions (H1) and (H2), simulate the steady-
state pattern of system (2.3). The values of all parameters are d1 = 0.01, d2 = 0.25, ϑ = 0.15, µ =

0.000001, d = 0.0000005,m = 0.000001, r = 0.0000024, β = 0.000003,K = 20000. The influence of
the change of transmission mode on transmission parameters is also studied. The information contained
in infectious diseases and the hidden information behind Turing mode are revealed. For this purpose,
the space area is [0, 100] × [0, 100], and the time interval is [0, 50000]. The space step is ∆h = 1, and
the time step is ∆t = 0.01. The initial value is the random perturbation value of the coexistence state
E∗, and the boundary is Neumann boundary condition. In system (2.3), we pay more attention to the
evolution and distribution of space diseases.

When we keep the other parameters unchanged and take the media coefficients with different values,
we can observe how the media affect the system. The reaction is mainly expressed by different patches,
but media influences are given different values which are not randomly chosen. But after repeated
debugging, we can get the following four patterns, which can be seen in Fig 1, Fig 2, Fig 3 and Fig 4.
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The evolution process is wide stripes to mixed stripes and spots, to only spots, and they are the steady-
state patterns. The numerical simulation results show that the density of the infected population tends
to a certain value with time increasing. The density of infected people may vary in different locations.

(a) (b)

Figure 1. When media coefficient is α = 44, the system has a thick stripe pattern.

(a) (b)

Figure 2. When media coefficient is α = 33, the system has a mixed pattern of spots and
stripes.

From the under numerical simulations, we can clearly observe that the change of media impact
causes the structures to change the Turing pattern. When the parameter α ≥ 80, there is no change
in the Turing mode, which means that the influence of media is too small, and the system dose not
change. When the parameter α is smaller than 80, that is, the influence of media becomes larger, the
Turing mode changes gradually from wide stripes to stripes and spots mixed state, and finally to the
state of only spots. Finally, when the media coefficients exceed a certain value, the system does not
change. That is, the influence of media impact on disease has a certain range.
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(a) (b)

Figure 3. When media coefficient is α = 16, the system has a spot pattern.

(a) (b)

Figure 4. When media coefficient is α = 80, the system no longer changes with the change
of media coefficient

5. Conclusions

Media communications have a great impact on individual behaviour changes, therefore significantly
impact on the spread and outbreak of infectious disease. In recent years, models associated with the
impact of media coverage on disease spread show a tremendous popularity. However, these models
ignore the lag effect of media impact on the spread of infectious disease. Thus, a model of the lag
effect of media impact is analyzed and discussed in this paper.

In model (1.2), Wang et al.[36] studied Turing pattern, and spent a lot of time to study solutions
and its properties. The S I infectious disease model with media impact is studied in this paper. Nec-
essary conditions of Turing pattern are obtained by Eq.(3.3). Focusing on the bifurcation conditions
of Eq.(3.3), we studied the effects of media on infections diseases by numerical simulations with me-
dia impact as parameters. The results showed that the average spatial density of infected population
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decreases with the increase of media influence.
By comparison, we mainly study this system consisting of media impact. It is worthy that the

shape of the pattern represents the actual distribution of infectious diseases. Through understanding
the structure of the model, we can clearly observe that the change of media impact causes the structures
to change the Turing pattern. When the parameter α varies, the influence of media becomes larger, the
Turing mode changes gradually from wide stripes to stripes and spots mixed state, and finally to the
state of only spots. But when the parameter α is less or bigger than one value, such system does not
change. That is to say, the influence of media impact on disease has a certain range. Thus, we can
take some measures for the prevention and control of infectious diseases. The results also enrich the
dynamics of media impact reaction-diffusion epidemic models.

The new coronary pneumonia that broke out in 2020. After understanding the pathogenic mecha-
nism of the new coronavirus. After the transmission route and infection mode, the country immediately
took extremely strong prevention and control measures. Take closed management of the city of Wuhan.
This is the first time such a measure has been taken in a city with a population of 20 million since the
founding of the People’s Republic of China. It first controlled the output fluidity of the disease source,
that is, to control the flow of infected people into susceptible people. Especially active and effective,
the next step is to let people wear masks and wash their hands frequently. Since the main infection of
this new coronavirus is infection through contact infection from the respiratory tract, this time wear-
ing a mask is the most effective for individuals to prevent infection effective way. After having these
extremely strong protective measures, the next step is to let susceptible individuals know the effec-
tive measures. In the 21st century, the era of rapid information dissemination, this information can be
spread to each individual in many ways. In the subsequent data reports, you can clearly see the number
of infected people is declining, which means that media reports have a positive effect on the prevention
of infectious diseases.

In this paper, although we have found that media impact could effectively control the spread of
diseases in a certain range, we do not know how this media impact specifically affects the infectious
disease system, and whether this media factor is the best for disease control. Therefore, we will spend
a lot of time to study the specific links between media and infectious diseases in the future.

The obtained results could be beneficial for accurately assessing the effect of the media coverage in
the control and treatment of infective diseases.
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